

STS25NH3LL

N-channel 30 V - 0.0032 Ω - 25 A - SO-8 STripFET™ III Power MOSFET for DC/DC conversion

Features

Туре	V _{DSS}	R _{DS(on)}	I _D
STS25NH3LL	30 V	<0.0035 Ω	25 A ⁽¹⁾

- 1. This value is rated according to Rthj-pcb
- Optimal R_{DS(on)} x Qg trade off @ 4.5 V
- Conduction losses reduced
- Switching losses reduced

■ Switching applications

Description

This device utilizes the advanced design rules of ST's proprietary STripFET™ technology. The innovative process coupled with unique metallization techniques makes it possible to produce the most advanced low voltage Power MOSFET in an SO-8 package. The device is therefore suitable for demanding DC-DC converter applications where high efficiency at high output current is needed.

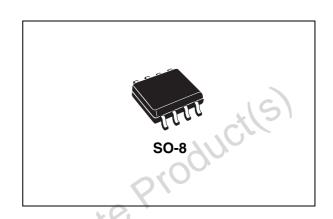


Figure 1. Internal schematic diagram

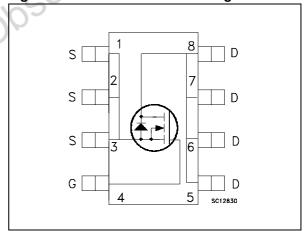


Table 1. Device summary

Order code	order code Marking Package		Packaging	
STS25NH3LL	25H3LL	SO-8	Tape & reel	

STS25NH3LL **Electrical ratings**

Electrical ratings 1

Absolute maximum ratings Table 2.

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage (V _{GS} = 0)	30	V
V _{GS}	Gate-source voltage	± 18	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	25	Α
I _D	Drain current (continuous) at T _C =100 °C	18	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	100	Α
P _{TOT} (1)	Total dissipation at T _C = 25 °C	3.2	W

^{1.} This value is rated according to Rthj-pcb

Table 3. Thermal data

1 101	Total dissipation at 10 = 25 °C	U.E	٧٧
1. This value	is rated according to Rthj-pcb	4110	
2. Pulse widt	th limited by safe operating area	00,0	
		010	
Table 3.	Thermal data		
Symbol	Parameter	Value	Unit
R _{thj-pcb} (1)	Thermal resistance junction-amb max	47	°C/W
T _j T _{stg}	Operation junction temperature Storage temperature	-55 to 175	°C

^{1.} When mounted on FR-4 board of 1 inch2, 2 oz Cu, t< 10 sec

Table 4. **Avalanche characteristics**

	Symbol	Parameter	Value	Unit
	I _{AV}	Not-repetitive avalanche current (pulse width limited by Tj max.)	12.5	Α
2/6	E _{AS}	Single pulse avalanche energy (starting Tj = 25 °C, $I_D = I_{AV}$, $V_{DD} = 24 \text{ V}$)	1.3	J
Opsor				

^{2.} Pulse width limited by safe operating area

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	30			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = Max rating, V_{DS} = Max rating @125 °C			1 10	μΑ μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ± 18 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	0,		V
R _{DS(on)}	Static drain-source on resistance	V_{GS} = 10 V, I_{D} = 12.5 A V_{GS} = 4.5 V, I_{D} = 12.5 A		0.0032 0.004	0.0035 0.005	Ω Ω

