

ASSR-3210, ASSR-3211, ASSR-3220

General-Purpose, Form A, Solid State Relay (Photo MOSFET) (250V/0.2A/10 Ω)

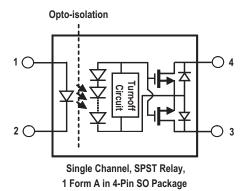
Description

The Broadcom[®] ASSR-32xx Series consists of an AlGaAs infrared light-emitting diode (LED) input stage optically coupled to a high-voltage output detector circuit. The detector consists of a high-speed photovoltaic diode array and driver circuitry to switch on/off two discrete high voltage MOSFETs. The relay turns on (contact closes) with a minimum input current of 3 mA through the input LED. The relay turns off (contact opens) with an input voltage of 0.8V or less.

The single channel configurations, ASSR-3210 and ASSR-3211, are equivalent to 1 Form A Electromechanical Relays (EMR), and the dual channel configuration, ASSR-3220, is equivalent to 2 Form A EMR. They are available in 4-pin SO, 6-pin DIP, 8-pin DIP and Gull Wing Surface Mount for DIP packages. Their electrical and switching characteristics are specified over the temperature range of –40°C to +85°C. They are used for general purpose switching of signals and low power AC/DC loads.

ASSR-3211 enables AC/DC and DC-only output connections. For DC-only connection, the output current, lo, increases to 0.4A and the on-resistance, R(ON) reduces to 2.5Ω .

CAUTION! It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.


Features

- Compact solid-state bidirectional signal switch
- Single and dual channel normally-off Single-Pole-Single-Throw (SPST) relay
- 250V output withstand voltage
- 0.2A or 0.4A current rating (See schematic for ASSR-3211 connections A and B.)
- Low input current: CMOS compatibility
- Low on-resistance:
 - 2Ω typical for DC-only
 - 8Ω typical for AC/DC
- High speed switching:
 - 0.25 ms (T_{ON}), 0.02 ms (T_{OFF}) typical
- High transient immunity: >1 kV/µs
- High input-to-output insulation voltage (safety and regulatory approvals)
 - 3750 Vrms for 1 min per UL1577
 - CSA component acceptance

Applications

- Telecommunication switching
- Data communications
- Industrial controls
- Medical
- Security
- EMR/Reed Relay replacement

Functional Diagram

Truth Table

LED	Output
Off	Open
On	Close

Ordering Information

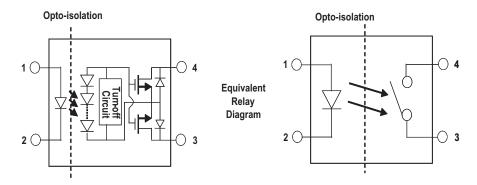
ASSR-32xx is UL Recognized with 3750 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice #5.

	Option					
Part Number	RoHS Compliant	Package	Surface Mount	Gull Wing	Tape & Reel	Quantity
ASSR-3210	-003E	SO-4	X			100 units per tube
	-503E		X		Х	1500 units per reel
ASSR-3211	-001E	300-mil DIP-6				50 units per tube
	-301E		X	Х		50 units per tube
	-501E		X	Х	Х	1000 units per reel
ASSR-3220	-002E	300-mil DIP-8				50 units per tube
	-302E		X	Х		50 units per tube
	-502E		X	Х	Х	1000 units per reel

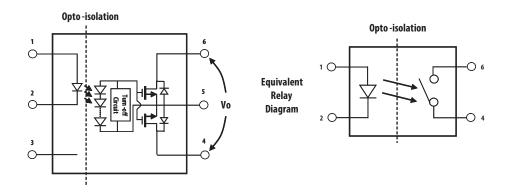
To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

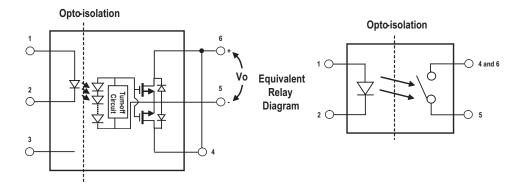
ASSR-3211-501E to order product of 300-mil DIP-6 Gull Wing Surface Mount package in Tape and Reel packaging and RoHS Compliant.

