

FEATURES

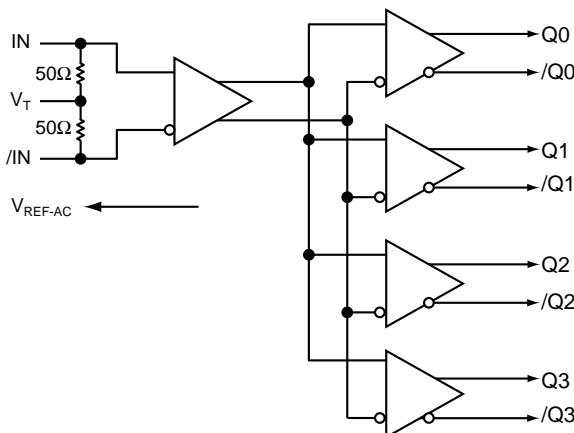
- Precision 1:4, LVPECL fanout buffer
- Guaranteed AC performance over temperature/voltage:
 - $>4\text{GHz } f_{\text{MAX}} \text{ (clock)}$
 - $<100\text{ps } t_r / t_f \text{ Times}$
 - $<300\text{ps } t_{\text{pd}}$
 - $<15\text{ps max skew}$
- Low jitter performance
 - $<10\text{ps}_{\text{pp}} \text{ total jitter (clock)}$
 - $<1\text{ps}_{\text{rms}} \text{ random jitter (data)}$
 - $<10\text{ps}_{\text{pp}} \text{ deterministic jitter (data)}$
- Accepts an input signal as low as 100mV
- Unique input termination and VT pin accepts DC-coupled and AC-coupled differential inputs: LVPECL, LVDS, and CML
- 100k LVPECL compatible 800mV swing output
- Power supply 2.5V $\pm 5\%$ and 3.3V $\pm 10\%$
- -40°C to $+85^{\circ}\text{C}$ temperature range
- Available in 16-pin (3mm x 3mm) MLF™ package

Precision Edge®

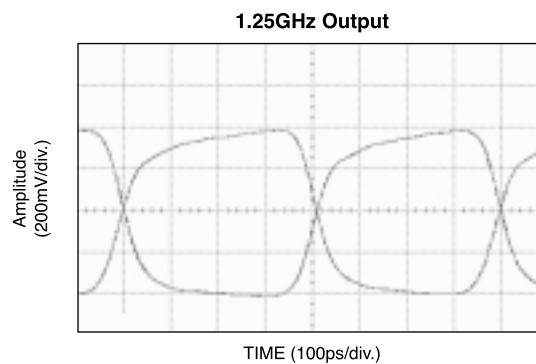
DESCRIPTION

The SY58021U is a 2.5V/3.3V precision, high-speed, fully differential 1:4 LVPECL fanout buffer. Optimized to provide four identical output copies with less than 15ps of skew and less than 10ps_{pp} total jitter, the SY58021U can process clock signals as fast as 4GHz.

The differential input includes Micrel's unique, 3-pin input termination architecture interfaces to differential LVPECL, CML, and LVDS signals (AC- or DC-coupled) as small as 100mV without any level-shifting or termination resistor networks in the signal path. For AC-coupled input interface applications, an on-board output reference voltage ($V_{\text{REF-AC}}$) is provided to bias the VT pin. The outputs are 100k LVPECL compatible, with extremely fast rise/fall times guaranteed to be less than 100ps.

