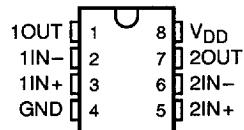
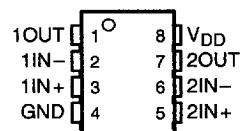


- Wide Range of Supply Voltages
2 V to 8 V
- Fully Characterized at 3 V and 5 V
- Very-Low Supply-Current Drain
120 μ A Typ at 3 V
- Output Compatible With TTL, MOS, and CMOS
- Fast Response Time . . . 200 ns Typ for TTL-Level Input Step
- High Input Impedance . . . $10^{12} \Omega$ Typ
- Extremely Low Input Bias Current
5 pA Typ
- Common-Mode Input Voltage Range Includes Ground
- Built-In ESD Protection

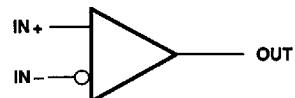

description

The TLV2352 consists of two independent, low-power comparators specifically designed for single power-supply applications and to operate with power-supply rails as low as 2 V. When powered from a 3-V supply, the typical supply current is only 120 μ A.


The TLV2352 is designed using the Texas Instruments LinCMOS™ technology and therefore features an extremely high input impedance (typically greater than $10^{12} \Omega$), which allows direct interfacing with high-impedance sources. The outputs are N-channel open-drain configurations that require an external pullup resistor to provide a positive output voltage swing, and they can be connected to achieve positive-logic wired-AND relationships. The TLV2352 is fully characterized at 3 V and 5 V for operation from -40°C to 85°C .

The TLV2352 has internal electrostatic-discharge (ESD)-protection circuits and has been classified with a 2000-V ESD rating tested under MIL-STD-883C, Method 3015.1. However, care should be exercised in handling this device as exposure to ESD may result in degradation of the device parametric performance.

D OR P PACKAGE
(TOP VIEW)



PW PACKAGE
(TOP VIEW)

NC - No internal connection

symbol (each comparator)

AVAILABLE OPTIONS

TA	V _{I0} max at 25°C	PACKAGED DEVICES			CHIP FORM (Y)
		SMALL OUTLINE (D)	PLASTIC DIP (P)	TSSOP (PW)	
-40°C to 85°C	5 mV	TLV2352ID	TLV2352IP	TLV2352IPWLE	TLV2352Y

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TLV2352IDR).

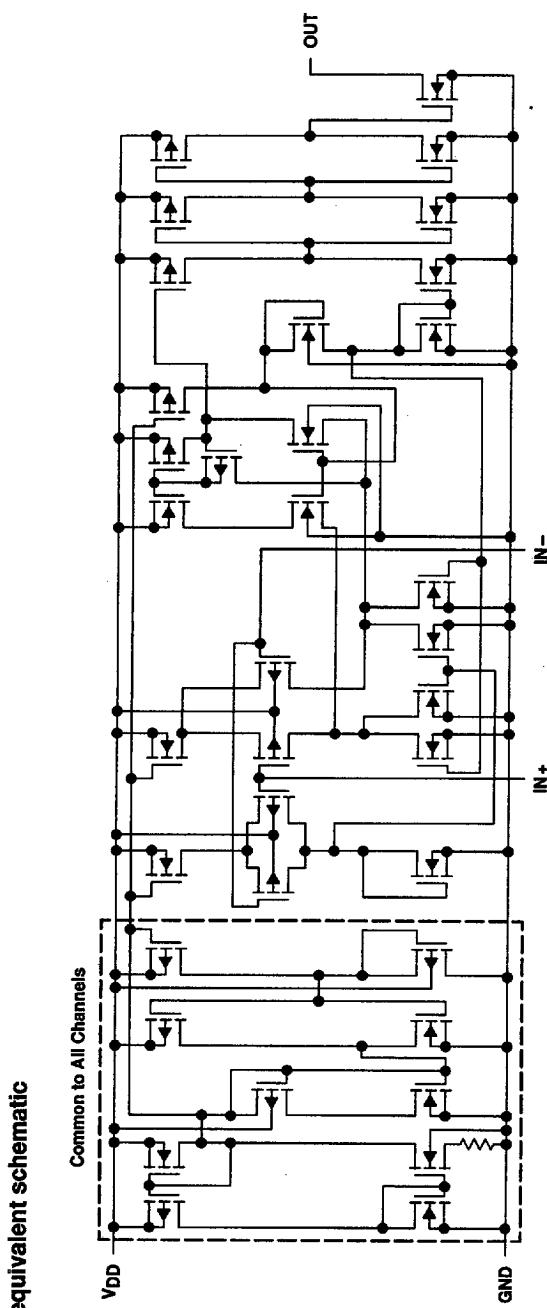
The PW packages are only available left-ended taped and reeled (e.g., TLV2352IPWLE).

