

74VHC161284 IEEE 161284 Transceiver

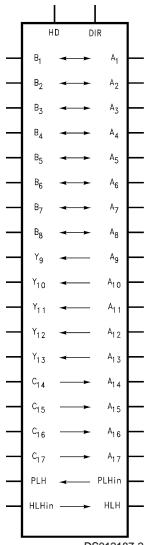
General Description

The VHC161284 contains eight bidirectional data buffers and eleven control/status buffers to implement a full IEEE P1284 compliant interface. The device supports the IEEE 1284 standard and is intended to be used in Extended Capabilities Port mode (ECP). The pinout allows for easy connection from the Peripheral (A-side) to the Host (cable side).

Outputs on the cable side can be configured to be either open drain or high drive (± 14 mA). The pull-up and pull-down series termination resistance of these outputs on the cable side is optimized to drive an external cable. In addition, all inputs (except HLH) and outputs on the cable side contain internal pull-up resistors connected to the V_{CC} supply to provide proper termination and pull-ups for open drain mode.

Outputs on the Peripheral side are standard low-drive CMOS outputs. The DIR input controls data flow on the A_1-A_8/B_1-B_8 transceiver pins.

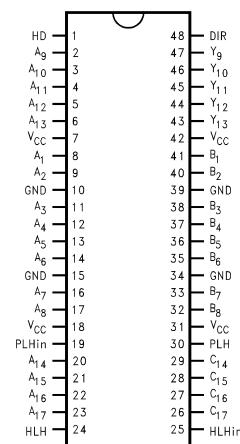
Features


- Supports IEEE P1284 Level 1 and Level 2 signaling standards for bidirectional parallel communications between personal computers and printing peripherals
- Replaces the function of two (2) 74ACT1284 devices
- All inputs have hysteresis to provide noise margin
- B and Y output resistance optimized to drive external cable
- B and Y outputs in high impedance mode during power down
- Inputs and outputs on cable side have internal pull-up resistors
- Flow-through pin configuration allows easy interface between the Peripheral and Host

Ordering Code:

Ordering Number	Package Number	Package Description
74VHC161284MEA	MS48A	48-Lead Molded JEDEC, SSOP
74VHC161284MTD	MTD48	48-Lead Molded JEDEC, TSSOP

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Logic Symbol

DS012187-2

Connection Diagram

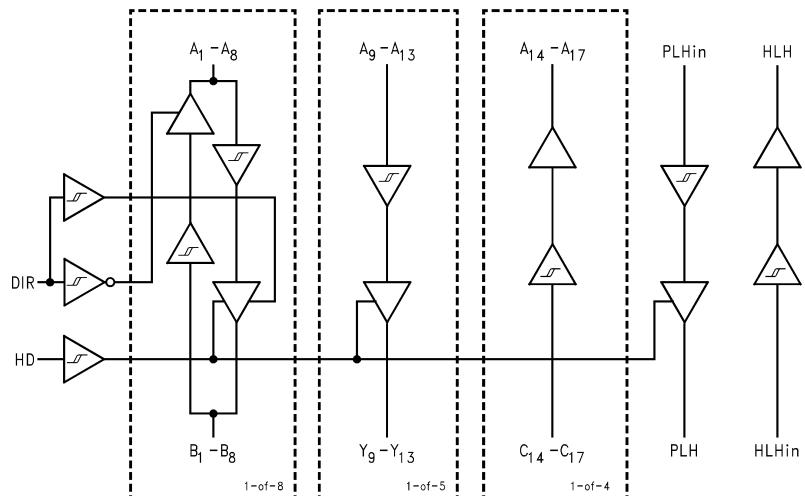
Pin Assignment for SSOP/TSSOP

DS012187-1

Connection Diagram (Continued)

Pin Descriptions

Pin Names	Description
HD	High Drive Enable Input (Active High)
DIR	Direction Control Input
A_1-A_8	Inputs or Outputs
B_1-B_8	Inputs or Outputs
A_9-A_{13}	Inputs
Y_9-Y_{13}	Outputs
$A_{14}-A_{17}$	Outputs
$C_{14}-C_{17}$	Inputs
PLH_{IN}	Peripheral Logic High Input
PLH	Peripheral Logic High Output
HLH_{IN}	Host Logic High Input
HLH	Host Logic High Output


