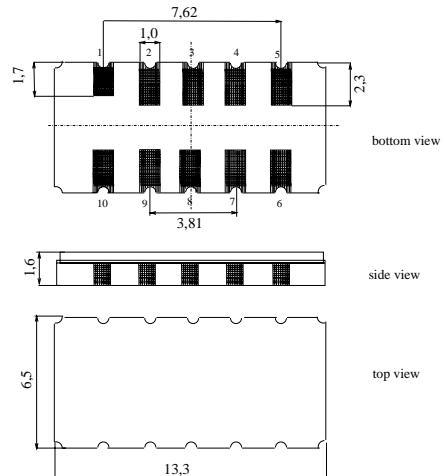


SAW Components

Data Sheet B3866

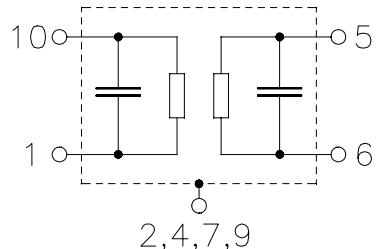
Data Sheet



SAW Components
B3866
Low-Loss Filter
201,0 MHz
Data Sheet
Ceramic package DCC12A
Features

- Low-loss IF filter for GSM / EDGE base station
- Channel selection in PCS, DCS systems
- Temperature stable
- Balanced and unbalanced operation possible
- Ceramic SMD package

Terminals


- Gold plated

Dimensions in mm, approx. weight 0,4 g

Pin configuration

1, 10	Balanced input
5, 6	Balanced output
3, 8	Ground
2, 4, 7, 9	Case ground

Type	Ordering code	Marking and Package according to	Packing according to
B3866	B39201-B3866-H510	C61157-A7-A94	F61074-V8163-Z000

Electrostatic Sensitive Device (ESD)
Maximum ratings

Operable temperature range	T_A	-30 / +85	°C	
Storage temperature range	T_{stg}	-30 / +85	°C	
DC voltage	V_{DC}	5	V	between terminals 1 and 10
		0	V	else
Source power	P_s	10	dBm	

SAW Components**B3866****Low-Loss Filter****201,0 MHz****Data Sheet****Characteristics**

Operating temperature range:

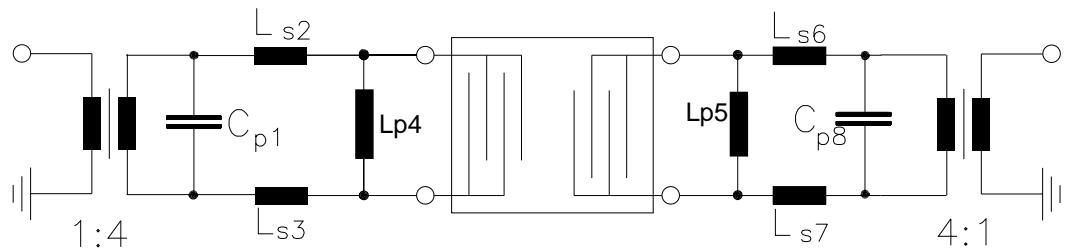
 $T_A = 0 - 70^\circ\text{C}$

Terminating source impedance:

 $Z_S = 80 \Omega \parallel 30 \text{ nH}$

Terminating load impedance:

 $Z_L = 90 \Omega \parallel 35 \text{ nH}$


		min.	typ.	max.	
Nominal frequency	f_N	—	201,0	—	MHz
Minimum insertion attenuation (including matching network)	α_{\min}	—	4,0	6,0	dB
Passband width $\alpha_{\text{rel}} \leq 3 \text{ dB}$	$B_{3,0\text{dB}}$	—	300	—	kHz
Amplitude ripple in passband $f_N \pm 80 \text{ kHz}$	$\Delta\alpha_{\text{rel}}$	—	$\pm 0,2$	$\pm 1,0$	dB
Absolute group delay (at f_N)	τ	—	2,2	—	μs
Group delay ripple (p-p) $f_N \pm 80 \text{ kHz}$	$\Delta\tau$	—	0,7	1,5	μs
Relative attenuation (relative to α_{\min})	α_{rel}				
$f_N \pm 200 \text{ kHz} \dots f_N \pm 300 \text{ kHz}$		3	8	—	dB
$f_N \pm 300 \text{ kHz} \dots f_N \pm 400 \text{ kHz}$		13	20	—	dB
$f_N \pm 400 \text{ kHz} \dots f_N \pm 700 \text{ kHz}$		20	30	—	dB
$f_N \pm 700 \text{ kHz} \dots f_N \pm 1600 \text{ kHz}$		27	40	—	dB
$f_N \pm 1600 \text{ kHz} \dots f_N \pm 3000 \text{ kHz}$		30	45	—	dB
$f_N \pm 3000 \text{ kHz} \dots f_N \pm 6000 \text{ kHz}$		33	55	—	dB
$f_N \pm 6000 \text{ kHz} \dots f_N \pm 35000 \text{ kHz}$		40	55	—	dB
IM3 level (Input level -17 dBm)					
$f_N \pm 800 \text{ kHz}$		—	—	-110	dBm
$f_N \pm 1600 \text{ kHz}$		—	—	-110	dBm
Temperature coefficient of frequency¹⁾	TC_f	—	-0,036	—	ppm/K ²
Turnover temperature	T_0	—	35	—	$^\circ\text{C}$