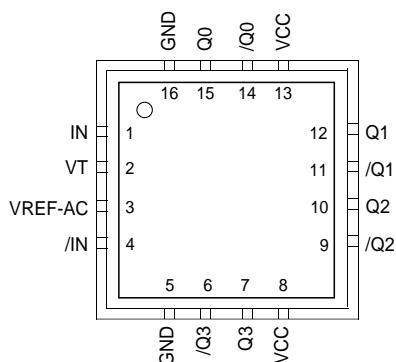

The SY58021U operates from a 2.5V $\pm 5\%$ supply or 3.3V $\pm 10\%$ supply and is guaranteed over the full industrial temperature range (-40°C to $+85^{\circ}\text{C}$). For applications that require faster rise/fall times, or greater bandwidth, consider the SY58022U 1:4 fanout buffer with 400mV LVPECL output swing, or the SY58020U 1:4 CML fanout buffer. The SY58021U is part of Micrel's high-speed, Precision Edge® product line.

All support documentation can be found on Micrel's web site at www.micrel.com.


APPLICATIONS

- All SONET and All GigE clock distribution
- Fibre Channel clock and data distribution
- Backplane distribution
- High-end, low skew, multiprocessor synchronous clock distribution

FUNCTIONAL BLOCK DIAGRAM



TYPICAL PERFORMANCE

Precision Edge is a registered trademark of Micrel , Inc.
MicroLeadFrame and MLF are trademarks of Amkor Technology, Inc.

PACKAGE/ORDERING INFORMATION

16-Pin MLF™ (MLF-16)

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY58021UMI	MLF-16	Industrial	021U	Sn-Pb
SY58021UMITR ⁽²⁾	MLF-16	Industrial	021U	Sn-Pb
SY58021UMG	MLF-16	Industrial	021U with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY58021UMGTR ⁽²⁾	MLF-16	Industrial	021U with Pb-Free bar-line indicator	Pb-Free NiPdAu

Notes-

1. Contact factory for die availability. Dice are guaranteed at $T_A = 25^\circ\text{C}$, DC electricals only.
2. Tape and Reel

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function
1, 4	IN, /IN	Differential Input: This input pair receives the signal to be buffered. Each pin of this pair internally terminates with 50Ω to the VT pin. Note that this input will default to an indeterminate state if left open. See "Input Interface Applications" section.
2	VT	Input Termination Center-Tap: Each input terminates to this pin. The VT pin provides a center-tap for each input (IN, /IN) to the termination network for maximum interface flexibility. See "Input Interface Applications" section.
3	VREF-AC	Reference Output Voltage: This output biases to $V_{CC} - 1.2V$. It is used when AC-coupling to differential inputs. Connect V_{REF-AC} directly to the VT pin. Bypass with $0.01\mu F$ low ESR capacitor to V_{CC} . See "Input Interface Applications" section.
8, 13	VCC	Positive Power Supply: Bypass with $0.1\mu F//0.01\mu F$ low ESR capacitors as close to the V_{CC} pins as possible.
5, 16	GND, Exposed Pad	Ground. Exposed pad must be connected to a ground plane that is the same potential as the ground pin.
14, 15 11, 12 9, 10 6, 7	/Q0, Q0, /Q1, Q1, /Q2, Q2, /Q3, Q3	LVPECL Differential Output Pairs: Differential buffered output copy of the input signal. The output swing is typically 800mV Proper termination is 50Ω to $V_{CC} - 2V$ at the receiving end. Unused output pairs may be left floating with no impact on jitter or skew. See "LVPECL Output Termination" section.

Absolute Maximum Ratings⁽¹⁾

Power Supply Voltage (V_{CC})	−0.5V to +4.0V
Input Voltage (V_{IN})	−0.5V to V_{CC}
LVPECL Output Current (I_{OUT})	
Continuous	50mA
Surge	100mA
Source or sink current on VT pin	
V_T Current	±100mA
Source or sink current on IN, /IN	
Input Current	±50mA
Source or sink current on V_{REF-AC} ⁽⁴⁾	
V_{REF} Current	±1.5mA
Soldering, (20 seconds)	260°C
Storage Temperature Range (T_S)	−65°C to +150°C

