
GaAs MMIC I/Q MIXER W/ LO AMPLIFIER, 10 - 16 GHz

Typical Applications

The HMC775LC5 is ideal for:

- Point-to-Point and Point-to-Multi-Point Radio
- Digital Radio
- VSAT
- Military & Space

Functional Diagram

Features

Wide IF Bandwidth: DC - 3.5 GHz

Image Rejection: 25 dB LO to RF Isolation: 45 dB High Input IP3: +25 dBm

Upconversion & Downconversion Applications

0 dBm LO Drive

32 Lead 5 x 5 mm SMT Package: 25 mm²

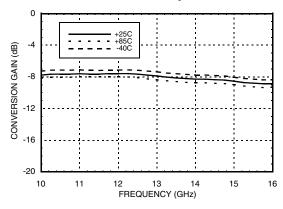
General Description

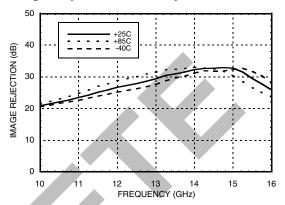
The HMC775LC5 is a compact I/Q MMIC mixer in a leadless ceramic SMT package, which can be used as either an Image Reject Mixer or a Single Sideband Upconverter. The mixer utilizes two standard Hittite double balanced mixer cells and a 90 degree hybrid fabricated in a GaAs MESFET process. A low frequency quadrature hybrid was used to produce a 1 GHz USB IF output. This product is a much smaller alternative to hybrid style Image Reject Mixers and Single Sideband Upconverter assemblies. The HMC775LC5 eliminates the need for wire bonding and allows the use of surface mount manufacturing techniques.

Electrical Specifications, $T_A = +25$ °C, Vdd = +5V, IF = 1 GHz, LO = 0 dBm^*

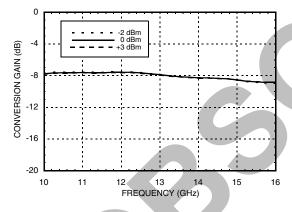
Parameter	Min.	Тур.	Max.	Units
Frequency Range, RF/LO	10 - 16			GHz
Frequency Range, IF	DC - 3.5 GHz			GHz
Conversion Loss		8	11	dB
Image Rejection		25		dB
1 dB Compression (Input)		13		dBm
LO to RF Isolation		30		dB
RF to IF1 Isolation		45		dB
RF to IF2 Isolation		40		dB
IP3 (Input)		25		dBm
Supply Current (Idd)		114	154	mA

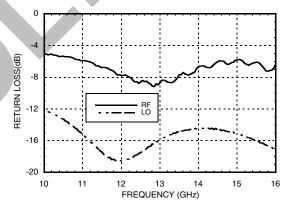
^{*} Unless otherwise noted, all measurements performed as downconverter.



