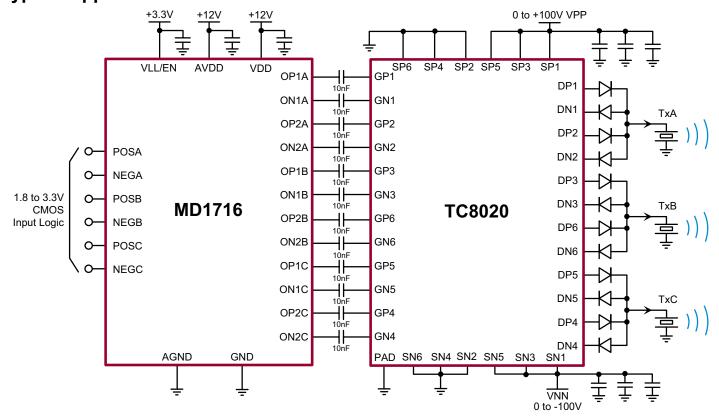
Three Channel, Three Level, High Speed Ultrasound Driver IC

Features

- Advanced CMOS technology
- ▶ 4.5 to 12.5V power supply voltage
- 2.0A output source and sink current
- ▶ 6.5ns rise and fall time with 1.0nF load
- 10ns propagation delay
- ▶ ±2ns matched delay times
- 12 matched channels
- ▶ 1.8 to 3.3V CMOS logic interface
- Smart logic threshold
- Low inductance package

Applications

- Medical ultrasound imaging
- Piezoelectric transducer drivers
- Metal flaw detection
- ► Non-Destructive Testing (NDT)


General Description

The Supertex MD1716, paired with the Supertex TC8020, forms a three channel, three level, high voltage, high speed, transmit pulser chip set. The chip set is designed for medical ultrasound imaging applications but can also be used for metal flaw detection, Non-Destructive Testing (NDT), and piezoelectric transducer drivers.

The MD1716 is a three channel logic controller circuit with 12 low impedance MOSFET gate drivers. There are three sets of control logic inputs, one each for channels A, B and C. Each channel consists of two pairs of MOSFET gate drivers. These drivers are designed to match the gate driving requirements of the Supertex TC8020.

The TC8020 is the high voltage output stage of the pulser. It consists of six pairs of MOSFETs. Each pair has both an N- and P-channel MOSFET. They are designed to have the same impedance and can provide typical peak currents of ±3.5 amps.

Typical Application Circuit

Ordering Information

	Package Option
Device	40-Lead QFN 6.00x6.00mm body 1.00mm height (max) 0.50mm pitch
MD1716	MD1716K6-G

Absolute Maximum Ratings

Parameter	Value
GND and AGND, Ground	0V
V _{LL} logic input pin	-0.5V to +5.5V
$AV_{DD}1$, $V_{DD}1$, positive gate drive supply	-0.5V to +14.5V
V _{DD} 2, positive gate drive supply	-0.5V to +14.5V
Storage temperature	-65°C to 150°C
Power dissipation	1.3W

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Package Marking Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

L = Lot Number YY = Year Sealed WW = Week Sealed A = Assembler ID C = Country of Origin _ = "Green" Packaging

Package may or may not include the following marks: Si or §

40-Lead QFN (K6)

Operating Supply Voltages

Sym	Parameter	Min	Тур	Max	Units	Conditions
V _{LL}	Logic supply	1.8	3.3	3.6	V	
AV _{DD}	Positive analog supply	4.75	_	12.9	V	$AV_{DD} \ge V_{DD}$
V _{DD}	Positive gate drive supply	4.75	-	12.9	V	

Operating Supply Current

(Over operating conditions unless otherwise specified, V., = 3.3V, AV = = V = = +12V, T = 25°C)

