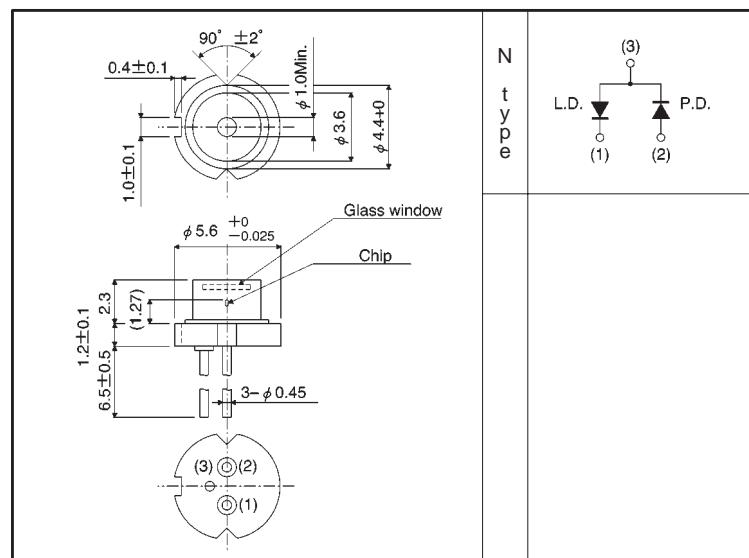


AlGaAs laser diodes

RLD-78NP10-B

The RLD-78NP10-B is one of the world's first mass-produced laser diodes that is manufactured by molecular beam epitaxy. The characteristics of this laser diode are suitable for high-speed laser beam printers.

● Applications


Laser beam printers

High-speed laser beam printers

● Features

- 1) One-third dispersion compared with conventional laser diodes.
- 2) High-precision, compact package.
- 3) Low droop.
- 4) Can be driven by single power supply (N type).

● External dimensions (Units: mm)

- Absolute maximum ratings ($T_c = 25^\circ\text{C}$)

Parameter		Symbol	Limits	Unit
Output		P _o	10	mW
Reverse voltage	Laser	V _R	2	V
	PIN photodiode	V _R (PIN)	30	V
Operating temperature		T _{opr}	−10~+60	°C
Storage temperature		T _{stg}	−40~+85	°C

● Electrical and optical characteristics ($T_c = 25^\circ\text{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Threshold current	I_{th}	15	25	45	mA	—
Operating current	I_{op}	25	45	65	mA	$P_o=6\text{mW}$
Operating voltage	V_{op}	—	1.9	2.3	V	$P_o=6\text{mW}$
Differential efficiency	η	0.2	0.4	0.6	mW/mA	$\frac{4\text{mW}}{I(6\text{mW})-I(2\text{mW})}$
Monitor current	I_m	0.2	0.4	1.0	mA	$P_o=6\text{mW}$
Parallel divergence angle	$\theta_{//}^*$	8	11	15	deg	$P_o=6\text{mW}$
Perpendicular divergence angle	θ_{\perp}^*	25	30	38	deg	
Parallel deviation angle	$\Delta\theta_{//}$	—	—	± 2	deg	
Perpendicular deviation angle	$\Delta\theta_{\perp}$	—	—	± 3	deg	
Emission point accuracy	$\frac{\Delta X}{\Delta Y}$ $\frac{\Delta Y}{\Delta Z}$	—	—	± 80	μm	—
Peak emission wavelength	λ	770	785	795	nm	$P_o=6\text{mW}$
Droop	ΔP	—	5	10	%	$P_o=6\text{mW}$

* $\theta_{//}$ and θ_{\perp} are defined as the angle within which the intensity is 50% of the peak value.

● Electrical and optical characteristic curves

Fig. 1 Optical output vs. operating current

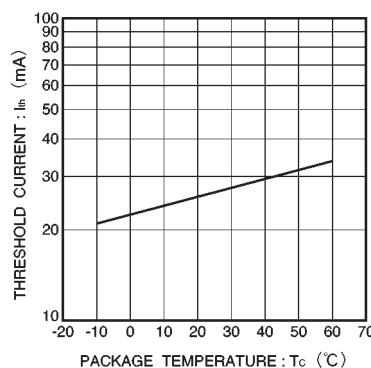


Fig. 2 Dependence of threshold current on temperature

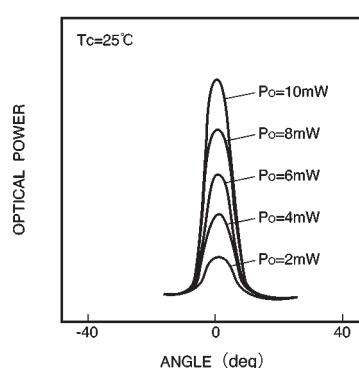
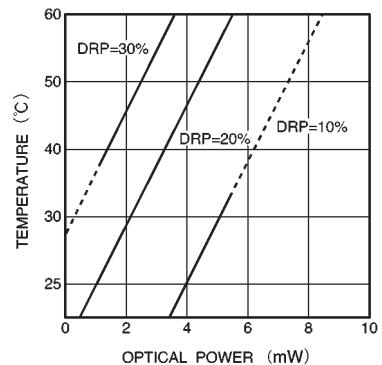
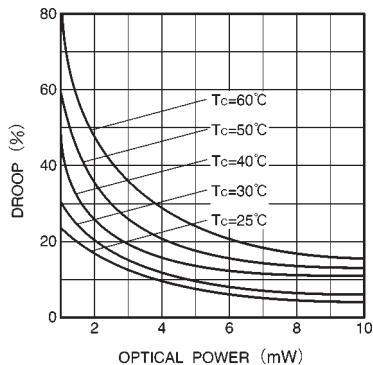
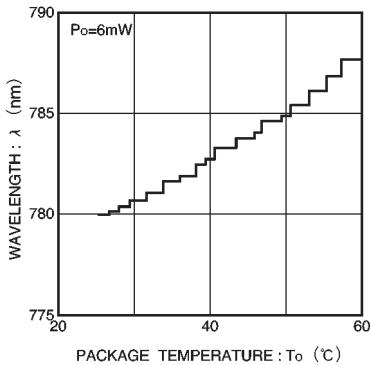
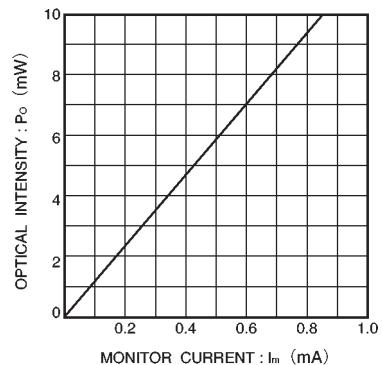
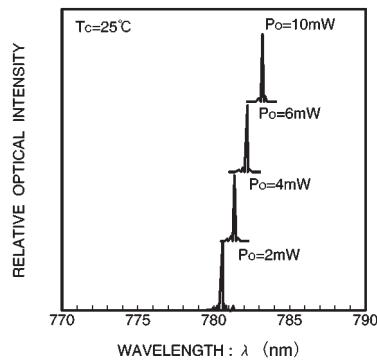
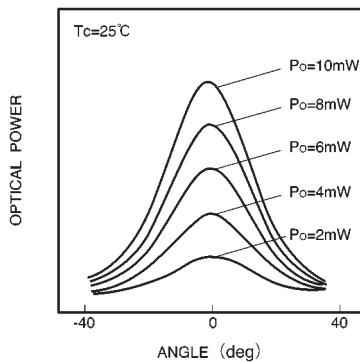








Fig. 3 Parallel far field pattern