Truth Table

Inputs		Outputs
DIR	HD	
L	L	B_1-B_8 Data to A_1-A_8 , and A_9-A_{13} Data to Y_9-Y_{13} * $C_{14}-C_{17}$ Data to $A_{14}-A_{17}$ PLH Open Drain Mode
L	H	B_1-B_8 Data to A_1-A_8 , and A_9-A_{13} Data to Y_9-Y_{13} $C_{14}-C_{17}$ Data to $A_{14}-A_{17}$
H	L	A_1-A_8 Data to B_1-B_8 ** A_9-A_{13} Data to Y_9-Y_{13} * $C_{14}-C_{17}$ Data to $A_{14}-A_{17}$ PLH Open Drain Mode
H	H	A_1-A_8 Data to B_1-B_8 A_9-A_{13} Data to Y_9-Y_{13} $C_{14}-C_{17}$ Data to $A_{14}-A_{17}$

* Y_9-Y_{13} Open Drain Outputs

** B_1-B_8 Open Drain Outputs

Logic Diagram

DS012187-3

Absolute Maximum Ratings (Note 1)

Supply Voltage		Output Diode Current (I_{OK})	
V_{CC}	-0.5V to + 7.0V	$A_1-A_8, A_{14}-A_{17}, HLH$	± 50 mA
Input Voltage (V_I)—(Note 2)		B_1-B_8, Y_9-Y_{13}, PLH	-50 mA
$A_1-A_{13}, PLH_{IN}, DIR, HD$	-0.5V to V_{CC} + 0.5V	DC Continuous V_{CC} or Ground Current	± 200 mA
$B_1-B_8, C_{14}-C_{17}, HLH_{IN}$	-0.5V to + 5.5V (DC)	Storage Temperature	-65°C to +150°C
$B_1-B_8, C_{14}-C_{17}, HLH_{IN}$	-2.0V to + 7.0V *	ESD (HBM) Last Passing Voltage	2000V
	*40 ns Transient		
Output Voltage (V_O)			
$A_1-A_8, A_{14}-A_{17}, HLH$	-0.5V to V_{CC} + 0.5V		
B_1-B_8, Y_9-Y_{13}, PLH	-0.5V to + 5.5V (DC)		
B_1-B_8, Y_9-Y_{13}, PLH	-2.0V to + 7.0V*		
	*40 ns Transient		
DC Output Current (I_O)			
A_1-A_8, HLH	± 25 mA	Supply Voltage	
B_1-B_8, Y_9-Y_{13}	± 50 mA	V_{CC}	4.5V to 5.5V
PLH (Output LOW)	84 mA	DC Input Voltage (V_I)	0V to V_{CC}
PLH (Output HIGH)	-50 mA	Open Drain Voltage (V_O)	0V to 5.5V
Input Diode Current (I_{IK})— (Note 2)		Operating Temperature (T_A)	-40°C to +85°C
DIR, HD, A_9-A_{13} ,			
PLH, HLH, $C_{14}-C_{17}$	-20 mA		

Recommended Operating Conditions

Supply Voltage	
V_{CC}	4.5V to 5.5V
DC Input Voltage (V_I)	0V to V_{CC}
Open Drain Voltage (V_O)	0V to 5.5V
Operating Temperature (T_A)	-40°C to +85°C

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Fairchild does not recommend operation outside the databook specifications.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$T_A = -40^\circ\text{C to } +85^\circ\text{C}$		Units	Conditions
			Guaranteed Limits			
V_{IK}	Input Clamp Diode Voltage	3.0	-1.2		V	$I_I = -18$ mA
V_{IH}	Minimum High Level Input Voltage	A_n, PLH_{IN}, DIR, HD	4.5–5.5	0.7 V_{CC}	V	
		B_n	4.5–5.5	2.0		
		C_n	4.5–5.5	2.3		
		HLH_{IN}	4.5–5.5	2.6		
V_{IL}	Maximum High Level Input Voltage	A_n, PLH_{IN}, DIR, HD	4.5–5.5	0.3 V_{CC}	V	
		B_n	4.5–5.5	0.8		
		C_n	4.5–5.5	0.8		
		HLH_{IN}	4.5–5.5	1.6		
ΔVT	Minimum Input Hysteresis	$A_n, PLH_{IN}, HLH_{IN}, DIR, HD$	4.5–5.5	0.4	V	$V_T^+ - V_T^-$
		B_n	4.5–5.5	0.4		$V_T^+ - V_T^-$
		C_n	4.5–5.5	0.8		$V_T^+ - V_T^-$
V_{OH}	Minimum High Level Output Voltage	A_n, HLH	4.5	4.4	V	$I_{OH} = -50$ μA
			4.5	3.8		$I_{OH} = -8$ mA
		B_n, Y_n	4.5	3.73		$I_{OH} = -14$ mA
		PLH	4.5	4.45		$I_{OH} = -500$ μA
V_{OL}	Maximum Low Level Output Voltage	A_n, HLH	4.5	0.1	V	$I_{OL} = 50$ μA
			4.5	0.44		$I_{OH} = 8$ mA
		B_n, Y_n	4.5	0.77		$I_{OH} = 14$ mA
		PLH	4.5	0.7		$I_{OL} = 84$ mA
RD	Maximum Output Impedance	B_1-B_8, Y_9-Y_{13}	5.0	55	Ω	(Notes 3, 4, 6)
	Minimum Output Impedance	B_1-B_8, Y_9-Y_{13}	5.0	35	Ω	(Notes 3, 4, 6)
RP	Maximum Pull-Up Resistance	$B_1-B_8, Y_9-Y_{13}, C_{14}-C_{17}$	5.0	1650	Ω	(Note 4)
	Minimum Pull-Up Resistance	$B_1-B_8, Y_9-Y_{13}, C_{14}-C_{17}$	5.0	1150	Ω	(Note 4)