(Over operati	Star sportaling contained among contained spoomed, V _{LL} 3.53, NV _{DD} V _{DD} 12.1, V _A 25.3)											
Sym	Parameter	Min	Тур	Max	Units	Conditions						
I _{VLL}	Logic reference current	-	10	-	μA	V _{LL} = 3.3V						
I _{AVDDQ}	AV _{DD} power down current	-	400	-		EN = 0 all inpute Law						
I _{VDDQ}	V _{DD} power down current	-	50	100	μA	EN = 0, all inputs Low.						
I _{AVDDEN}	AV _{DD} power up current	-	2.0	3.0	mA	EN = 1 all inputs Law						
I _{VDDEN}	V _{DD} power up current	-	0.7	1.0	mA	EN = 1, all inputs Low.						
I _{AVDDCW}	AV _{DD} CW 5.0MHz current	-	10	-	m A	All channels on at 5.0MHz, No load.						
I _{VDDCW}	V _{DD} CW 5.0MHz current	-	33	-	mA	$V_{DD} = 5.0V$						

⁻G indicates package is RoHS compliant ('Green')

^{* 1.0}oz 4-layer 3x4" PCB

AC Electrical Characteristics (Over operating conditions unless otherwise specified, V_{LL} = 3.3V, AV_{DD} = V_{DD} = +12V, T_{A} = 25°C)

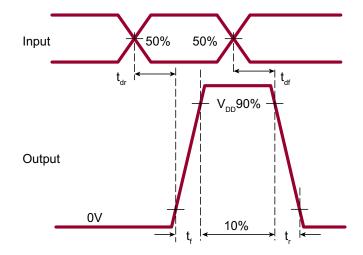
Sym	Parameter	Min	Тур	Max	Units	Conditions
t _{irf}	Input rise & fall time	-	-	10	ns	Logic input edge speed requirement
t _r	Output rise time	-	6.5	-	ns	1.0nF load, see timing diagram,
t _f	Output fall time	-	6.5	-	ns	input signal rise/fall time 2.0ns
t _{dr}	Output rise delay	-	10	-	ns	1.0nF load, see timing diagram,
t _{df}	Output fall delay	-	10	-	ns	input signal rise/fall time 2.0ns
t _r - t _f	Rise and fall time matching	-	1.0	-	-	For each channel
t _{dr} - t _{df}	Propagation delay matching	-	1.0	-	-	For each channel
t _{dm}	Delay time matching	-	±2.0	-	ns	Channel to Channel and Device to Device
Δt_{j}	Output jitter	-	20	-	ps	V _{DD} = 10V
t _{EN_ON}	IC enable time	-	-	50	μs	
t _{EN_OFF}	IC disable time	-	-	2.0	μs	

P-Channel Gate Driver Outputs

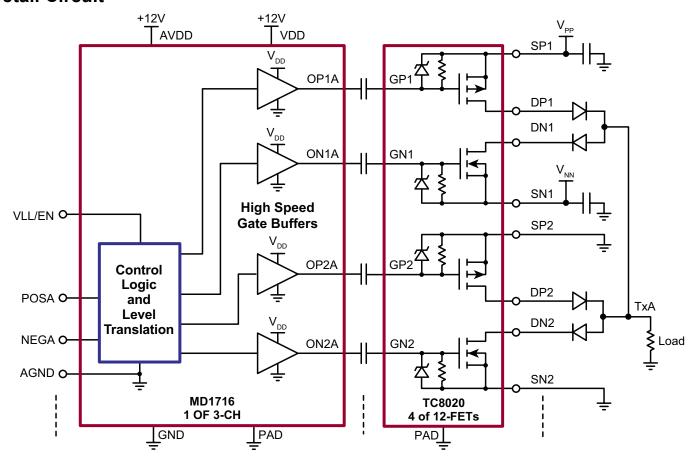
Sym	Parameter	Min	Тур	Max	Units	Conditions
R _{SINK}	Output sink resistance	-	-	6.0	Ω	I _{SINK} = 100mA
R _{SOURCE}	Output source resistance	-	-	6.0	Ω	I _{SOURCE} = 100mA
I _{SINK}	Peak output sink current	1.7	2.0	-	Α	
I _{SOURCE}	Peak output source current	1.7	2.0	-	Α	