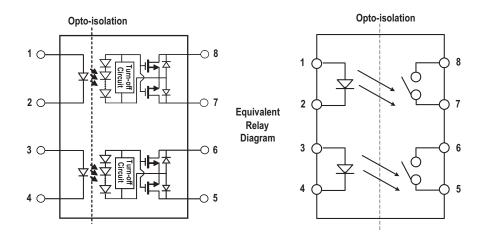

Example 2:

ASSR-3220-002E to order product of 300-mil DIP-8 package in tube packaging and RoHS Compliant.

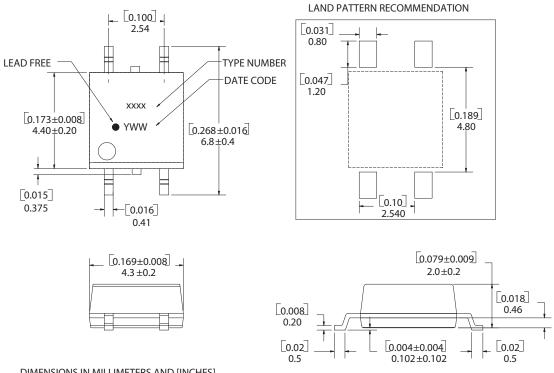

Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information.

Schematic

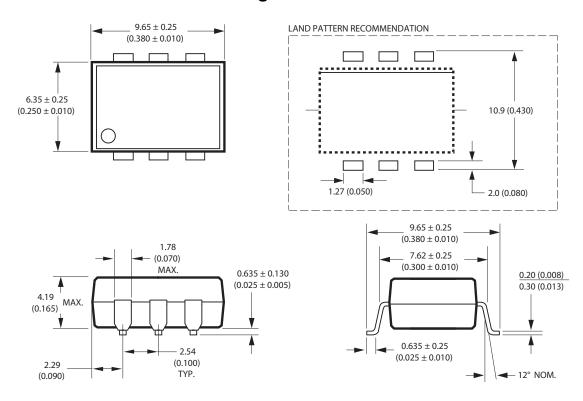

ASSR-3210


ASSR-3211 Connection A

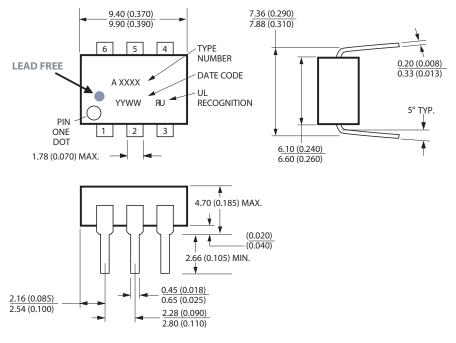
ASSR-3211 Connection B



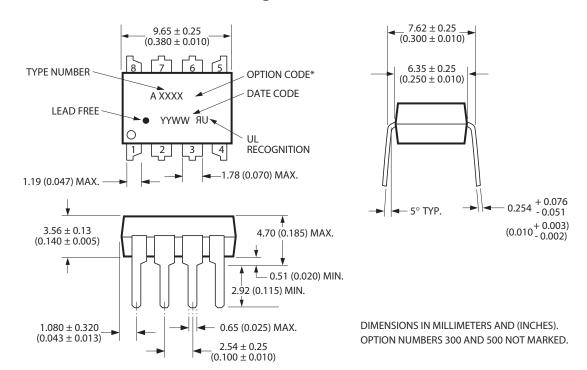
ASSR-3220


Package Outline Drawings

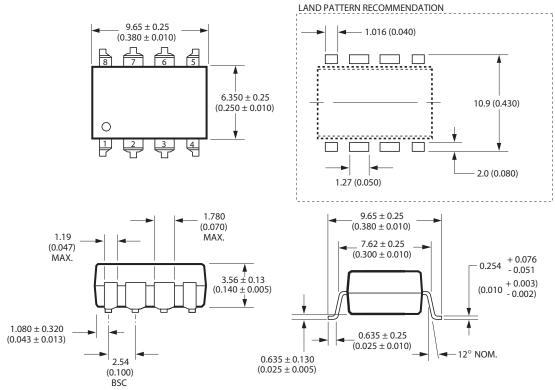
ASSR-3210 4-Pin Small Outline Package


DIMENSIONS IN MILLIMETERS AND [INCHES]
OPTION NUMBER 500 AND UL RECOGNITION NOT MARKED

ASSR-3211 6-Pin DIP Package

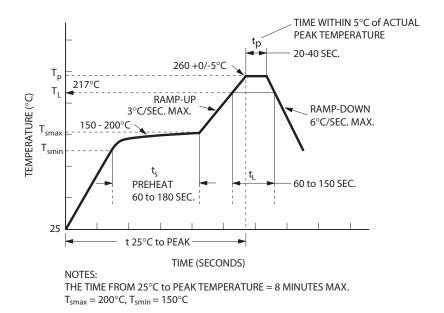

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

ASSR-3211 6-Pin DIP Package with Gull Wing Surface Mount Option 300



DIMENSIONS IN MILLIMETERS AND (INCHES).

ASSR-3220 8-Pin DIP Package


ASSR-3220 8-Pin DIP Package with Gull Wing Surface Mount Option 300

DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES).

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

Lead Free IR Profile

Non-halide flux should be used.

Regulatory Information

The ASSR-3210, ASSR-3211, and ASSR-3220 are approved by the following organizations:

UL

Approved under UL 1577, component recognition program up to V_{ISO} = 3750 Vrms.

CSA

Approved under CSA Component Acceptance Notice #5.

Insulation and Safety Related Specifications

Parameter	Symbol	ASSR-3210	ASSR-3211 ASSR-3220	Unit	Conditions