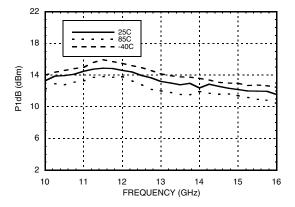

GaAs MMIC I/Q MIXER W/ LO AMPLIFIER, 10 - 16 GHz

Data Taken As IRM With External IF Hybrid


Conversion Gain vs. Temperature

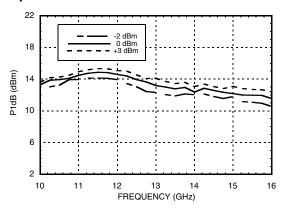

Image Rejection vs. Temperature

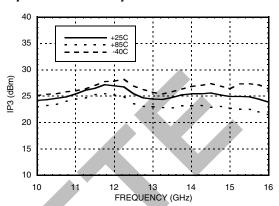

Conversion Gain vs. LO Drive


RF & LO Return Loss

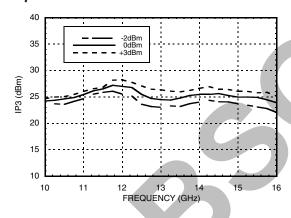
IF Return Loss

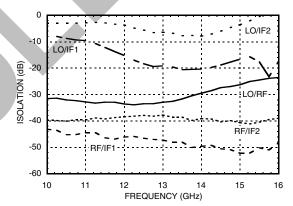
Input P1dB vs. Temperature

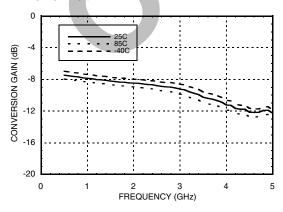


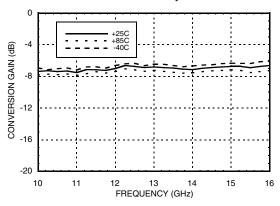


GaAs MMIC I/Q MIXER W/ LO AMPLIFIER, 10 - 16 GHz


Input P1dB vs. LO Drive

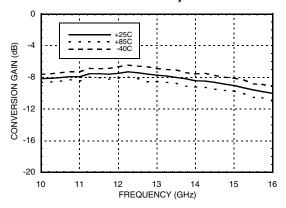

Input IP3 vs. Temperature


Input IP3 vs. LO Drive

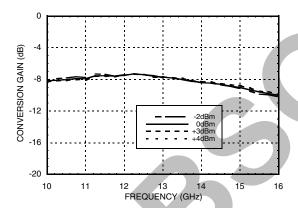

Isolations

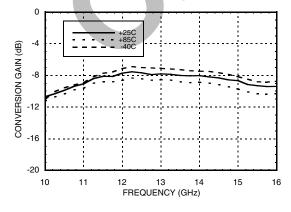
IF Bandwidth*

Upconverter LSB, IF = 1 GHz Conversion Gain vs. Temperature

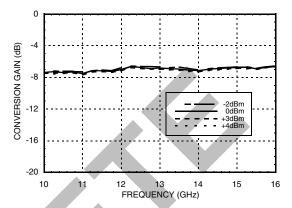


^{*} Conversion gain data taken with external IF hybrid

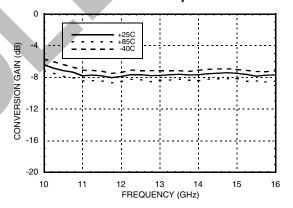



Upconverter LSB, IF = 3 GHz Conversion Gain vs. Temperature

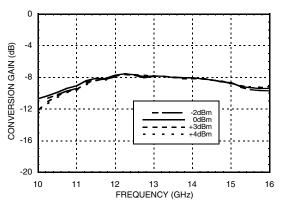
Upconverter LSB, IF = 3 GHz Conversion Gain vs. LO Drive



Upconverter USB, IF = 3 GHz Conversion Gain vs. Temperature

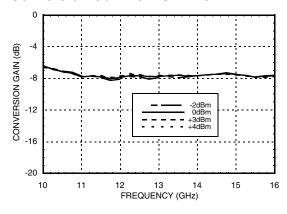


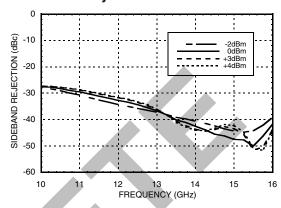
GaAs MMIC I/Q MIXER W/ LO AMPLIFIER, 10 - 16 GHz


Upconverter LSB, IF = 1 GHz Conversion Gain vs. LO Drive

Upconverter USB, IF = 1 GHz Conversion Gain vs. Temperature

Upconverter USB, IF = 1 GHz Conversion Gain vs. LO Drive





GaAs MMIC I/Q MIXER W/ LO AMPLIFIER, 10 - 16 GHz

Upconverter USB, IF = 3 GHz Conversion Gain vs. LO Drive

Sideband Rejection vs. LO Drive

Harmonics of LO

LO Freq. (GHz)	nLO Spur at RF Port			
	1	2	3	4
10.5	34	29	44	76
11.5	36	38	58	71
12.5	37	42	63	59
13.5	40	44	79	xx
14.5	35	47	68	хх
15.5	31	46	61	xx

LO = 0 dBm

Values in dBc below input LO level measured at RF Port.

MxN Spurious Outputs

		nLO			
mRF	0	1	2	3	4
0	xx	7	22	49	xx
1.	39	0	55	50	78
2	81	70	64	65	102
3	98	98	106	81	103
4	xx	96	108	105	117

RF = 13.6 GHz @ -10 dBm

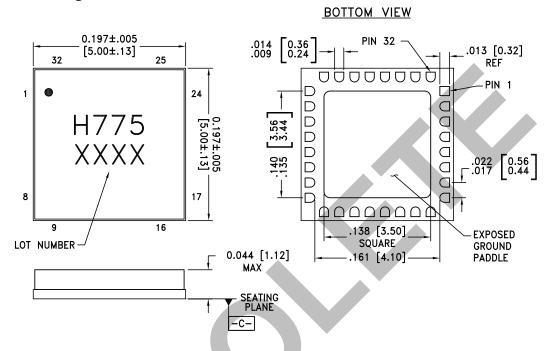
LO = 13.5 GHz @ 0 dBm

Data taken without IF hybrid

All values in dBc below IF power level

Absolute Maximum Ratings

Class 1A	


ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

GaAs MMIC I/Q MIXER W/ LO AMPLIFIER, 10 - 16 GHz

Outline Drawing

NOTES

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING: 30 80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKLE
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm DATUM
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC775LC5	Alumina, White	Gold over Nickel	MSL3 [1]	H775 XXXX