These devices have limited built-in protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

LinBiCMOS is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1992, Texas Instruments Incorporated

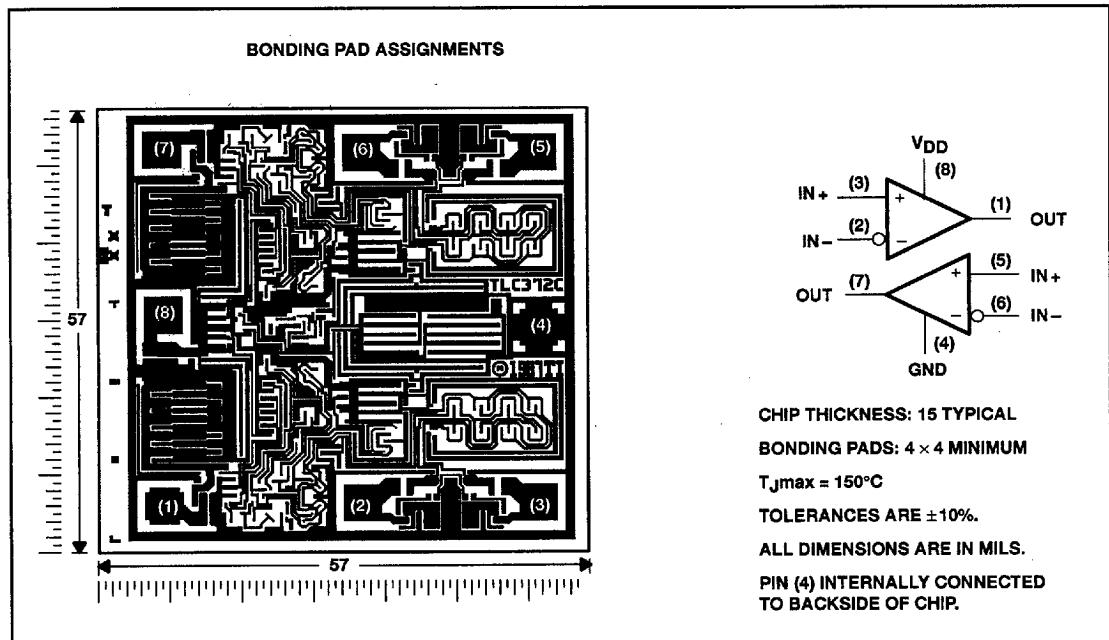

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

6-217

■ 8961724 0094987 374 ■

TLV2352I, TLV2352Y LinCMOS™ DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS

SLCS011 - MAY 1992


8961724 0094988 200

 **TEXAS
INSTRUMENTS**
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

6-218

TLV2352Y chip information

These chips, when properly assembled, display characteristics similar to the TLV2352. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

TEXAS
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

■ 8961724 0094989 147 ■

6-219

TLV2352I, TLV2352Y LinCMOS™ DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS

SLCS011 – MAY 1992

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V_{DD} (see Note 1)	8 V
Differential input voltage, V_{ID} (see Note 2)	± 8 V
Input voltage range, V_I	-0.3 to 8 V
Output voltage, V_O	8 V
Input current, I_I	± 5 mA
Output current, I_O	20 mA
Duration of output short-circuit current to GND (see Note 3)	unlimited
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T_A	-40°C to 85°C
Storage temperature range	-65°C to 150°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260°C

† Stress beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
2. Differential voltages are at IN+ with respect to IN-.
3. Short circuits from outputs to V_{DD} can cause excessive heating and eventual device destruction.

