

SN74ABTE16246
11-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER
WITH 3-STATE AND OPEN-COLLECTOR OUTPUTS

SCBS227J – JULY 1993 – REVISED AUGUST 2003

- Member of the Texas Instruments Widebus™ Family
- Supports the VME64 ETL Specification
- Reduced TTL-Compatible Input Threshold Range
- High-Drive Outputs ($I_{OH} = -60$ mA, $I_{OL} = 90$ mA) Support Equivalent 25- Ω Incident-Wave Switching
- V_{CCBIAS} Pin Minimizes Signal Distortion During Live Insertion
- Internal Pullup Resistor on \overline{OE} Keeps Outputs in High-Impedance State During Power Up or Power Down
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Equivalent 25- Ω Series Damping Resistor on B Port
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors

description/ordering information

The SN74ABTE16246 is an 11-bit noninverting transceiver designed for asynchronous two-way communication between buses. This device has open-collector and 3-state outputs. The device allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated. When \overline{OE} is low, the device is active.

The B port has an equivalent 25- Ω series output resistor to reduce ringing. Active bus-hold inputs on the B port hold unused or floating inputs at a valid logic level.

The A port provides for the precharging of the outputs via V_{CCBIAS} , which establishes a voltage between 1.3 V and 1.7 V when V_{CC} is not connected.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

ORDERING INFORMATION

TA	PACKAGE ^T		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	SSOP – DL	Tube	SN74ABTE16246DL	ABTE16246
		Tape and reel	SN74ABTE16246DLR	
	TSSOP – DGG	Tape and reel	SN74ABTE16246DGGR	ABTE16246

^T Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

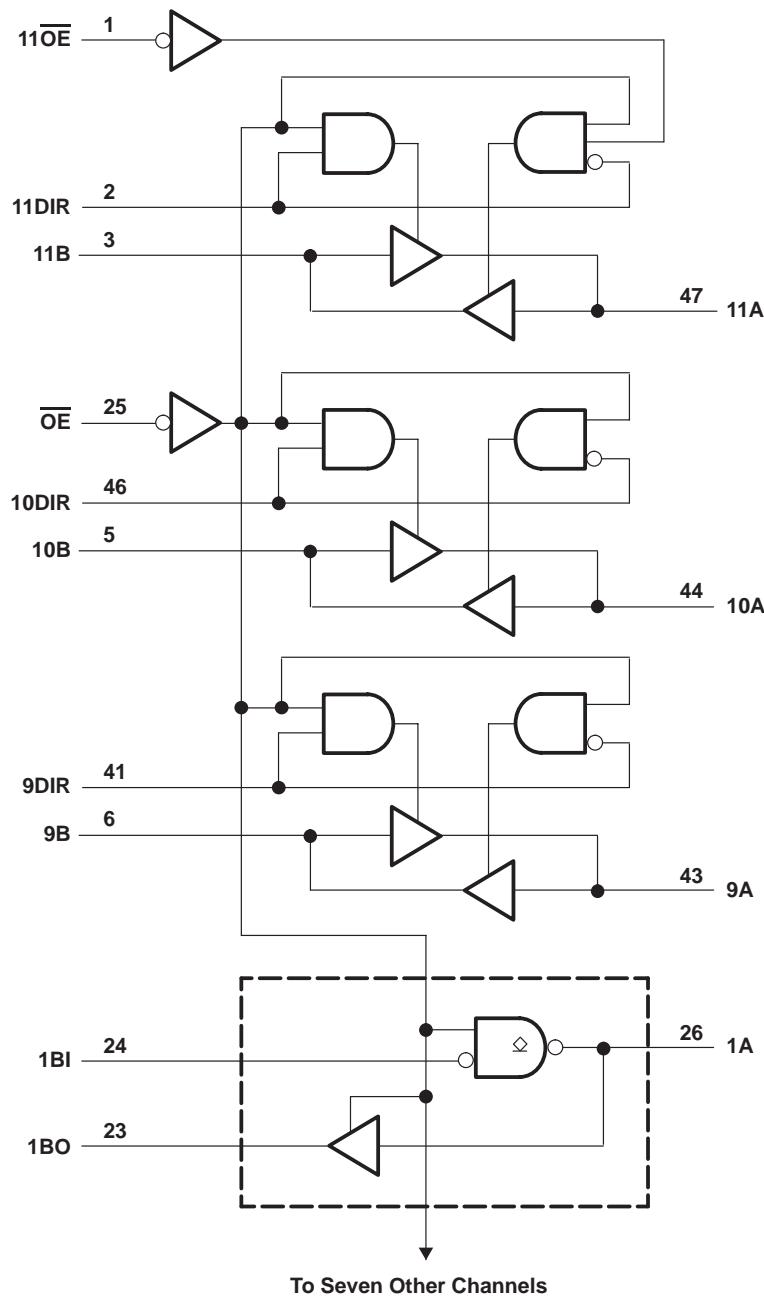
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2003, Texas Instruments Incorporated