Table 6. Dynamic

Dynamic					
Parameter	Test conditions	Min.	Тур.	Max.	Unit
Forward transconductance	$V_{DS} = 10 \text{ V}, I_D = 12.5 \text{ A}$		30		S
Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25 V, f = 1 MHz, V _{GS} = 0		4450 655 50		pF pF pF
Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 15 \text{ V}, I_{D} = 25 \text{ A}$ $V_{GS} = 4.5 \text{ V}$ Figure 14		30 12.5 10	40	nC nC nC
Output charge	V _{DD} = 24 V, V _{GS} = 0		23		nC
Gate input resistance	f = 1 MHz, gate DC bias =0 test signal level = 20 mV open drain	1	2	3	Ω
	Parameter Forward transconductance Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Gate-source charge Gate-drain charge Output charge	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c } \hline \textbf{Parameter} & \textbf{Test conditions} & \textbf{Min.} \\ \hline Forward transconductance & V_{DS} = 10 \text{ V}, \text{ I}_{D} = 12.5 \text{ A} \\ \hline Input capacitance & V_{DS} = 25 \text{ V}, \text{ f} = 1 \text{ MHz}, \\ V_{GS} = 0 & & & & & & & \\ \hline Total gate charge & V_{DD} = 15 \text{ V}, \text{ I}_{D} = 25 \text{ A} \\ \hline Gate-source charge & V_{GS} = 4.5 \text{ V} \\ \hline Gate-drain charge & V_{DD} = 24 \text{ V}, \text{ V}_{GS} = 0 \\ \hline Gate input resistance & & & & & \\ \hline Gate input resistance & & & & & \\ \hline \end{array} $	$ \begin{array}{ c c c c c c } \hline \textbf{Parameter} & \textbf{Test conditions} & \textbf{Min.} & \textbf{Typ.} \\ \hline \textbf{Forward transconductance} & \textbf{V}_{DS} = 10 \text{ V}, \textbf{I}_{D} = 12.5 \text{ A} & 30 \\ \hline \textbf{Input capacitance} & \textbf{V}_{DS} = 25 \text{ V}, \textbf{f} = 1 \text{ MHz}, \\ \textbf{V}_{GS} = 0 & 655 \\ \hline \textbf{50} & 655 \\ \hline \textbf{61} & 655 \\ \hline \textbf{62} & 655 \\ \hline \textbf{62} & 655 \\ \hline \textbf{63} & 655 \\ \hline \textbf{63} & 655 \\ \hline \textbf{63} & 655 \\ \hline \textbf{64} & 655 \\ \hline \textbf{65} & 655 \\ \hline $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

^{1.} Pulsed: pulse duration=300 μs, duty cycle 1.5%

^{2.} $Q_{OSS} = C_{oss} * \Delta V_{in}, C_{oss} = C_{gd} + C_{ds}$

Electrical characteristics STS25NH3LL

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	V_{DD} = 15 V, I_{D} = 12.5 A, R_{G} = 4.7 Ω , V_{GS} = 10 V Figure 13		18 50 75 8		ns ns ns ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD}	Source-drain current				25	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)			111	100	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 25 A, V _{GS} = 0	× 0	0	1.3	٧
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 25 A, di/dt = 100 A/ μ s, V_{DD} = 25 V, T_{J} = 150 °C Figure 18		32 34 2.1		ns nC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration=300 μs, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

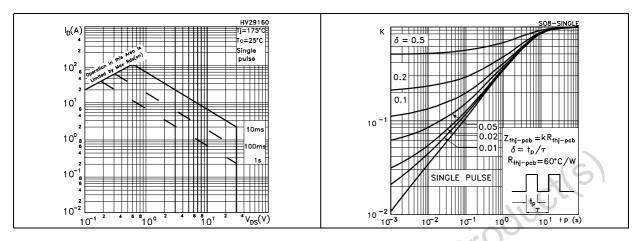


Figure 4. Output characteristics

Figure 5. Transfer characteristics

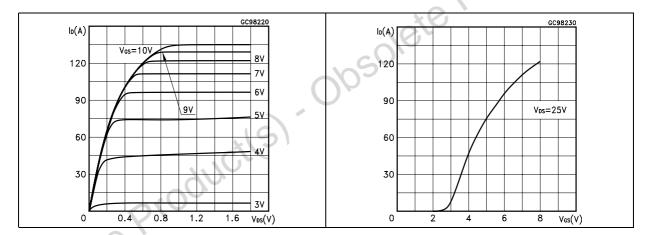
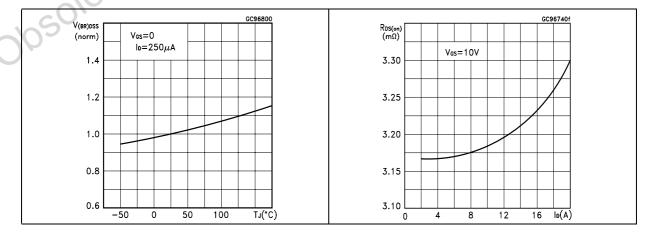