N-Channel Gate Driver Outputs

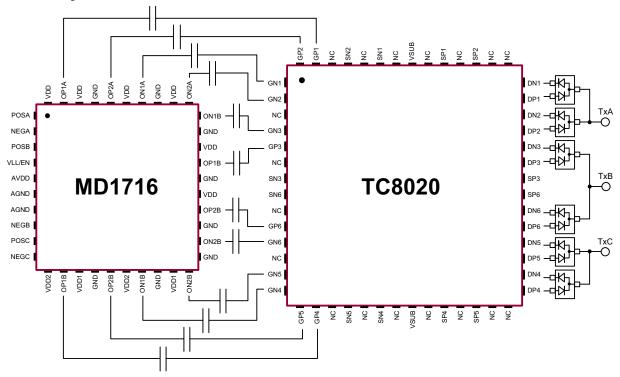
Sym	Parameter	Min	Тур	Max	Units	Conditions
R _{SINK}	Output sink resistance	-	3.0	6.0	Ω	I _{SINK} = 100mA
R _{SOURCE}	Output source resistance	-	4.0	6.0	Ω	I _{SOURCE} = 100mA
ISINK	Peak output sink current	1.7	2.0	-	Α	
SOURCE	Peak output source current	1.7	2.0	-	Α	


Logic Inputs

Sym	Parameter	Min	Тур	Max	Units	Conditions
V _{ENL}	Chip disable low voltage	0	-	0.3	V	VLL/EN is a dual function pin
V _{IH}	Input logic high voltage	0.8V _{LL}	-	V_{LL}	V	
V _{IL}	Input logic low voltage	0	-	0.2V _{LL}	V	
I _{IH}	Input logic high current	-	-	1.0	μA	
I _{IL}	Input logic low current	-1.0	-	-	μA	


Truth Table

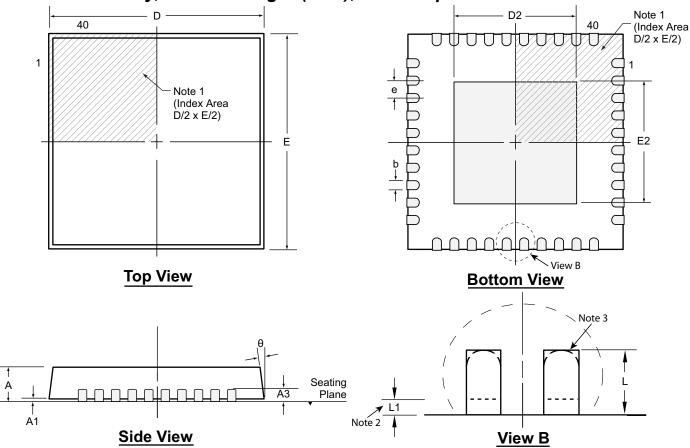
EN	Logic I	nputs A	SP1	SN1	SP2	SN2
EN	POSA	NEGA	to DP1	to DN1	to DP2	to DN2
1	0	0	OFF	OFF	ON	ON
1	0	1	OFF	ON	OFF	OFF
1	1	0	ON	OFF	OFF	OFF
1	1	1	OFF	OFF	OFF	OFF
EN.	Logic lı	nputs B	SP3	SN3	SP6	SN6
EN	POSB	NEGB	to DP3	to DN3	to DP6	to DN6
1	0	0	OFF	OFF	ON	ON
1	0	1	OFF	ON	OFF	OFF
1	1	0	ON	OFF	OFF	OFF
1	1	1	OFF	OFF	OFF	OFF
EN	Logic lı	nputs C	SP5 to	SN5 to	SP4 to	SN4 to
EN	POSC	NEGC	DP5	DN5	DP4	DN4
1	0	0	OFF	OFF	ON	ON
1	0	1	OFF	ON	OFF	OFF
1	1	0	ON	OFF	OFF	OFF
1	1	1	OFF	OFF	OFF	OFF
0	X	X	OFF	OFF	OFF	OFF
0→1	0	0	EN transitions from	n low to high or high	n to low should occur	r at all logic inputs low.
1→0	0	0	LIV HAIISHOIIS HOI	Thow to high of high	i to low should occu	ii at aii logic iliputs low.