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN74ABTE16246**11-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER
WITH 3-STATE AND OPEN-COLLECTOR OUTPUTS**

SCBS227J – JULY 1993 – REVISED AUGUST 2003


FUNCTION TABLE

INPUTS					OPERATION
<u>OE</u>	9DIR	10DIR	11DIR	<u>11OE</u>	
H	X	X	X	X	Isolation
L	X	X	X	X	1BI–8BI data to 1A–8A bus (OC [†]), 1A–8A data to 1BO–8BO bus
L	L	X	X	X	9A data to 9B bus
L	H	X	X	X	9B data to 9A bus
L	X	L	X	X	10A data to 10B bus
L	X	H	X	X	10B data to 10A bus
L	X	X	L	L	11A data to 11B bus
L	X	X	L	H	11A, 11B isolation
L	X	X	H	X	11B data to 11A bus

[†] OC = Open-collector outputs

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} and V_{CCBIAS}	-0.5 V to 7 V
Input voltage range, V_I (except I/O ports) (see Note 1)	-0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, V_O	-0.5 V to 5.5 V
Current into any output in the low state, I_O	128 mA
Input clamp current, I_{IK} ($V_I < 0$)	-18 mA
Output clamp current, I_{OK} ($V_O < 0$)	-50 mA
Package thermal impedance, θ_{JA} (see Note 2): DGG package	70°C/W
DL package	63°C/W
Storage temperature range, T_{stg}	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JEDEC 51-7.

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT
V_{CC} , V_{CCBIAS}	Supply voltage		4.5	5	5.5	V
V_{IH}	High-level input voltage	OE	2			V
		Except OE	1.6			
V_{IL}	Low-level input voltage	OE		0.8		V
		Except OE		1.4		
V_{OH}	High-level output voltage	1A–8A	0	5.5		V
V_I	Input voltage		0	V_{CC}		V
I_{OH}	High-level output current	B bus			-12	mA
		9A–11A			-64	
I_{OL}	Low-level output current	B bus		12		mA
		A bus		90		
$\Delta t/\Delta V$	Input transition rise or fall rate	Outputs enabled		10		ns/V
T_A	Operating free-air temperature		-40	85		°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN74ABTE16246
11-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER
WITH 3-STATE AND OPEN-COLLECTOR OUTPUTS
SCBS227J – JULY 1993 – REVISED AUGUST 2003