Operating Ratings⁽²⁾

Power Supply Voltage (V_{CC})	+2.375V to +3.60V
Operating Temperature Range (T_A)	−40°C to +85°C
Package Thermal Resistance	
MLF™ (θ_{JA})	
Still-Air	60°C/W
500 lpm	54°C/W
MLF™ (ψ_{JB})	
Junction-to-Board Resistance ⁽³⁾	33°C/W

INPUT DC ELECTRICAL CHARACTERISTICS⁽⁵⁾ $T_A = -40^\circ\text{C}$ to 85°C

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{CC}	Power Supply Voltage	$V_{CC} = 2.5\text{V}$ $V_{CC} = 3.3\text{V}$	2.375 3.0	2.5 3.3	2.625 3.60	V
I_{CC}	Power Supply Current	No load, $V_{CC} = \text{max.}$		125	160	mA
V_{IH}	Input HIGH Voltage	IN, /IN, Note 6	$V_{CC} - 1.6$		V_{CC}	V
V_{IL}	Input LOW Voltage	IN, /IN	0		$V_{IH} - 0.1$	V
V_{IN}	Input Voltage Swing	IN, /IN; see Figure 1a.	0.1		1.7	V
V_{DIFF_IN}	Differential Input Voltage Swing	IN, /IN; see Figure 1b.	0.2		3.4	V
R_{IN}	IN-to- V_T Resistance		40	50	60	Ω
$V_{T\text{ IN}}$	IN-to- V_T Voltage				1.28	V
V_{REF-AC}	Output Reference Voltage		$V_{CC} - 1.30$	$V_{CC} - 1.2$	$V_{CC} - 1.1$	V

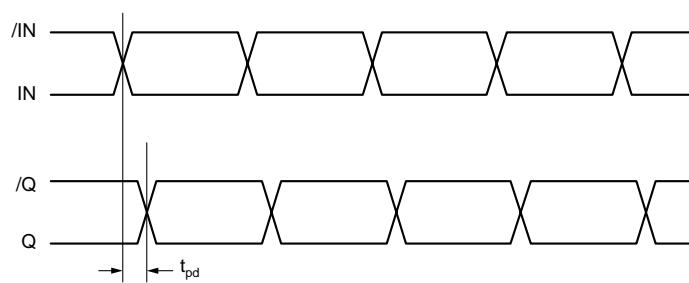
LVPECL OUTPUT DC ELECTRICAL CHARACTERISTICS⁽⁵⁾ $V_{CC} = 3.3\text{V} \pm 10\%$ or $2.5 \pm 5\%$; $R_L = 50\Omega$ to $V_{CC} - 2\text{V}$; $T_A = -40^\circ\text{C}$ to 85°C , unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{OH}	Output HIGH Voltage		$V_{CC} - 1.145$		$V_{CC} - 0.895$	V
V_{OL}	Output LOW Voltage		$V_{CC} - 1.945$		$V_{CC} - 1.695$	V
V_{OUT}	Output Voltage Differential Swing	see Figure 1a.	550	780	1050	mV
V_{DIFF_OUT}	Differential Output Voltage Swing	see Figure 1b.	1100	1560	2100	mV

Notes:

1. Permanent device damage may occur if ratings in the "Absolute Maximum Ratings" section are exceeded. This is a stress rating only and functional operation is not implied for conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Thermal performance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB.
4. Due to the limited drive capability, use for input of the same package only.
5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
6. V_{IH} (min.) not lower than 1.2V.