DISSIPATION RATING TABLE

PACKAGE	POWER RATING	DERATING FACTOR		POWER RATING
		$T_A \leq 25^\circ C$	$T_A = 85^\circ C$	
D	725 mW	5.8 mW/ $^\circ C$	377 mW	
P	1000 mW	8.0 mW/ $^\circ C$	520 mW	
PW	525 mW	4.2 mW/ $^\circ C$	273 mW	

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, V_{DD}		2	8	V
Common-mode input voltage, V_{IC}	$V_{DD} = 3$ V	0	1.75	V
	$V_{DD} = 5$ V	0	3.75	
Operating free-air temperature, T_A		-40	85	°C

8961724 0094990 969

 **TEXAS
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

6-220

electrical characteristics at specified free-air temperature†

PARAMETER	TEST CONDITIONS	TA‡	TLV2352I						UNIT	
			V _{DD} = 3 V			V _{DD} = 5 V				
			MIN	TYP	MAX	MIN	TYP	MAX		
V _{IO}	Input offset voltage V _{IC} = V _{ICR} min, See Note 4	25°C	1	5		1	5		mV	
		Full range		7			7			
I _{IO}		25°C	1			1			pA	
		85°C		1			1		nA	
I _{IB}		25°C	5			5			pA	
		85°C		2			2		nA	
V _{ICR}	Common-mode input voltage range	25°C	0 to 2			0 to 4			V	
		Full range	0 to 1.75			0 to 3.75				
I _{OH}	High-level output current V _{ID} = 1 V	25°C	0.1			0.1			nA	
		Full range		1			1		µA	
V _{OL}	Low-level output voltage V _{ID} = -1 V, I _{OL} = 2 mA	25°C	115	300		150	400		mV	
		Full range		600			700			
I _{OL}	Low-level output current V _{ID} = -1 V, V _{OL} = 1.5 V	25°C	6	16		6	16		mA	
I _{DD}	Supply current V _{ID} = 1 V, No load	25°C	120	250		140	300		µA	
		Full range		350			400			

† All characteristics are measured with zero common-mode input voltages unless otherwise noted.

‡ Full range is -40°C to 85°C. IMPORTANT: See Parameter Measurement Information.

NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 4 V with V_{DD} = 5 V, 2 V with V_{DD} = 3 V, or below 400 mV with a 10-kΩ resistor between the output and V_{DD}. They can be verified by applying the limit value to the input and checking for the appropriate output state.

switching characteristics, V_{DD} = 3 V, TA = 25°C

PARAMETER	TEST CONDITIONS	TLV2352I			UNIT
		MIN	TYP	MAX	
Response time	R _L = 5.1 kΩ, C _L = 15 pF§, See Note 5	100-mV input step with 5-mV overdrive		640	ns

switching characteristics, V_{DD} = 5 V, TA = 25°C

PARAMETER	TEST CONDITIONS	TLV2352I			UNIT
		MIN	TYP	MAX	
Response time	R _L = 5.1 kΩ, C _L = 15 pF§, See Note 5	100-mV input step with 5-mV overdrive	650		ns
		TTL-level input step	200		

§ C_L includes probe and jig capacitance.

NOTE 5: The response time specified is the interval between the input step function and the instant when the output crosses V_O = 1 V with V_{DD} = 3 V or V_O = 1.4 V with V_{DD} = 5 V.

POST OFFICE BOX 656303 • DALLAS, TEXAS 75265

6-221

■ 8961724 0094991 8T5 ■

TLV2352I, TLV2352Y
LinCMOS™ DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS

SLCS011 - MAY 1992

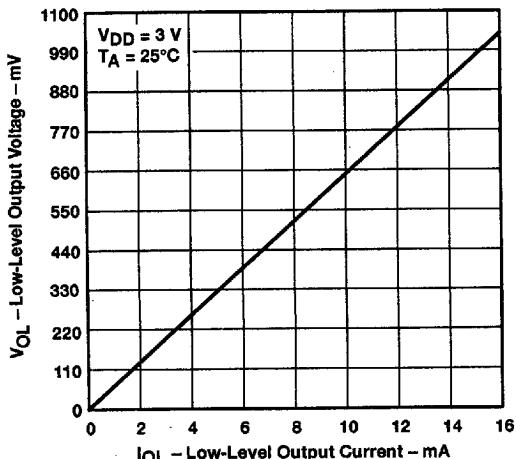
electrical characteristics at specified free-air temperature, $T_A = 25^\circ\text{C}$ †