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
V_{IK}		$V_{CC} = 4.5 \text{ V}$, $I_I = -18 \text{ mA}$				-1.2	V
V_{OH}	B port	$V_{CC} = 5.5 \text{ V}$,	$I_{OH} = -100 \mu\text{A}$			$V_{CC} - 0.2$	V
		$V_{CC} = 4.5 \text{ V}$	$I_{OH} = -1 \text{ mA}$	2.4			
			$I_{OH} = -12 \text{ mA}$	2			
	9A-11A	$V_{CC} = 5.5 \text{ V}$,	$I_{OH} = -1 \text{ mA}$			4.5	
		$V_{CC} = 4.5 \text{ V}$	$I_{OH} = -32 \text{ mA}$	2.4			
			$I_{OH} = -64 \text{ mA}$	2			
I_{OH}	1A-8A	$V_{CC} = 4.5 \text{ V}$,	$V_{OH} = 5.5 \text{ V}$			20	μA
V_{OL}	B port	$V_{CC} = 4.5 \text{ V}$	$I_{OL} = 1 \text{ mA}$			0.4	V
			$I_{OL} = 12 \text{ mA}$			0.8	
	A port	$V_{CC} = 4.5 \text{ V}$	$I_{OL} = 64 \text{ mA}$			0.55	
			$I_{OL} = 90 \text{ mA}$			0.9	
V_{hys}						100	mV
$I_I(\text{hold})$	B port	$V_{CC} = 4.5 \text{ V}$	$V_I = 0.8 \text{ V}$	100			μA
			$V_I = 2 \text{ V}$	-100			
		$V_{CC} = 5.5 \text{ V}$,	$V_I = 0 \text{ to } 5.5 \text{ V}$			± 500	
I_I	Control inputs	$V_{CC} = 5.5 \text{ V}$	$V_I = V_{CC} \text{ or GND}$			± 1	μA
	A or B ports	$V_{CC} = 5.5 \text{ V}$, $\overline{OE} = V_{CC}$				± 20	
I_{OZH}^\ddagger	9A-11A	$V_{CC} = 5.5 \text{ V}$,	$V_O = 2.7 \text{ V}$			10	μA
I_{OZL}^\ddagger	9A-11A	$V_{CC} = 5.5 \text{ V}$,	$V_O = 0.5 \text{ V}$			-10	μA
I_O	A port	$V_{CC} = 5.5 \text{ V}$,	$V_O = 2.5 \text{ V}$	-50		-180	mA
	B port			-25		-90	
I_{off}		$V_{CC} = 0$, V_I or $V_O \leq 4.5 \text{ V}$,	$V_{CC\text{BIAS}} = 0$			± 100	μA
I_{CC}	A or B ports	$V_{CC} = 5.5 \text{ V}$, $I_O = 0$, $V_I = V_{CC} \text{ or GND}$	Outputs high	28		36	mA
			Outputs low	38		48	
			Outputs disabled	20		32	
I_{CCD}	A or B ports	$V_{CC} = 5 \text{ V}$, $C_L = 50 \text{ pF}$	OE high	0.02			mA/ MHz
			OE low	0.33			
C_I	Control inputs	$V_I = 2.5 \text{ V}$ or 0.5 V		2.5	4		pF
C_{IO}	I/O ports	$V_O = 2.5 \text{ V}$ or 0.5 V		4.5	8		pF

† All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

‡ The parameters I_{OZH} and I_{OZL} include the input leakage current.

SN74ABTE16246**11-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER
WITH 3-STATE AND OPEN-COLLECTOR OUTPUTS**

SCBS227J – JULY 1993 – REVISED AUGUST 2003

live-insertion specifications over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			MIN	TYP†	MAX	UNIT
I _{CC} (V _{CCBIAS})		V _{CC} = 0 to 4.5 V, V _{CCBIAS} = 4.5 V to 5.5 V, I _{O(DC)} = 0			250	700	μA	
		V _{CC} = 4.5 V to 5.5 V‡, V _{CCBIAS} = 4.5 V to 5.5 V, I _{O(DC)} = 0			20			
V _O	A port	V _{CC} = 0	V _{CCBIAS} = 4.5 V to 5.5 V			1.1	1.5	1.9
			V _{CCBIAS} = 4.75 V to 5.25 V			1.3	1.5	1.7
I _O	A port	V _{CC} = 0, V _{CCBIAS} = 4.5 V	V _O = 0		-20		-100	μA
			V _O = 3 V		20		100	

† All typical values are at V_{CC} = 5 V, T_A = 25°C.‡ V_{CC} – 0.5 V < V_{CCBIAS}**switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 2)**

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 5 V, T _A = 25°C			MIN	MAX	UNIT
			MIN	TYP	MAX			
t _{PLH}	A	B	1.5	3.1	4.2	1.5	5.2	ns
t _{PHL}			1.5	3.5	4.6	1.5	5.2	
t _{PLH}	9B–11B	9A–11A	1.5	3	3.8	1.5	4.5	ns
t _{PHL}			1.5	3.2	4	1.5	4.5	
t _{PLH} §	1B–8B	1A–8A	1.5	3.2	4	1.5	4.5	ns
t _{PLH} ¶			7.5	8.9	9.7	7.5	10.3	
t _{PHL}			1.5	3.2	4	1.5	4.5	
t _{PZH}	OE	9A–11A	2	4.3	5.3	2	6.2	ns
t _{PZL}		1A–11A	2	4.4	5.4	2	6.8	
t _{PZH}	OE	B	2	4.3	6	2	7.1	ns
t _{PZL}			2	4.5	6.4	2	7.3	
t _{PHZ}	OE	9A–11A	2	4.2	5.9	2	6.7	ns
t _{PLZ}		1A–11A	2	3.5	4.6	2	5.1	
t _{PHZ}	OE	B	2.5	4.3	6.2	2.5	7	ns
t _{PLZ}			2	3.6	5	2	5.5	