AC ELECTRICAL CHARACTERISTICS


$V_{CC} = 2.5V \pm 5\%$ or $3.3V \pm 10\%$; $R_L = 50\Omega$ to $V_{CC}-2V$; $T_A = -40^\circ C$ to $+85^\circ C$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
f_{MAX}	Maximum Operating Frequency	$V_{OUT} \geq 400mV$	4			GHz
		Clock NRZ Data		5		Gbps
t_{pd}	Propagation Delay		150	220	300	ps
t_{CHAN}	Channel-to-Channel Skew	Note 7		4	15	ps
t_{SKEW}	Part-to-Part Skew	Note 8			50	ps
t_{JITTER}	Clock Cycle-to-Cycle Jitter	Note 9			1	ps_{RMS}
	Total Jitter	Note 10			10	ps_{PP}
	Data Random Jitter	Note 11	2.5Gbps – 3.2Gbps		1	ps_{RMS}
	Deterministic Jitter	Note 12	2.5Gbps – 3.2Gbps		10	ps_{PP}
t_r, t_f	Output Rise/Fall Time	20% to 80% At full swing.	35	75	110	ps

Notes:

7. Skew is measured between outputs of the same bank under identical transitions.
8. Skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs.
9. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, $T_n - T_{n-1}$ where T is the time between rising edges of the output signal.
10. Total jitter definition: with an ideal clock input of frequency $\leq f_{MAX}$, no more than one output edge in 10^{12} output edges will deviate by more than the specified peak-to-peak jitter value.
11. Random jitter is measured with a K28.7 comma detect character pattern, measured at 2.5Gbps/3.2Gbps.
12. Deterministic jitter is measured at 2.5Gbps/3.2Gbps with both K28.5 and $2^{23}-1$ PRBS pattern

TIMING DIAGRAM

SINGLE-ENDED AND DIFFERENTIAL SWINGS

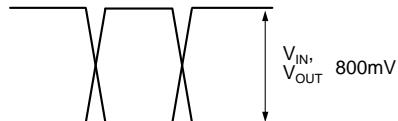


Figure 1a. Single-Ended Voltage Swing

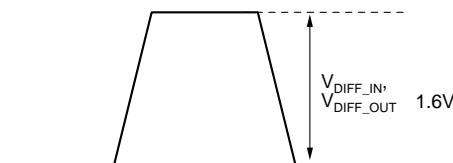
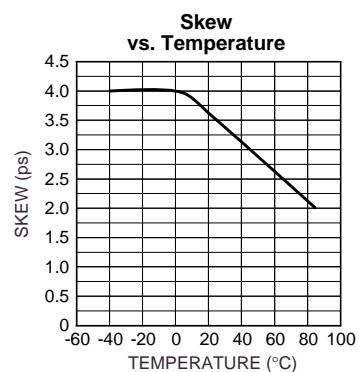
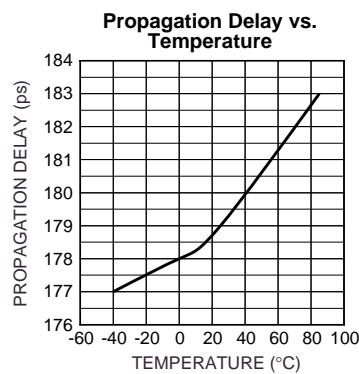
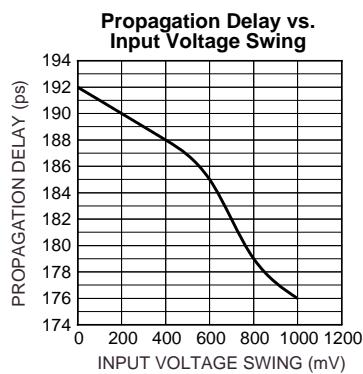
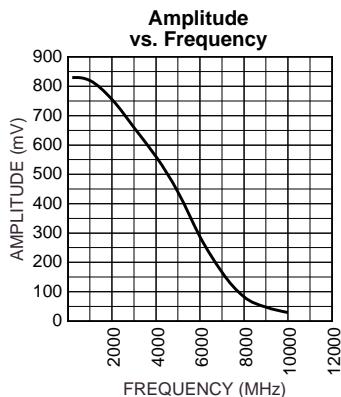
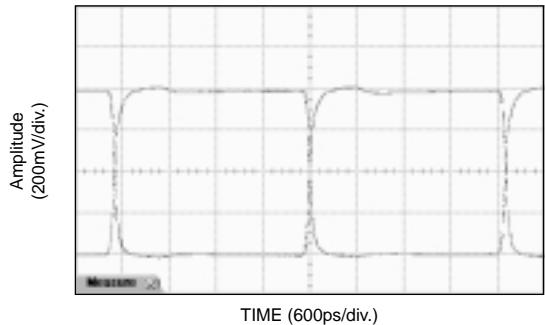
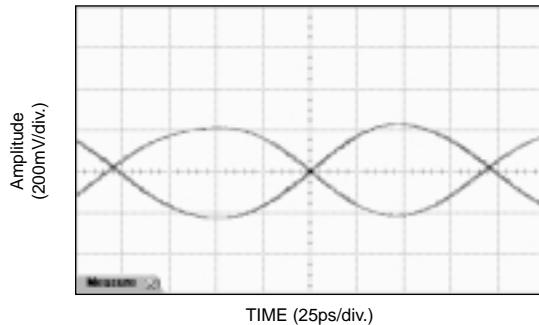