PARAMETER	TEST CONDITIONS	TLV2352Y						UNIT	
		V _{DD} = 3 V			V _{DD} = 5 V				
		MIN	TYP	MAX	MIN	TYP	MAX		
V _{IO}	Input offset voltage V _{IC} = V _{ICR} min, See Note 4			1	5		1	5	mV
I _{IO}	Input offset current			1			1		pA
I _{IB}	Input bias current			5			5		pA
V _{ICR}	Common-mode input voltage range			0 to 2			0 to 4		V
I _{OH}	High-level output current V _{ID} = 1 V			0.1			0.1		nA
V _{OL}	Low-level output voltage V _{ID} = -1 V	I _{OL} = 2 mA		115	300		150	400	mV
I _{OL}	Low-level output current V _{ID} = -1 V, V _{OL} = 1.5 V		6	16		6	16		mA
I _{DD}	Supply current V _{ID} = 1 V	No load		120	250		140	300	µA

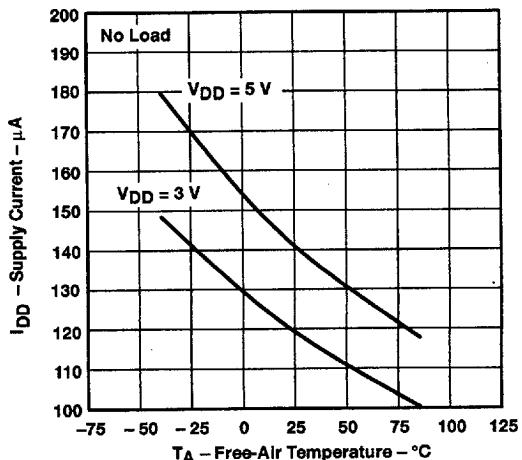
† All characteristics are measured with zero common-mode input voltages unless otherwise noted.

NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 4 V with V_{DD} = 5 V, 2 V with V_{DD} = 3 V, or below 400 mV with a 10-kΩ resistor between the output and V_{DD}. They can be verified by applying the limit value to the input and checking for the appropriate output state.

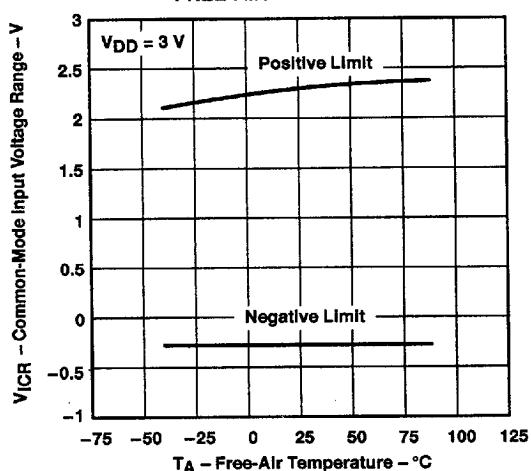
■ 8961724 0094992 731 ■


**TEXAS
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265


6-222

TYPICAL CHARACTERISTICS


LOW-LEVEL OUTPUT VOLTAGE
VS
LOW-LEVEL OUTPUT CURRENT

SUPPLY CURRENT
VS
FREE-AIR TEMPERATURE

COMMON-MODE INPUT VOLTAGE RANGE
VS
FREE-AIR TEMPERATURE

OUTPUT FALL TIME
VS
CAPACITIVE LOAD

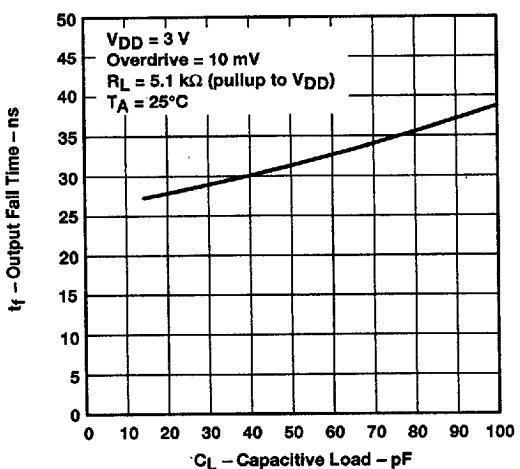


Figure 3

Figure 4

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2352I, TLV2352Y LinCMOS™ DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS