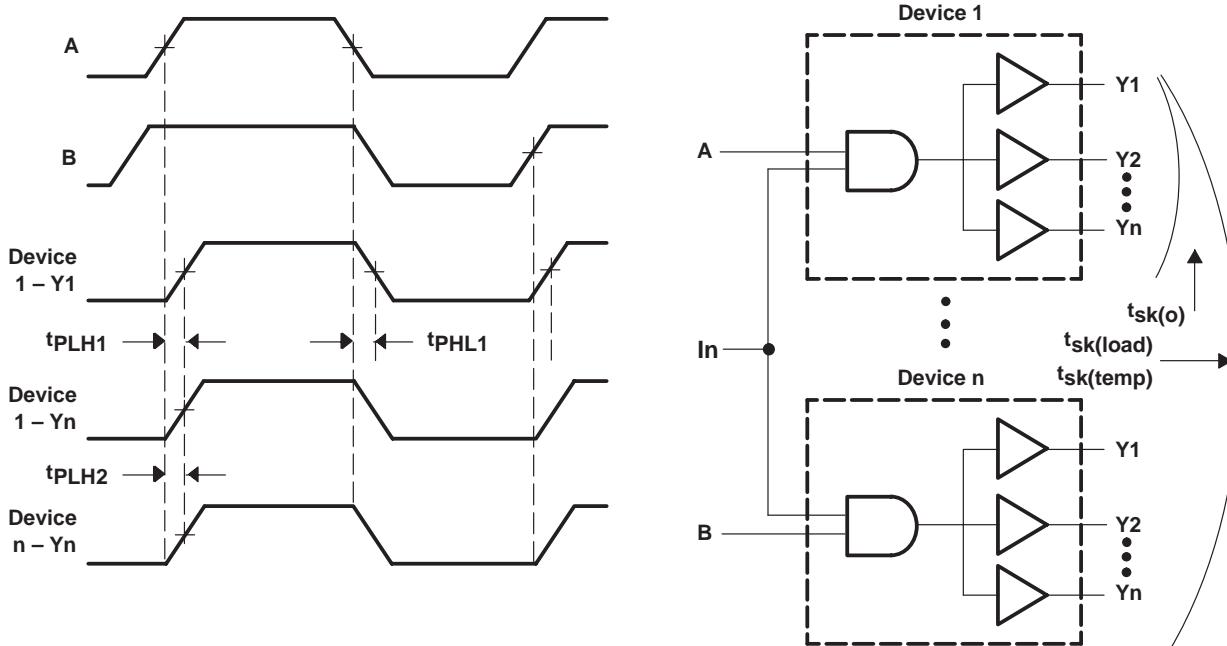
§ Measurement point is V_{OL} + 0.3 V.¶ Measurement point is V_{OL} + 1.5 V.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN74ABTE16246
**11-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER
 WITH 3-STATE AND OPEN-COLLECTOR OUTPUTS**
 SCBS227J – JULY 1993 – REVISED AUGUST 2003

extended switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD	$V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$			MIN	MAX	UNIT
				MIN	TYP	MAX			
t_{PLH}	9B–11B	9A–11A	$R_X = 13 \Omega$	1.5	3.2	4	1.5	4.8	ns
t_{PHL}				1.5	3.8	4.7	1.5	5.6	
t_{PHL}	1B–8B	1A–8A	$R_X = 13 \Omega$	1.5	3.3	4.2	1.5	4.8	ns
t_{PLH}	9B–11B	9A–11A	$R_X = 26 \Omega$	1.5	3.1	4	1.5	4.6	ns
t_{PHL}				1.5	3.5	4.4	1.5	4.9	
t_{PHL}	1B–8B	1A–8A	$R_X = 26 \Omega$	1.5	3.1	4	1.5	4.4	ns
t_{PLH}	9B–11B	1A–8A	$R_X = 56 \Omega$	1.5	3	3.8	1.5	4.5	ns
t_{PHL}				1.5	3.3	4.2	1.5	4.7	
t_{PHL}	1B–8B	1A–8A	$R_X = 56 \Omega$	1.5	3	4	1.5	4.4	ns
$t_{sk(p)}$	B	A	$R_X = \text{Open}$	0.1	0.6		2		ns
	A	B	$R_X = \text{Open}$	0.4	0.8		2		
	B	A	$R_X = 26 \Omega$	0.3	0.8		2		
$t_{sk(o)}$	B	A	$R_X = \text{Open}$	0.3	0.7		1.3		ns
	A	B	$R_X = \text{Open}$	0.7	1.1		1.3		
	B	A	$R_X = 26 \Omega$	0.5	1		1.3		
t_t^\dagger	B	A	$R_X = 26 \Omega$	0.5	0.8	1.5	0.5	1.5	ns
t_t^\ddagger	A	B	$R_X = \text{Open}$	3.5	5.5	7.3	3.5	7.9	ns