Minimum External Air Gap (Clearance)	L(101)	4.9	7.1	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	4.9	7.4	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Tracking Resistance (Comparative Tracking Index)	CTI	175	175	V	DIN IEC 112/VDE 0303 Part 1.
Isolation Group (DIN VDE0109)		Illa	Illa		Material Group (DIN VDE 0109).

Absolute Maximum Ratings

Paramet	er	Symbol	Min.	Max.	Unit	Note
Storage Temperature		T _S	– 55	125	°C	
Operating Temperature		T _A	-40	85	°C	
Junction Temperature		T _J	_	125	°C	
Lead Soldering Cycle	Temperature		_	260	°C	
	Time		_	10	S	
Input Current	Average	I _F	_	25	mA	
	Surge		_	50		
	Transient		_	1000		
Reversed Input Voltage		V _R	_	5	V	
Input Power Dissipation	ASSR-3220	P _{IN}	_	80	mW	
	ASSR-3211, ASSR-3210	P _{IN}	_	40	mW	
Output Power Dissipation	ASSR-3220	Po	_	800	mW	
	ASSR-3211, ASSR-3210	P _O	_	400	mW	
Average Output Current		I _O	_	0.2	А	а
$(T_A = 25^{\circ}C, T_C \le 100^{\circ}C)$	ASSR-3211 Connection B	Io	_	0.4	Α	
Output Voltage (T _A = 25°C))	Vo	-250	250	V	b
	ASSR-3211 Connection B	V _O	0	250	V	b
Solder Reflow Temperature	Profile		See	Lead Free IR Pro	ofile.	•

a. For derating, refer to Figure 1 and Figure 2.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit	Note
Input Current (ON)	I _{F(ON)}	3	20	mA	а
Input Voltage (OFF)	V _{F(OFF)}	0	0.8	V	
Operating Temperature	T _A	-40	+85	°C	

a. Threshold to switch device is I_F ≥ 0.5 mA; however, for qualified device performance over temperature range, it is recommended to operate at I_F = 5 mA. See Applications Information.

b. The voltage across the output terminals of the relay should not exceed this rated withstand voltage. Overvoltage protection circuits should be added in some applications to protect against overvoltage transients.