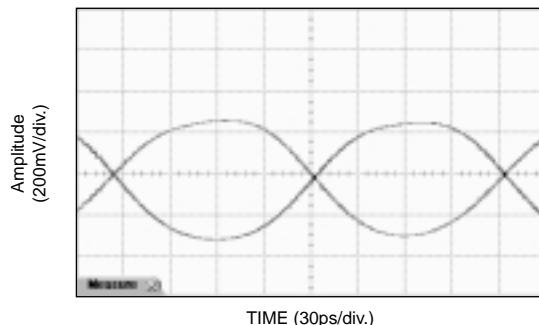
Figure 1b. Differential Voltage Swing

TYPICAL OPERATING CHARACTERISTICS


$V_{CC} = 2.5V$, $GND = 0$, $V_{IN} = 100mV$, $T_A = 25^\circ C$, unless otherwise stated.

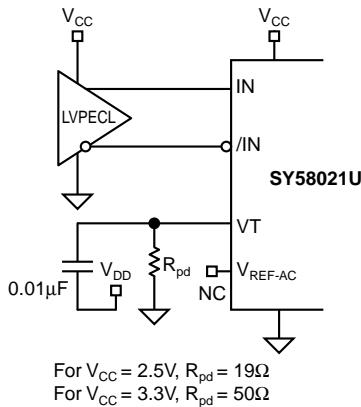

FUNCTIONAL CHARACTERISTICS

$V_{CC} = 2.5V$, $GND = 0$, $V_{IN} = 100mV$, $T_A = 25^\circ C$, unless otherwise stated.


200MHz Output

5GHz Output

4GHz Output



INPUT STAGE

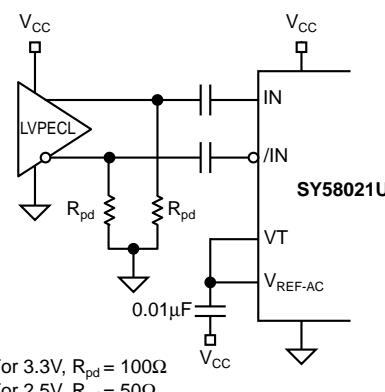
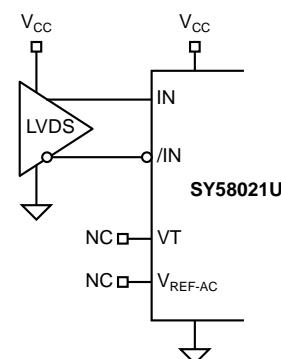
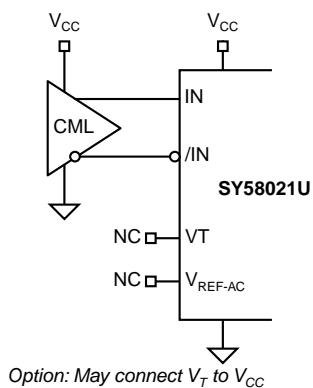
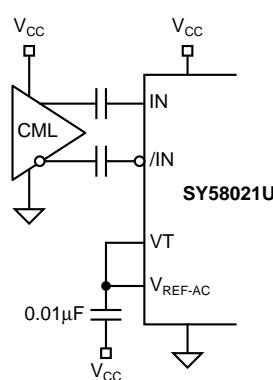