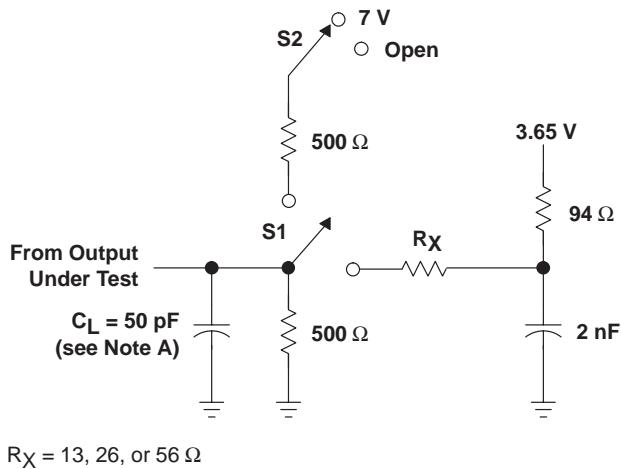

† t_t is measured between 1 V and 2 V of the output waveform.

‡ t_t is measured between 10% and 90% of the output waveform.

extended output characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (see Figures 1 and 2)

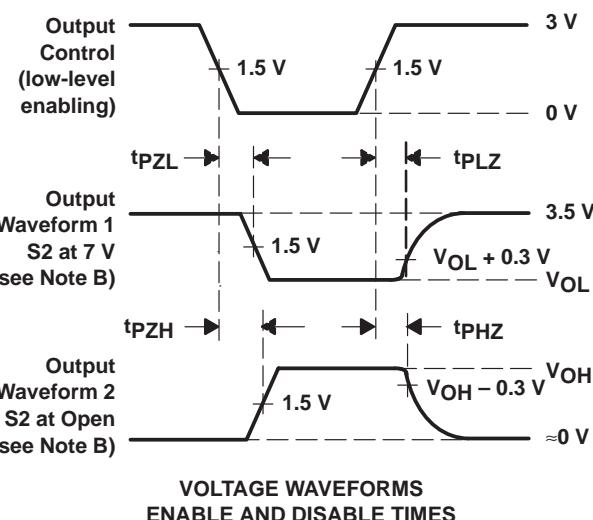
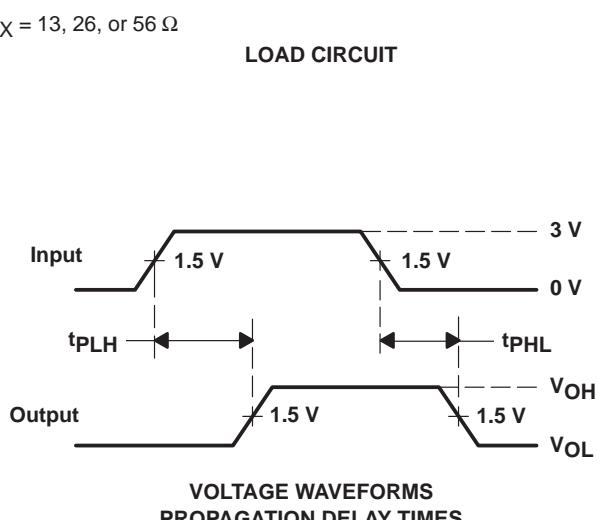
PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	LOAD	MIN	MAX	UNIT
$t_{sk(temp)}$	A	B	$V_{CC} = \text{constant}$, $\Delta T_A = 20^\circ\text{C}$			2.5	ns
	B	A		$R_X = 56 \Omega$		4	
$t_{sk(load)}$	B	A	$V_{CC} = \text{constant}$, Temperature = constant		$R_X = 13, 26, \text{ or } 56 \Omega$	4	ns

PARAMETER MEASUREMENT INFORMATION



NOTES:

- Pulse skew, $t_{sk(p)}$, is defined as the difference in propagation-delay times t_{PLH1} and t_{PHL1} on the same terminal at identical operating conditions.
- Output skew, $t_{sk(o)}$, is defined as the difference in propagation delay of any two outputs of the same device switching in the same direction (e.g., $|t_{PLH1} - t_{PLH2}|$).
- Temperature skew, $t_{sk(temp)}$, is the output skew of two devices, both having the same value of $V_{CC} \pm 1\%$ and with package temperature differences of 20°C .
- Load skew, $t_{sk(load)}$, is measured with R_X in Figure 2 at $13\ \Omega$ for one unit and $56\ \Omega$ for the other unit.