Package Characteristics

Unless otherwise specified, $T_A = 25$ °C.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions	Note
Input-Output Momentary Withstand Voltage	V _{ISO}	3750	_	_	Vrms	RH ≤ 50%, t = 1 min.	a, b
Input-Output Resistance	R _{I-O}	_	10 ¹²	_	Ω	V _{I-O} = 500 Vdc	
Input-Output Capacitance							а
ASSR-3210	C _{I-O}	_	0.4	_	pF	f = 1 MHz; V _{I-O} = 0 Vdc	
ASSR-3211	C _{I-O}	_	0.5	_	pF	f = 1 MHz; V _{I-O} = 0 Vdc	
ASSR-3220	C _{I-O}	_	0.8	_	pF	f = 1 MHz; V _{I-O} = 0 Vdc	

a. Device is considered a two-terminal device:

ASSR-3210 — pin 1, 2 shorted and pin 3, 4 shorted.

ASSR-3211 — pin 1, 2, 3 shorted and pin 4, 5, 6 shorted.

ASSR-3220 — pin 1, 2, 3, 4 shorted and pin 5, 6, 7, 8 shorted.

Electrical Specifications (DC)

Over recommended operating $T_A = -40$ °C to 85°C, $I_F = 5$ mA to 10 mA, unless otherwise specified.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions	Figure	Note
Output Withstand	V _{O(OFF)}	250	280	_	V	$V_F = 0.8V$, $I_O = 250 \mu A$, $T_A = 25^{\circ} C$		
Voltage		230	_	_	V	V _F = 0.8V, I _O = 250 μA	3	
Output Leakage Current	I _{O(OFF)}	_	0.3	100	nA	$V_F = 0.8V, V_O = 250V, T_A = 25^{\circ}C$		
		_	_	1	μA	V _F = 0.8V, V _O = 250V	4	
Output Offset Voltage	V _(OS)	_	1	_	μV	I _F = 5 mA, I _O = 0 mA		
Input Reverse Breakdown Voltage	V _R	5	_	_	V	I _R = 10 μA		
Input Forward Voltage	V _F	1.1	1.3	1.65	V	I _F = 5 mA	5, 6	
Output On-Resistance	R _(ON)	_	8	10	Ω	$I_F = 5 \text{ mA}, I_O = 200 \text{ mA},$ Pulse $\leq 30 \text{ ms}, T_A = 25^{\circ}\text{C}$	7, 8	а
ASSR-3211 Connection B	R _(ON)	_	2.0	2.5	Ω	I _F = 5 mA, I _O = 400 mA, Pulse ≤ 30 ms, T _A = 25°C		а

a. During the pulsed $R_{(ON)}$ measurement (I_O duration \leq 30 ms), ambient (T_A) and case temperature (T_C) are equal.

b. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating, refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level safety specification, or Broadcom Application Note 1074, Optocoupler Input-Output Endurance Voltage.

Switching Specifications (AC)

Over recommended operating $T_A = -40$ °C to 85°C, $I_F = 5$ mA to 10 mA, unless otherwise specified.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions	Figure	Note
Turn On Time	T _{ON}	_	0.25	1.0	ms	$I_F = 5 \text{ mA}, I_O = 200 \text{ mA}, T_A = 25^{\circ}\text{C}$	9, 13	
		_	_	2.0	ms	I _F = 5 mA, I _O = 200 mA	10	
Turn Off Time	T _{OFF}	_	0.02	0.2	ms	$I_F = 5 \text{ mA}, I_O = 200 \text{ mA}, T_A = 25^{\circ}\text{C}$	11, 13	
		_	_	0.5	ms	I _F = 5 mA, I _O = 200 mA	12	
Output Transient Rejection	dV _O /dt	1	7	_	kV/µs	$\Delta V_{O} = 250V, T_{A} = 25^{\circ}C$	14	
Input-Output Transient Rejection	dV _{I-O} /dt	1	≥10	_	kV/μs	ΔV_{I-O} = 1000V, T_A = 25°C	15	