SLCS011 – MAY 1992

TYPICAL CHARACTERISTICS

HIGH-TO-LOW-LEVEL OUTPUT PROPAGATION DELAY FOR VARIOUS OVERDRIVE VOLTAGES

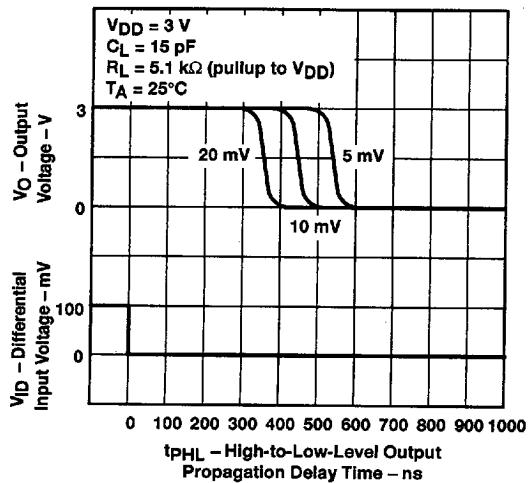


Figure 5

HIGH-TO-LOW-LEVEL OUTPUT PROPAGATION DELAY FOR VARIOUS CAPACITIVE LOADS

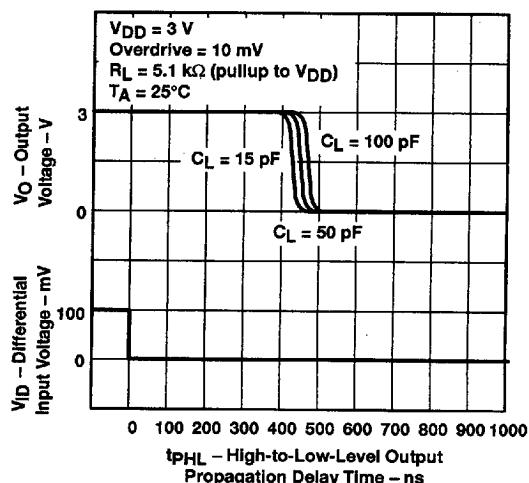


Figure 6

LOW-TO-HIGH-LEVEL OUTPUT PROPAGATION DELAY FOR VARIOUS OVERDRIVE VOLTAGES

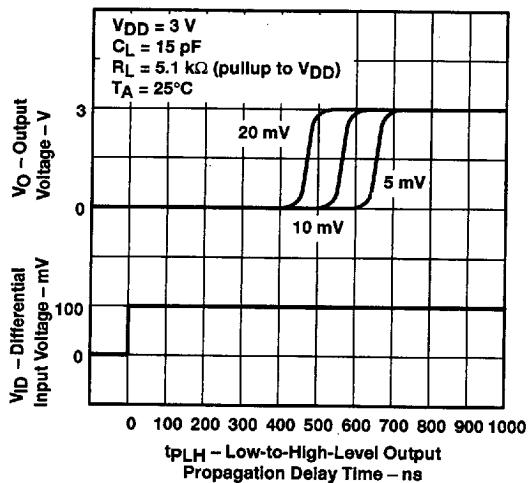


Figure 7

LOW-TO-HIGH-LEVEL OUTPUT PROPAGATION DELAY FOR VARIOUS CAPACITIVE LOADS

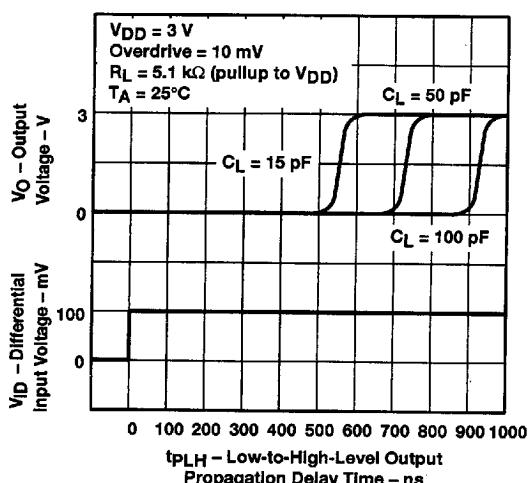


Figure 8

8961724 0094994 504

 **TEXAS
INSTRUMENTS**
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PARAMETER MEASUREMENT INFORMATION

The digital output stage of the TLV2352 can be damaged if it is held in the linear region of the transfer curve. Conventional operational amplifier/comparator testing incorporates the use of a servo loop that is designed to force the device output to a level within this linear region. Since the servo-loop method of testing cannot be used, the following alternatives for measuring parameters such as input offset voltage, common-mode rejection, etc., are offered.