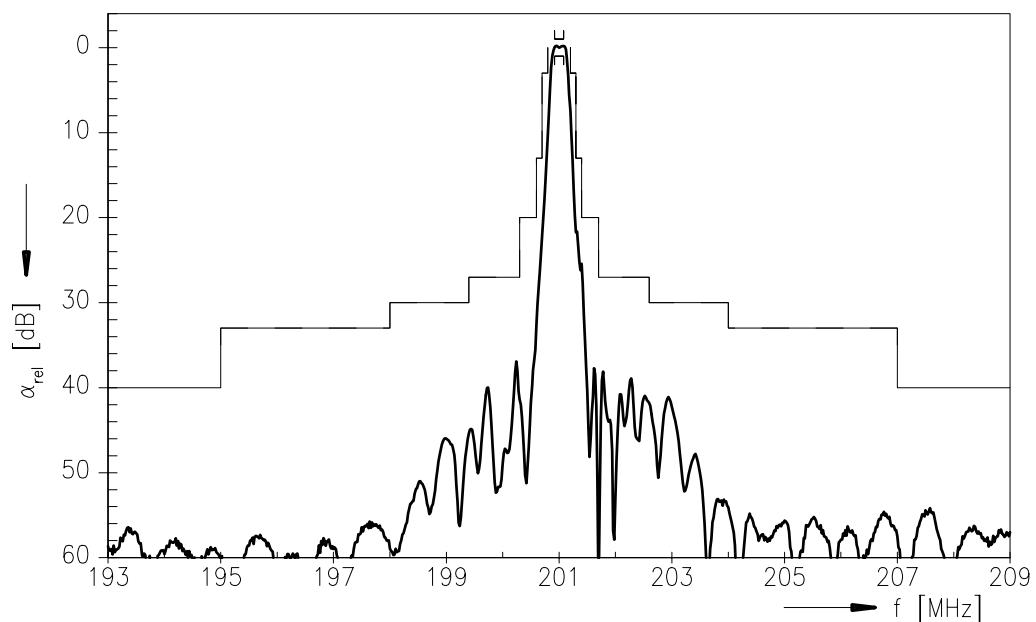
1) Temperature dependance of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$

Matching network to 200 Ω

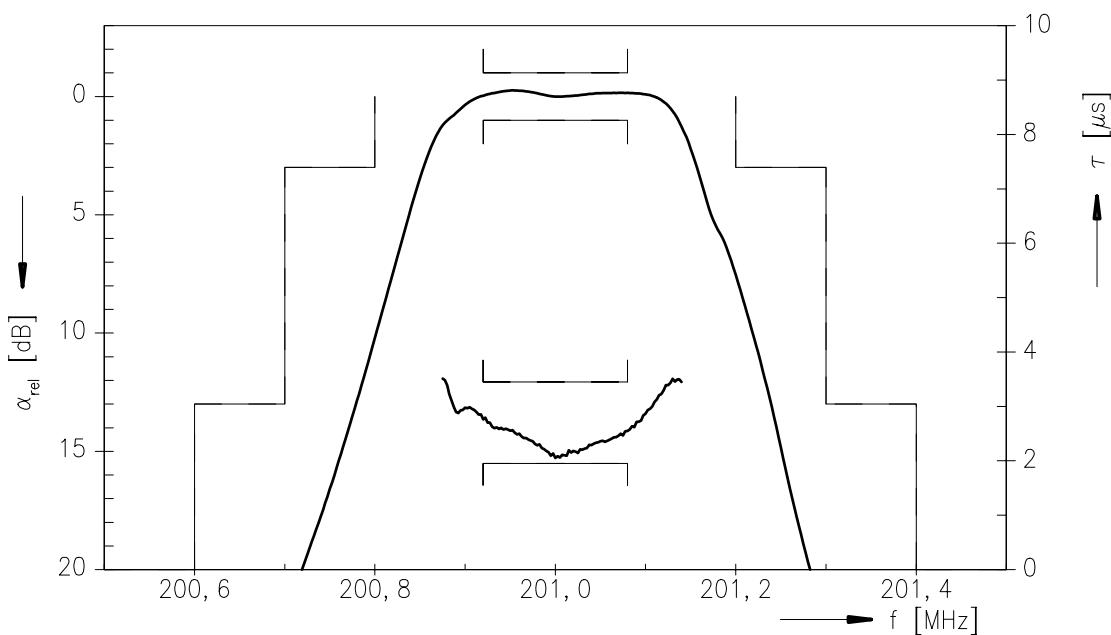
4:1 transformers are only required for measurement in a 50 Ω environment
 (element values depend on PCB layout)

$$\begin{array}{ll}
 C_{p1} = 6,8 \text{ pF} & L_{p5} = 33 \text{ nH} \\
 L_{s2} = 27 \text{ nH} & L_{s6} = 27 \text{ nH} \\
 L_{s3} = 27 \text{ nH} & L_{s7} = 27 \text{ nH} \\
 L_{p4} = 33 \text{ nH} & C_{p8} = 5,6 \text{ pF}
 \end{array}$$

SAW Components


B3866

Low-Loss Filter


201,0 MHz

Data Sheet

Transfer function

Transfer function (pass band)

SAW Components

B3866

Low-Loss Filter

201,0 MHz

Data Sheet

Published by EPCOS AG

Surface Acoustic Wave Components Division, SAW MC IS

P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2002. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.