Figure 6. Normalized B_{VDSS} vs temperature

Figure 7. Static drain-source on resistance

Electrical characteristics STS25NH3LL

Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

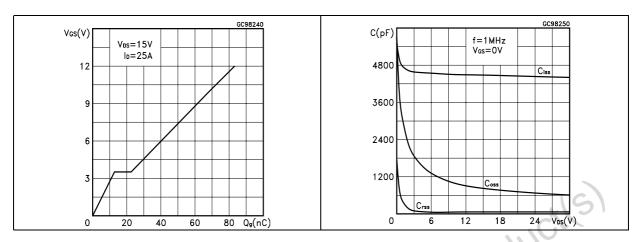


Figure 10. Normalized gate threshold voltage vs temperature

Figure 11. Normalized on resistance vs temperature

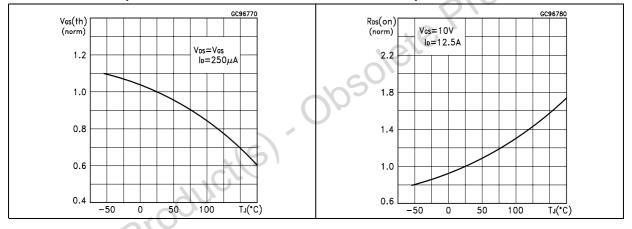
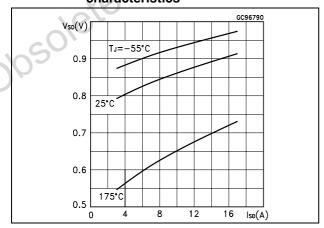



Figure 12. Source-drain diode forward characteristics

STS25NH3LL Test circuit

3 Test circuit

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

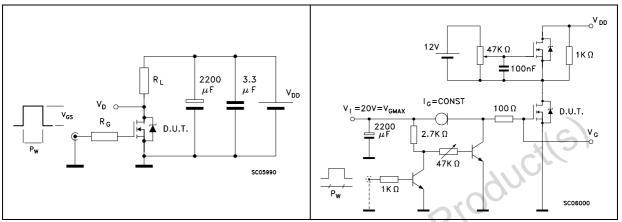


Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

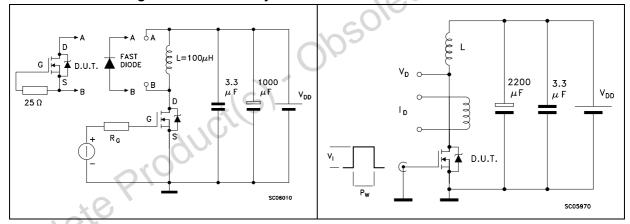
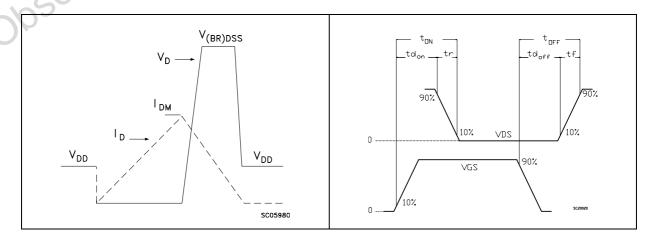
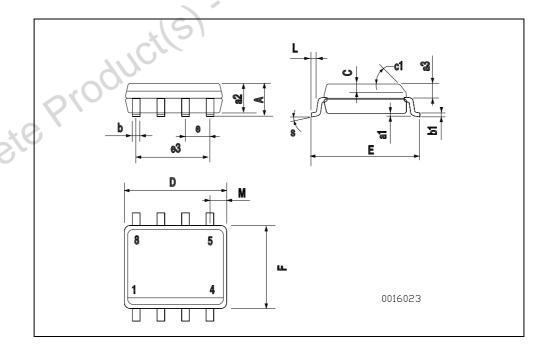



Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Obsolete Product(s). Obsolete Product(s)

SO-8 MECHANICAL DATA

5.114		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45 (t	yp.))
D	4.8		5.0	0.188	100	0.196
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81		10,	0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6	_		0.023
S			8 (m	ax.)	•	•

Revision history STS25NH3LL

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
19-Nov-2007	10	Document status promoted from preliminary data to datasheet

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com