Figure 1. Voltage Waveforms for Extended Characteristics

PARAMETER MEASUREMENT INFORMATION

SWITCHING TABLE LOADS	S1	S2
t_{PLH}/t_{PHL} (9A–11A and B port)	Up	Open
t_{PLH}/t_{PHL} (1A–8A)	Up	7 V
t_{PLZ}/t_{PZL}	Up	7 V
t_{PHZ}/t_{PZH} (except 1A–8A)	Up	Open

EXTENDED SWITCHING TABLE LOADS	S1	S2
$t_{PLH}/t_{PHL}/t_{tsk}$ (A port)	Down	X
$t_{PLH}/t_{PHL}/t_{tsk}$ (B port)	Up	Open
t_t (A port) (see Note E)	Down	X
t_t (B port) (see Note F)	Up	Open

NOTES:

- C_L includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \text{ MHz}$, $Z_O = 50 \Omega$, $t_r \leq 2.5 \text{ ns}$, $t_f \leq 2.5 \text{ ns}$.
- The outputs are measured one at a time with one transition per measurement.
- t_t is measured between 1 V and 2 V of the output waveform.
- t_t is measured between 10% and 90% of the output waveform.

Figure 2. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
74ABTE16246DGGRE4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
74ABTE16246DGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABTE16246DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABTE16246DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABTE16246DLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABTE16246DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABTE16246DLRG4	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

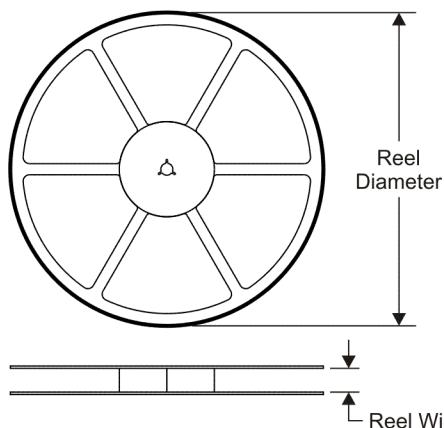
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

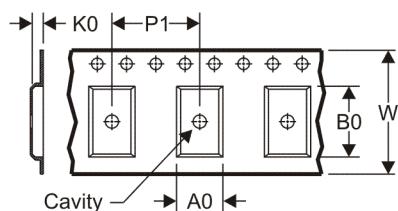
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