Applications Information

On-Resistance and Derating Curves

The Output On-Resistance, $R_{(ON)}$, specified in this data sheet, is the resistance measured across the output contact when a pulsed current signal ($I_O = 0.2A$) is applied to the output pins. The use of a pulsed signal (≤ 30 ms) implies that each junction temperature is equal to the ambient and case temperatures. The steady-state resistance, Rss, on the other hand, is the value of the resistance measured across the output contact when a DC current signal is applied to the output pins for a duration sufficient to reach thermal equilibrium. Rss includes the effects of the temperature rise in the device.

Derating curves are shown in Figure 1 and Figure 2, specifying the maximum output current allowable for a given ambient temperature. The maximum allowable output current and power dissipation are related by the expression Rss = $Po(max) / (Io(max))^2$ from which Rss can be calculated. Staying within the safe area ensures that the steady-state MOSFET junction temperature remains less than 125°C.

Turn On Time and Turn Off Time Variation

The ASSR-32xx Series exhibits a very fast turn on and turn off time. Both the turn on and turn off time can be adjusted by choosing proper forward current as depicted in Figure 9 and Figure 11. The changes of the turn on and turn off time with ambient temperature are also shown in Figure 10 and Figure 12.

Figure 1: Maximum Average Output Current Rating vs. Ambient Temperature

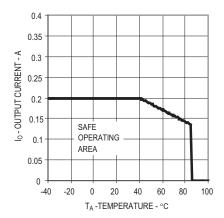


Figure 3: Normalized Typical Output Withstand Voltage vs. Temperature

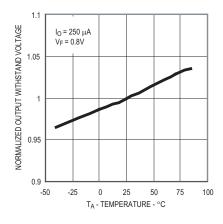