DC Electrical Characteristics (Continued)

Symbol	Parameter	V _{CC} (V)	T _A = -40°C to +85°C	Units	Conditions
			Guaranteed Limits		
I _{IH}	Maximum Input Current in High State	A ₉ —A ₁₃ , PLH _{IN} , HD, DIR, HLH _{IN}	5.5	1.0	V _I = 5.5V V _I = 5.5V
		C ₁₄ —C ₁₇	5.5	100	
I _{IL}	Maximum Input Current in Low State	A ₉ —A ₁₃ , PLH _{IN} , HD, DIR, HLH _{IN}	5.5	-1.0	V _I = 0.0V V _I = 0.0V
		C ₁₄ —C ₁₇	5.5	-5.0	
I _{OZH}	Maximum Output Disable Current (High)	A ₁ —A ₈	5.5	20	V _O = 5.5V V _O = 5.5V
		B ₁ —B ₈	5.5	100	
I _{OZL}	Maximum Output Disable Current (Low)	A ₁ —A ₈	5.5	-20	V _O = 0.0V
		B ₁ —B ₈	5.5	-5.0	
I _{OFF}	Power Down Output Leakage	B ₁ —B ₈ , Y ₉ —Y ₁₃ , PLH	0.0	100	μA
I _{OFF}	Power Down Input Leakage	C ₁₄ —C ₁₇ , HLH _{IN}	0.0	100	μA
I _{OFF} — I _{CC}	Power Down Leakage to V _{CC}		0.0	250	μA
I _{CC}	Maximum Supply Current		5.5	70	mA
					V _I = V _{CC} or GND

Note 3: Output impedance is measured with the output active low and active high (HD = high).

Note 4: Resistance is calculated using the following formula:

$$\text{Resistance} = \frac{1\text{V}}{(\text{Current at } 2\text{V on pin}) - (\text{Current at } 1\text{V on pin})}$$

DS012187-20

Note 5: Power-down leakage to V_{CC} is tested by simultaneously forcing all pins on the cable-side (B₁—B₈, Y₉—Y₁₃, PLH, C₁₄—C₁₇ and HLH_{IN}) to 5.5V and measuring the resulting I_{CC}.

Note 6: This parameter is guaranteed but not tested, characterized only.