Figure 2. Simplified Differential Input Buffer


INPUT INTERFACE APPLICATIONS


Figure 3a. LVPECL Input Interface


Figure 3b. AC-Coupled LVPECL Input Interface

**Figure 3c. LVDS
Input Interface**

Figure 3d. DC-Coupled CML Input Interface

Figure 3e. AC-Coupled CML Input Interface

LVPECL OUTPUT

LVPECL output have very low output impedance (open emitter), and small signal swing which results in low EMI. LVPECL is ideal for driving 50Ω and 100Ω controlled

impedance transmission lines. There are several techniques in terminating the LVPECL output, as shown in Figures 4 through 6.

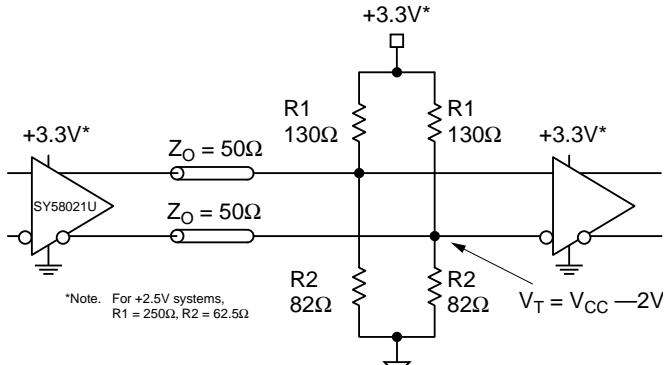


Figure 4. Parallel Termination-Thevenin Equivalent

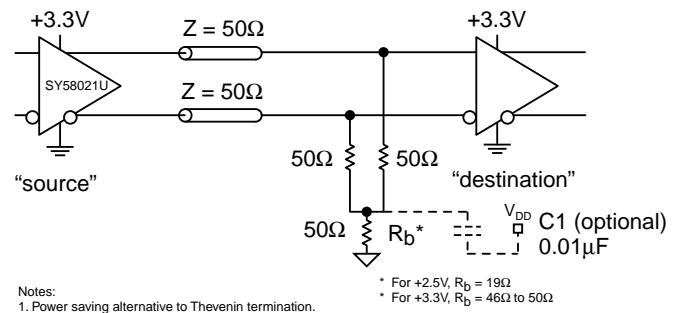


Figure 5. Parallel Termination (3-Resistor)