Figure 5: Typical Forward Voltage vs. Temperature

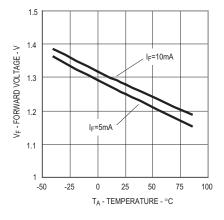


Figure 2: Output Power Derating vs. Case Temperature

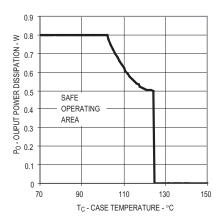


Figure 4: Typical Output Leakage Current vs. Temperature

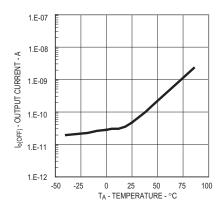


Figure 6: Typical Forward Current vs. Forward Voltage

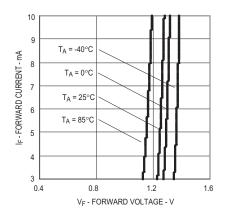


Figure 7: Typical On Resistance vs.Temperature

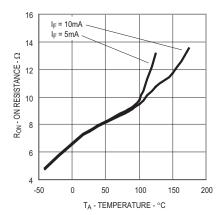


Figure 9: Typical Turn On Time vs. Input Current

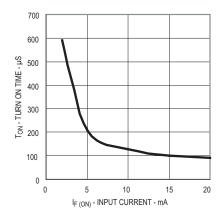


Figure 11: Typical Turn Off Time vs. Input Current

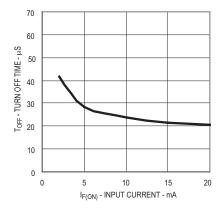


Figure 8: Typical Output Current vs. Output Voltage

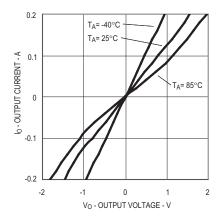


Figure 10: Typical Turn On Time vs. Temperature

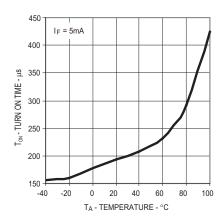


Figure 12: Typical Turn Off Time vs. Temperature

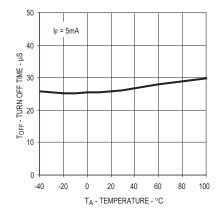
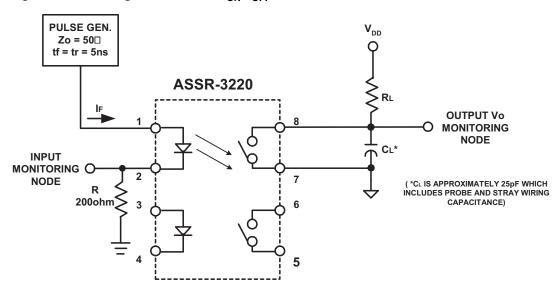
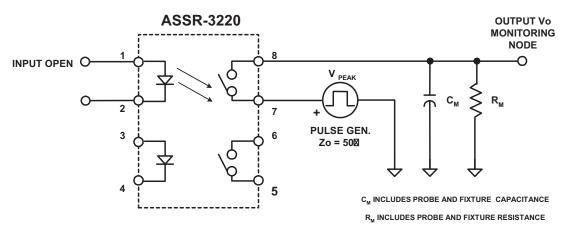
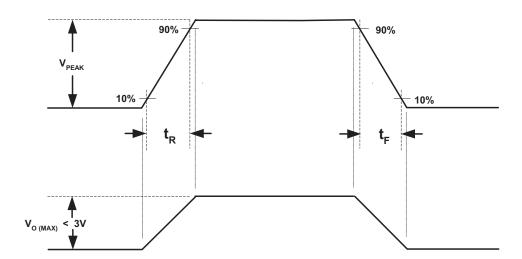
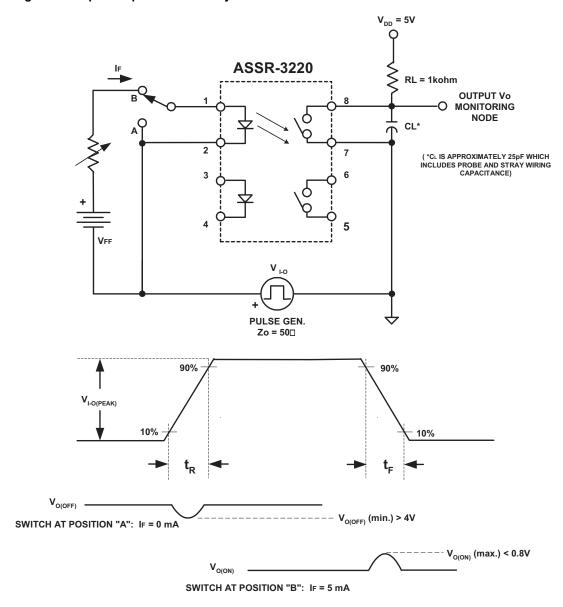



Figure 13: Switching Test Circuit for t_{ON} , t_{OFF}


Figure 14: Output Transient Rejection Test Circuit

$$\frac{\mathrm{dV_0}}{\mathrm{dt}} = \frac{(0.8)\mathrm{V_{PEAK}}}{\mathrm{t_R}} \ \mathrm{OR} \ \frac{(0.8)\mathrm{V_{PEAK}}}{\mathrm{t_F}}$$
 OVER SHOOT ON V PEAK IS TO BE 10%

Figure 15: Input-Output Transient Rejection Test Circuit

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries and/or the EU.

Copyright © 2012–2017 by Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