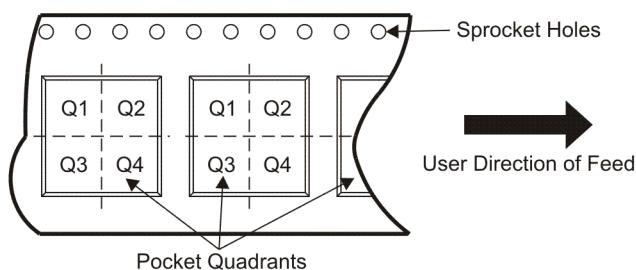

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

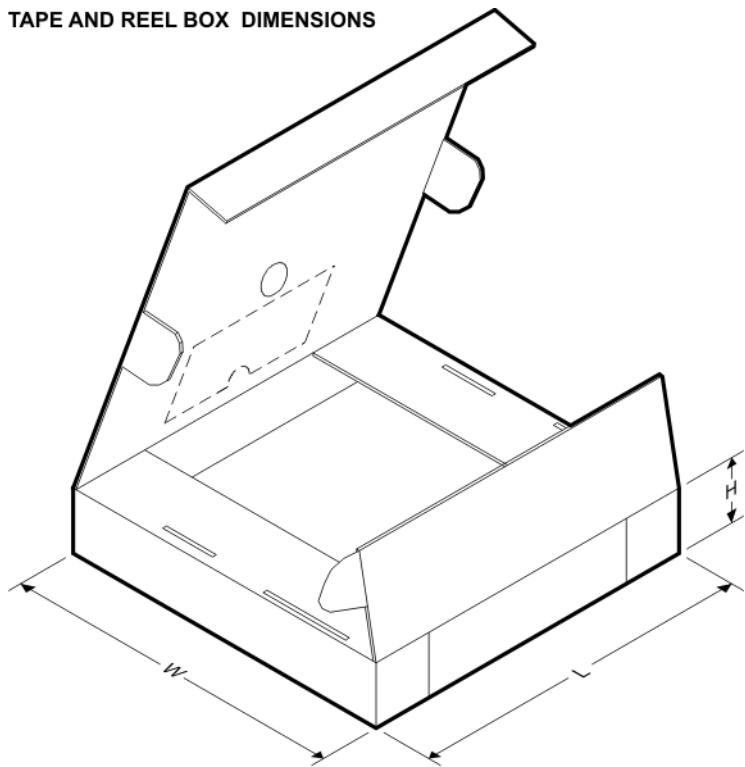
TAPE AND REEL INFORMATION

REEL DIMENSIONS



TAPE DIMENSIONS

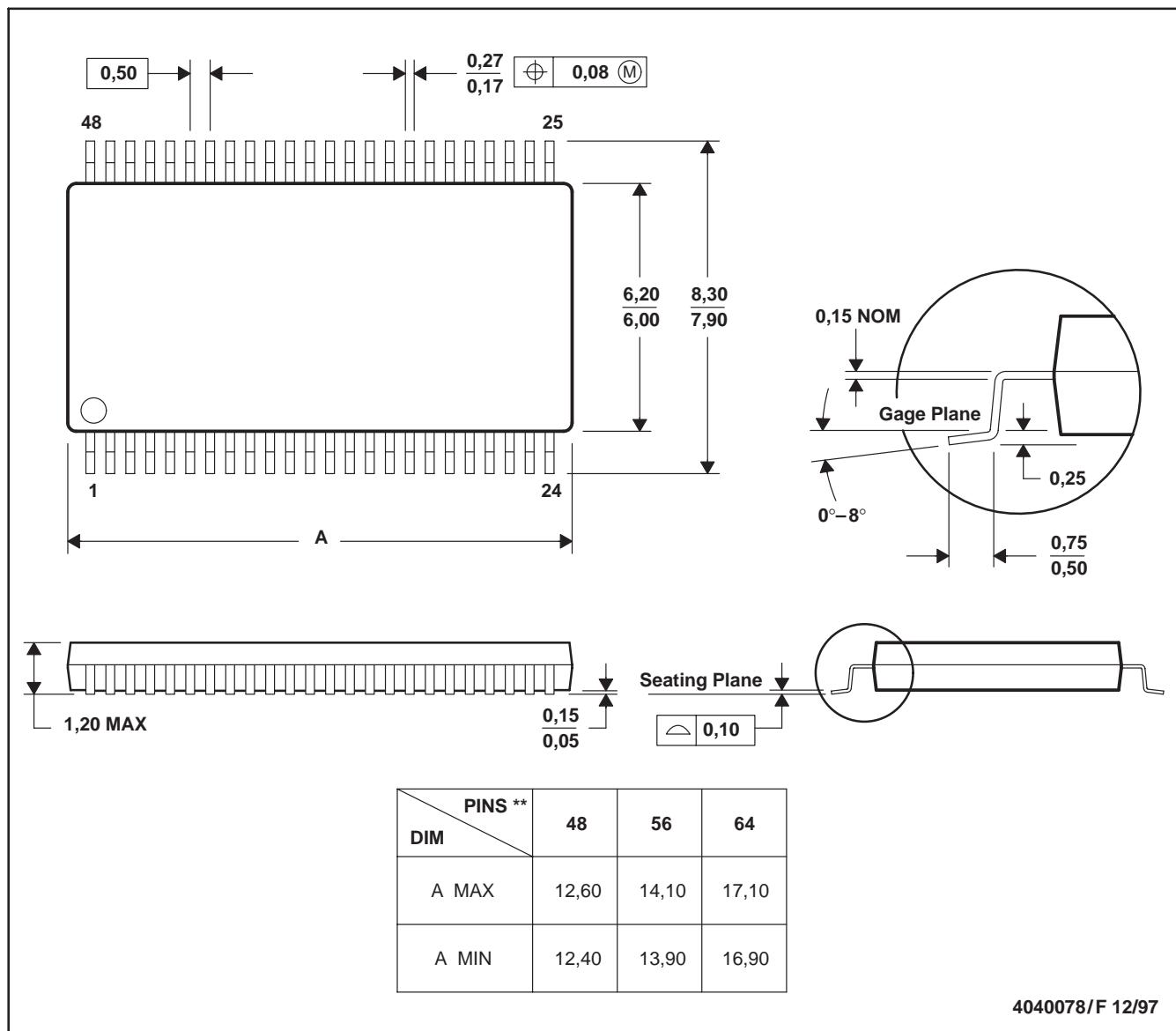
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ABTE16246DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	15.8	1.8	12.0	24.0	Q1
SN74ABTE16246DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