To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown in Figure 9(a). With the noninverting input positive with respect to the inverting input, the output should be high. With the input polarity reversed, the output should be low.

A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages can be slewed as shown in Figure 9(b) for the V_{ICR} test, rather than changing the input voltages to provide greater accuracy.

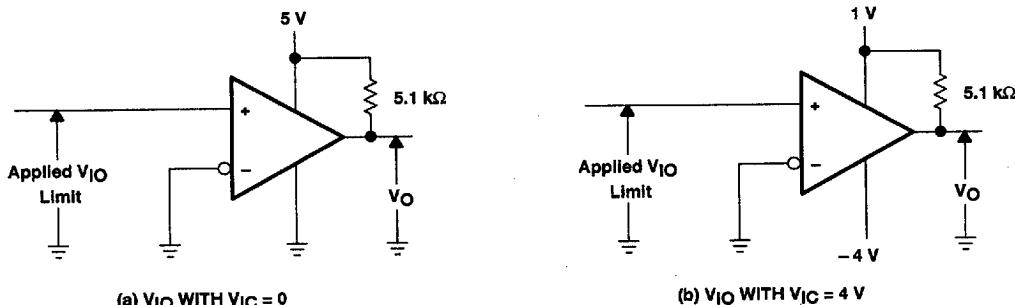


Figure 9. Method for Verifying That Input Offset Voltage Is Within Specified Limits

A close approximation of the input offset voltage can be obtained by using a binary search method to vary the differential input voltage while monitoring the output state. When the applied input voltage differential is equal but opposite in polarity to the input offset voltage, the output changes states.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

■ 8961724 0094995 440 ■

TLV2352I, TLV2352Y LinCMOS™ DUAL LOW-VOLTAGE DIFFERENTIAL COMPARATORS

SLCS011 – MAY 1992

PARAMETER MEASUREMENT INFORMATION

Figure 10 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the comparator in the linear region. The circuit consists of a switching-mode servo loop in which U1a generates a triangular waveform of approximately 20-mV amplitude. U1b acts as a buffer with C2 and R4 removing any residual dc offset. The signal is then applied to the inverting input of the comparator under test while the noninverting input is driven by the output of the integrator formed by U1c through the voltage divider formed by R9 and R10. The loop reaches a stable operating point when the output of the comparator under test has a duty cycle of exactly 50%, which can only occur when the incoming triangle wave is sliced symmetrically or when the voltage at the noninverting input exactly equals the input offset voltage.

Voltage dividers R9 and R10 provide a step up of the input offset voltage by a factor of 100 to make measurement easier. The values of R5, R8, R9, and R10 can significantly influence the accuracy of the reading; therefore, it is suggested that their tolerance level be 1% or lower.

Measuring the extremely low values of input current requires isolation from all other sources of leakage current and compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board leakage can be measured with no device in the socket. Subsequently, this open-socket leakage value can be subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the device.