Timing Diagram

Detail Circuit

Circuit Pin Layout

Pin Description


Pin#	Name	Description
1	POSA	POS input logic control for channel A. See logic truth table for details.
2	NEGA	NEG input logic control for channel A. See logic truth table for details.
3	POSB	POS input logic control for channel B. See logic truth table for details.
4	VLL/EN	Logic Hi reference voltage and chip enable input.
5	AVDD	Positive supply voltage of analog circuitry. AVDD should be same or higher potential than the VDD.
6	AGND	Digital ground, and connection of IC substrate.
7	AGND	Digital ground, and connection of its substrate.
8	NEGB	NEG input logic control for channel B. See logic truth table for details.
9	POSC	POS input logic control for channel C. See logic truth table for details.
10	NEGC	NEG input logic control for channel C. See logic truth table for details.
11	VDD	Positive supply voltage of the gate drivers for the output stage in A, B and C channels.
12	OP2C	Damping P-Channel gate drivers for channel C.
13	VDD	Positive supply voltage of the gate drivers for the output stage in A, B and C channels.
14	GND	Power Ground.
15	OP1C	High Voltage Output P-Channel gate drivers for channel C.
16	VDD	Positive supply voltage of the gate drivers for the output stage in A, B and C channels.
17	ON2C	Damping N-Channel gate drivers for channel C.
18	GND	Power Ground.
19	VDD	Positive supply voltage of the gate drivers for the output stage in A, B and C channels.
20	ON1C	High Voltage Output N-Channel gate drivers for channel C.
21	GND	Power Ground.
22	ON2B	Damping N-Channel gate drivers for channel B.
23	GND	Power Ground.
24	OP2B	Damping P-Channel gate drivers for channel B.
25	VDD	Positive supply voltage of the gate drivers for the output stage in A, B and C channels.
26	GND	Power Ground.
27	OP1B	High Voltage Output P-Channel gate drivers for channel B.
28	VDD	Positive supply voltage of the gate drivers for the output stage in A, B and C channels.
29	GND	Power Ground.
30	ON1B	High Voltage Output N-Channel gate drivers for channel B.
31	ON2A	Damping N-Channel gate drivers for channel A.
32	VDD	Positive supply voltage of the gate drivers for the output stage in A, B and C channels.
33	GND	Power Ground.

Pin Description (cont.)

Pin#	Name	Description
34	ON1A	High Voltage Output N-Channel gate drivers for channel A.
35	VDD	Positive supply voltage of the gate drivers for the output stage in A, B and C channels.
36	OP2A	Damping P-Channel gate drivers for channel A.
37	GND	Power Ground.
38	VDD	Positive supply voltage of the gate drivers for the output stage in A, B and C channels.
39	OP1A	High Voltage Output P-Channel gate drivers for channel A.
40	VDD	Positive supply voltage of the gate drivers for the output stage in A, B and C channels.
Center Pad	Thermal pad	IC substrate, must connect to GND externally.

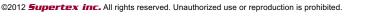
40-Lead QFN Package Outline (K6)

6.00x6.00mm body, 1.00mm height (max), 0.50mm pitch

Notes:

- A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or
- Depending on the method of manufacturing, a maximum of 0.15mm pullback (L1) may be present.
- The inner tip of the lead may be either rounded or square.

Symb	ol	Α	A1	А3	b	D	D2	E	E2	е	L	L1	θο
	MIN	0.80	0.00		0.18	5.85*	1.05	5.85*	1.05		0.30 [†]	0.00	0
Dimension (mm)	NOM	0.90	0.02	0.20 REF	0.25	6.00	-	6.00	-	0.50 BSC	0.40 [†]	-	-
()	MAX	1.00	0.05		0.30	6.15*	4.45	6.15*	4.45	200	0.50 [†]	0.15	14


JEDEC Registration MO-220, Variation VJJD-6, Issue K, June 2006.

Drawings not to scale.

Supertex Doc. #: DSPD-40QFNK66X6P050, Version C041009.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

Supertex inc

^{*} This dimension is not specified in the JEDEC drawing.

[†] This dimension differs from the JEDEC drawing.