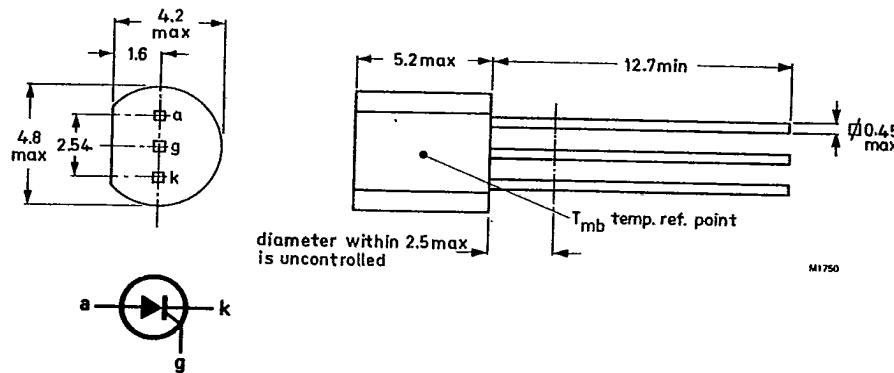


THYRISTORS

Fully-diffused thyristors in TO-92 package, with low gate current requirement suitable for driving from IC outputs. Applications include relay and coil pulsing, control of small d.c. motors, small lamps, etc.


QUICK REFERENCE DATA

		BT169-B	D	M	
Repetitive peak voltages	V_{DRM}/V_{RRM}	max.	200	400	600
Average on-state current	$I_T(AV)$	max.		0.5	A
R.M.S. on-state current	$I_T(RMS)$	max.		0.8	A
Non-repetitive peak on-state current	I_{TSM}	max.		8	A

MECHANICAL DATA

Fig.1 TO-92 variant

Dimensions in mm

T-25-11

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).

Anode to cathode		BT169-B	D	M	
Non-repetitive peak voltages ($t \leq 10$ ms)	V_{DSM}/V_{RSM}	max.	200	400	600
Repetitive peak voltages ($\delta \leq 0.01$)	V_{DRM}/V_{RRM}	max.	200	400	600
Average on-state current (averaged over any 20 ms period) up to $T_{mb} = 55$ °C	$I_T(AV)$	max.	0.5		A
R.M.S. on-state current	$I_T(RMS)$	max.	0.8		A
Repetitive peak on-state current	I_{TRM}	max.	8		A
Non-repetitive peak on-state current; $t = 10$ ms; half sine-wave; $T_j = 125$ °C prior to surge; with reapplied V_{RWMmax}	I_{TSM}	max.	8		A
I^2t for fusing ($t = 10$ ms)	I^2t	max.	0.32		A^2s
Rate of rise of on-state current after triggering with $I_G = 1$ mA to $I_T = 1.8$ A; $dI_G/dt = 4$ mA/ μ s	dI_T/dt	max.	30		A/μ s
Gate to cathode					
Peak reverse voltage	V_{RGM}	max.	8		V
Average power dissipation (averaged over any 20 ms period)	$P_{G(AV)}$	max.	0.1		W
Peak power dissipation	P_{GM}	max.	2		W
Temperatures					
Storage temperature	T_{stg}		−40 to +150		°C
Operating junction temperature	T_j	max.	125		°C
THERMAL RESISTANCE					
From junction to mounting base	$R_{th\ j\cdot mb}$	=	100		K/W
From junction to ambient in free air, mounted on a p.c.b. with any lead length	$R_{th\ j\cdot a}$	=	200		K/W

* $R_{GK} = 1$ kΩ.

Thyristors

BT169 SERIES

T-25-11

CHARACTERISTICS

Anode to cathode

On-state voltage

 $I_T = 1 \text{ A}; T_j = 25^\circ\text{C}$ $V_T < 1.35 \text{ V}^*$

Rate of rise of off-state voltage that will not trigger any device; exponential method,

 $V_D = 2/3 V_{DRMmax}; R_{GK} = 1 \text{ k}\Omega; T_j = 125^\circ\text{C}$ $dV_D/dt < 100 \text{ V}/\mu\text{s}$

Reverse current

 $V_R = V_{RRMmax}; R_{GK} = 1 \text{ k}\Omega; T_j = 125^\circ\text{C}$ $I_R < 0.1 \text{ mA}$

Off-state current

 $V_D = V_{DRMmax}; R_{GK} = 1 \text{ k}\Omega; T_j = 125^\circ\text{C}$ $I_D < 0.1 \text{ mA}$

Latching current

 $V_D = 6 \text{ V}; R_{GK} = 1 \text{ k}\Omega; T_j = 25^\circ\text{C}$ $I_L < 6 \text{ mA}$

Holding current

 $V_D = 6 \text{ V}; R_{GK} = 1 \text{ k}\Omega; T_j = 25^\circ\text{C}$ $I_H < 5 \text{ mA}$

Gate to cathode

Voltage that will trigger all devices

 $V_D = 6 \text{ V}; T_j = 25^\circ\text{C}$ $V_{GT} > 0.8 \text{ V}$

Current that will trigger all devices

 $V_D = 6 \text{ V}; T_j = 25^\circ\text{C}$ $I_{GT} > 0.2 \text{ mA}$

Switching characteristics

Gate-controlled delay time when switched from $V_D = V_{DRMmax}$ to $I_T = 1.5 \text{ A}$; $I_{GT} = 10 \text{ mA}; dI_G/dt = 0.1 \text{ A}/\mu\text{s}; T_j = 25^\circ\text{C}$ $t_d < 1.0 \mu\text{s}$

Circuit-commutated turn-off time when switched

from $I_T = 0.5 \text{ A}$ to $V_R > 35 \text{ V}$ with $-dI_T/dt = 110 \text{ A}/\mu\text{s}; dV_D/dt = 50 \text{ V}/\mu\text{s}; T_j = 125^\circ\text{C}$ $t_q < 100 \mu\text{s}$

*Measured under pulse conditions to avoid excessive dissipation.

April 1986

887