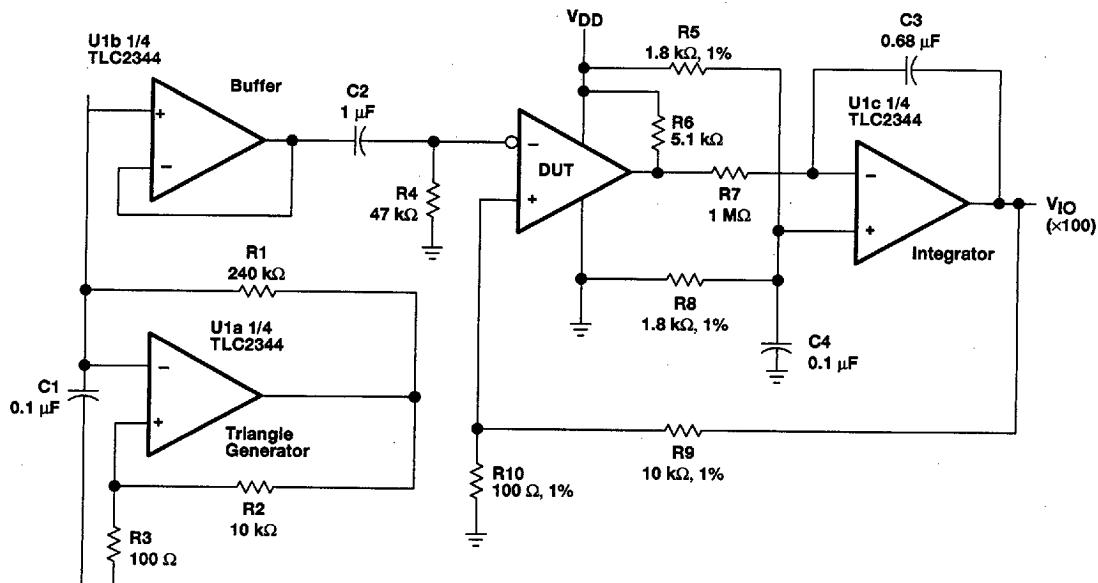
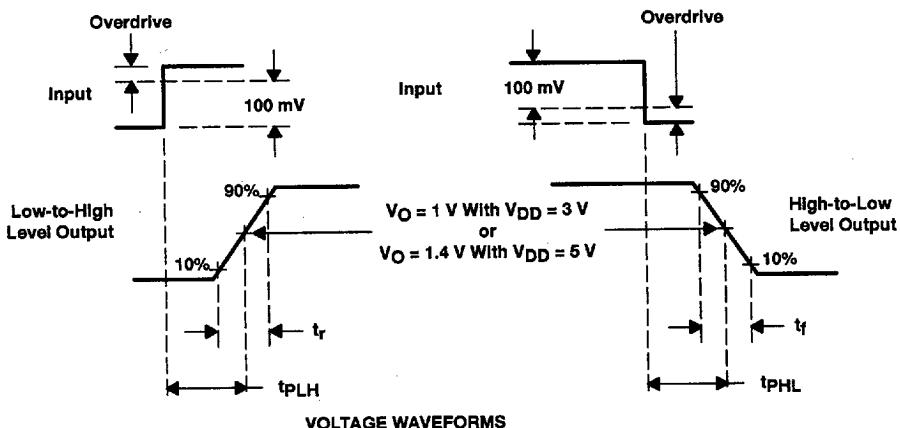
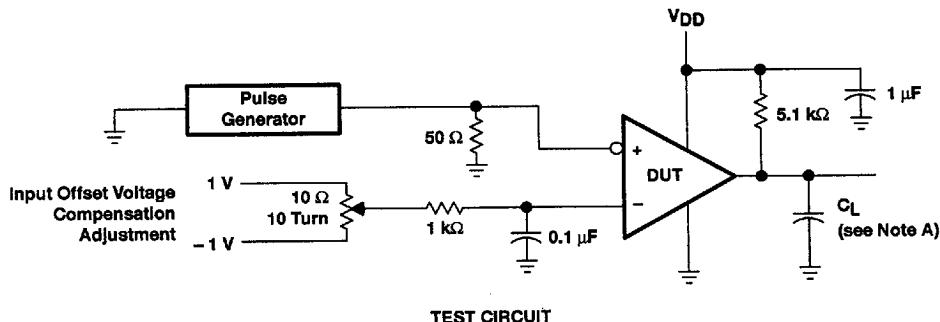


Figure 10. Circuit for Input Offset Voltage Measurement



8961724 0094996 387

 **TEXAS
INSTRUMENTS**
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

6-226

PARAMETER MEASUREMENT INFORMATION

Propagation delay time is defined as the interval between the application of an input step function and the instant when the output crosses $V_O = 1$ V with $V_{DD} = 3$ V or when the output crosses $V_O = 1.4$ V with $V_{DD} = 5$ V. Propagation delay time, low-to-high-level output, is measured from the leading edge of the input pulse while propagation delay time, high-to-low-level output, is measured from the trailing edge of the input pulse. Propagation-delay-time measurement at low input signal levels can be greatly affected by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting input (as shown in Figure 11) so that the circuit is just at the transition point. Then a low signal, for example 105-mV or 5-mV overdrive, causes the output to change states.

NOTE A: C_L includes probe and jig capacitance.

Figure 11. Propagation Delay, Rise, and Fall Times Test Circuit and Voltage Waveforms

 **TEXAS
INSTRUMENTS**

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

■ 8961724 0094997 213 ■