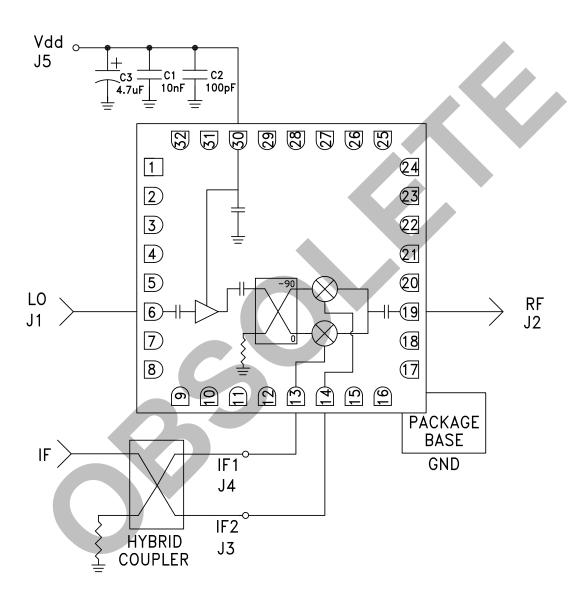
^[1] Max peak reflow temperature of 260 °C

^{[2] 4-}Digit lot number XXXX

GaAs MMIC I/Q MIXER W/ LO AMPLIFIER, 10 - 16 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1 - 4, 8 - 12, 15 - 17, 21 - 29, 31, 32	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
5, 7, 18, 20	GND	These pins and package bottom must be connected to RF/DC ground.	= GND
6	LO	This pin is AC coupled and matched to 50 Ohms.	LO \bigcirc
13	IF1	This pin is DC coupled. For applications not requiring operation to DC, this port should be DC blocked externally using a series capacitor whose value has been chosen to pass the necessary IF	IF1,IF2 0—
14	IF2	frequency range. For operation to DC, this pin must not source/sink more than 3 mA of current or part non-function and possible part failure will result.	¥ <u>\$</u>
19	RF	This pin is AC coupled and matched to 50 Ohms.	RF ○──
30	Vdd	Power supply voltage for amplifier	Vdd


MIXERS - I/Q MIXERS, IRMS & RECEIVERS - SMT

GaAs MMIC I/Q MIXER W/ LO AMPLIFIER, 10 - 16 GHz

Application Circuit

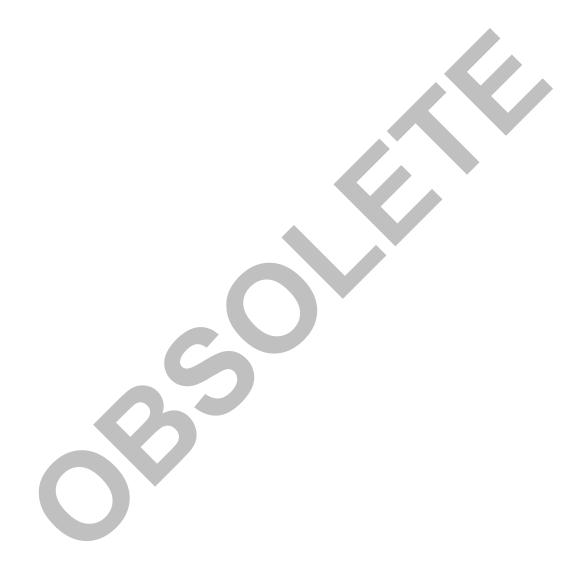
GaAs MMIC I/Q MIXER W/ LO AMPLIFIER, 10 - 16 GHz

Evaluation PCB

List of Materials for Evaluation PCB 123865 [1]

Item	Description	
J1, J2	DC Pin	
J4, J5	PCB Mount SMA RF Connector	
J6, J7	SMA SRI Connector	
C1	10 nF Capacitor, 0402 Pkg.	
C2 100 pF Capacitor, 0402 Pkg.		
C3	4.7 μF Tantalum, 3216 Pkg.	
U1	1 HMC775LC5 Mixer	
PCB [2] 123863 Evaluation Board		

[1] Reference this number when ordering complete evaluation PCB


[2] Circuit Board Material: Rogers 4350 or Arlon 25FR

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

ANALOGDEVICES

GaAs MMIC I/Q MIXER W/ LO AMPLIFIER, 10 - 16 GHz