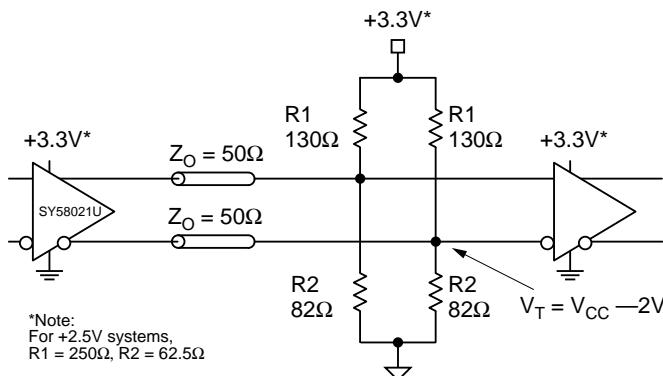
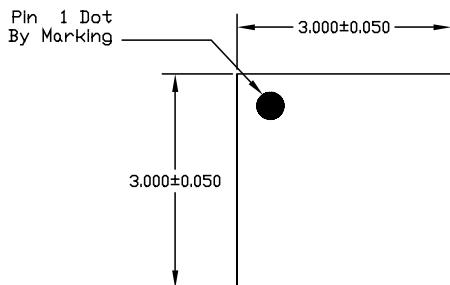
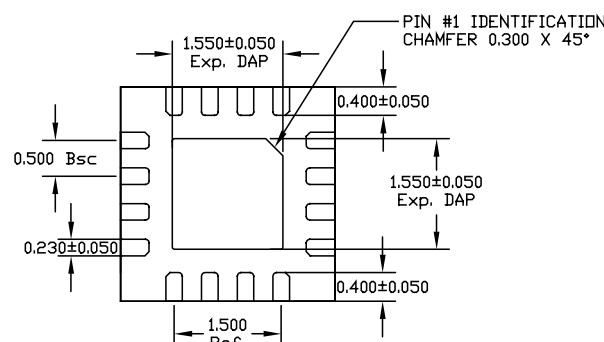
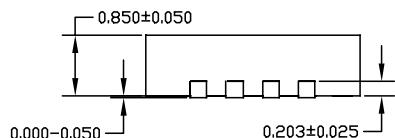



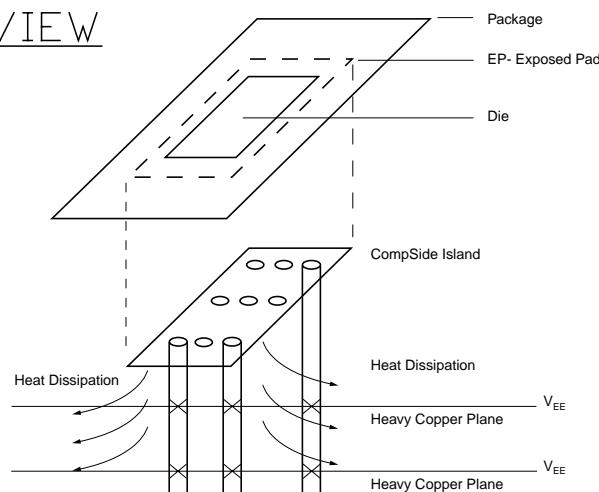
Figure 6. Terminating Unused I/O


RELATED MICREL PRODUCTS AND SUPPORT DOCUMENTATION

Part Number	Function	Data Sheet Link
SY58020U	6GHz, 1:4 CML Fanout Buffer/Translator Internal I/O Terminations	http://www.micrel.com/product-info/products/sy58020u.shtml
SY58021U	4GHz, 1:4 LVPECL Fanout Buffer/Translator with Internal Termination	http://www.micrel.com/product-info/products/sy58021u.shtml
SY58022U	5.5GHz, 1:4 Fanout Buffer/Translator w/400mV LVPECL Outputs and Internal Terminations	http://www.micrel.com/product-info/products/sy58022u.shtml
	16-MLF™ Manufacturing Guidelines Exposed Pad Application Note	www.amkor.com/products/notes_papers/MLF_AppNote_0902.pdf
M-0317	HBW Solutions	http://www.micrel.com/product-info/as/solutions.shtml


16 LEAD MicroLeadFrame™ (MLF-16)

TOP VIEW


BOTTOM VIEW

SIDE VIEW

NOTE:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. MAX. PACKAGE WARPAGE IS 0.05 mm.
3. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS.
4. PIN #1 ID ON TOP WILL BE LASER/INK MARKED.

PCB Thermal Consideration for 16-Pin MLF™ Package
(Always solder, or equivalent, the exposed pad to the PCB)

Package Notes:

1. Package meets Level 2 qualification.
2. All parts are dry-packaged before shipment.
3. Exposed pads must be soldered to a ground for proper thermal management.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB <http://www.micrel.com>

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.