TAPE AND REEL BOX DIMENSIONS

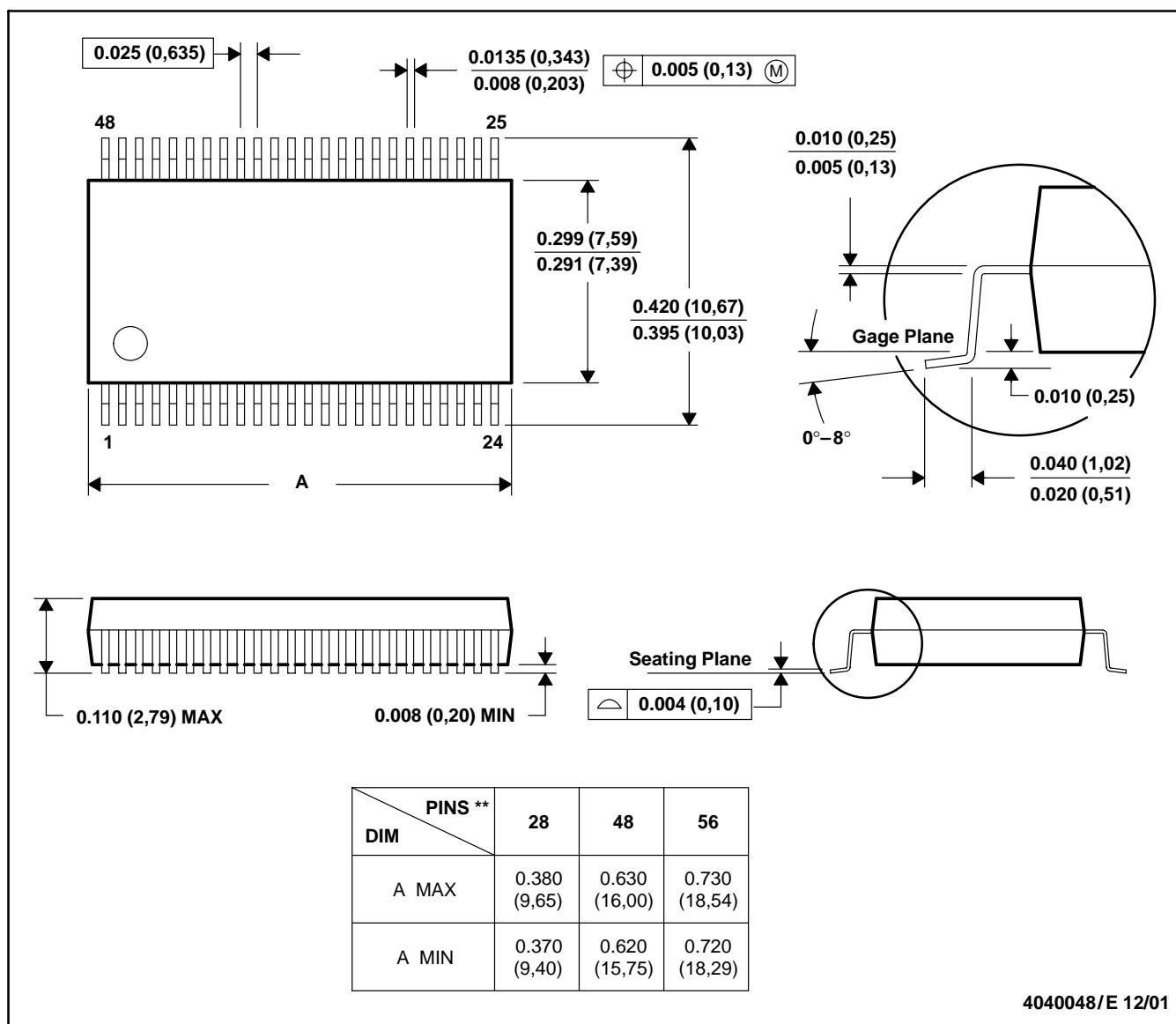

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ABTE16246DGGR	TSSOP	DGG	48	2000	346.0	346.0	41.0
SN74ABTE16246DLR	SSOP	DL	48	1000	346.0	346.0	49.0

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold protrusion not to exceed 0,15.
 D. Falls within JEDEC MO-153

DL (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
 D. Falls within JEDEC MO-118

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
RF/IF and ZigBee® Solutions	www.ti.com/lprf

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2008, Texas Instruments Incorporated