AC Electrical Characteristics

Symbol	Parameter	$T_A = -40^\circ\text{C to } +85^\circ\text{C}$ $V_{CC} = 4.5\text{V}\text{--}5.5\text{V}$		Units	Fig. No.
		Min	Max		
t_{PHL}	$A_1\text{--}A_8$ to $B_1\text{--}B_8$	2.0	30.0	ns	<i>Figure 1</i>
t_{PLH}	$A_1\text{--}A_8$ to $B_1\text{--}B_8$	2.0	30.0	ns	<i>Figure 2</i>
t_{PHL}	$B_1\text{--}B_8$ to $A_1\text{--}A_8$	2.0	30.0	ns	<i>Figure 3</i>
t_{PLH}	$B_1\text{--}B_8$ to $A_1\text{--}A_8$	2.0	30.0	ns	<i>Figure 3</i>
t_{PHL}	$A_9\text{--}A_{13}$ to $Y_9\text{--}Y_{13}$	2.0	30.0	ns	<i>Figure 1</i>
t_{PLH}	$A_9\text{--}A_{13}$ to $Y_9\text{--}Y_{13}$	2.0	30.0	ns	<i>Figure 2</i>
t_{PHL}	$C_{14}\text{--}C_{17}$ to $A_{14}\text{--}A_{17}$	2.0	30.0	ns	<i>Figure 3</i>
t_{PLH}	$C_{14}\text{--}C_{17}$ to $A_{14}\text{--}A_{17}$	2.0	30.0	ns	<i>Figure 3</i>
t_{SKEW}	LH-LH or HL-HL		6.0	ns	(Note 8)
t_{PHL}	PLH_{IN} to PLH	2.0	30.0	ns	<i>Figure 1</i>
t_{PLH}	PLH_{IN} to PLH	2.0	30.0	ns	<i>Figure 2</i>
t_{PHL}	HLH_{IN} to HLH	2.0	30.0	ns	<i>Figure 3</i>
t_{PLH}	HLH_{IN} to HLH	2.0	30.0	ns	<i>Figure 3</i>
t_{PHZ}	Output Disable Time DIR to $A_1\text{--}A_8$	2.0	18.0	ns	<i>Figure 7</i>
t_{PLZ}	DIR to $A_1\text{--}A_8$	2.0	18.0		
t_{PZH}	Output Enable Time DIR to $A_1\text{--}A_8$	2.0	25.0	ns	<i>Figure 8</i>
t_{PZL}	DIR to $A_1\text{--}A_8$	2.0	25.0		
t_{PHZ}	Output Disable Time DIR to $B_1\text{--}B_8$	2.0	25.0	ns	<i>Figure 9</i>
t_{PLZ}	DIR to $B_1\text{--}B_8$	2.0	25.0		
t_{pEN}	Output Enable Time HD to $B_1\text{--}B_8$, $Y_9\text{--}Y_{13}$	2.0	28.0	ns	<i>Figure 2</i>
t_{pDis}	Output Disable Time HD to $B_1\text{--}B_8$, $Y_9\text{--}Y_{13}$	2.0	28.0	ns	<i>Figure 2</i>
$t_{pEn}\text{--}t_{pDis}$	Output Enable-Output Disable		20.0	ns	
t_{SLEW}	Output Slew Rate $B_1\text{--}B_8$, $Y_9\text{--}Y_{13}$	0.05 0.05	0.40 0.40	V/ns	<i>Figure 5</i> <i>Figure 4</i>
t_r , t_f	t_{RISE} and t_{FALL} $B_1\text{--}B_8$, $Y_9\text{--}Y_{13}$ (Note 7)		120 120	ns	<i>Figure 6</i> (Note 9)

Note 7: Open Drain

Note 8: t_{SKEW} is measured for common edge output transitions and compares the measured propagation delay for a given path type.

- (i) $A_1\text{--}A_8$ to $B_1\text{--}B_8$, $A_9\text{--}Y_{13}$ to $Y_9\text{--}Y_{13}$
- (ii) $B_1\text{--}B_8$ to $A_1\text{--}A_8$
- (iii) $C_{14}\text{--}C_{17}$ to $A_{14}\text{--}A_{17}$

Note 9: This parameter is guaranteed but not tested, characterized only.

Note 10: Pulse Generator for all pulses: Rate ≤ 1.0 MHz; $Z_O \leq 50\Omega$; $t_f \leq 2.5$ ns, $t_r \leq 2.5$ ns.

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	5	pF	$V_{CC} = 0.0\text{V}$ (HD, DIR, $A_9\text{--}A_{13}$, $C_{14}\text{--}C_{17}$, PLH_{IN} and HLH_{IN})
$C_{I/O}$ (Note 11)	I/O Pin Capacitance	12	pF	$V_{CC} = 3.3\text{V}$

Note 11: $C_{I/O}$ is measured at frequency = 1 MHz per MIL-STD-883B, Method 3012

AC Loading and Waveforms

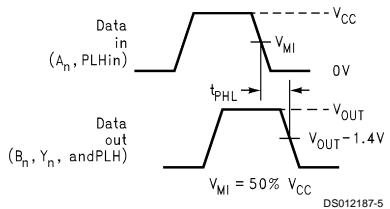
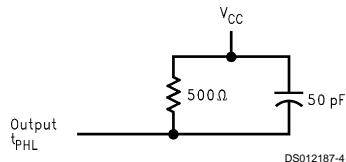



FIGURE 1. t_{PHL} Test Load and Waveforms

A_1-A_8 to B_1-B_8
 A_9-A_{13} to Y_9-Y_{13}
 PLH_{IN} to PLH

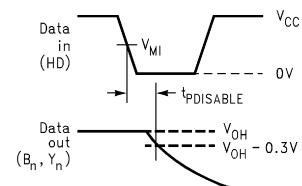
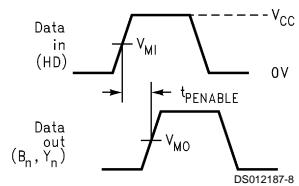
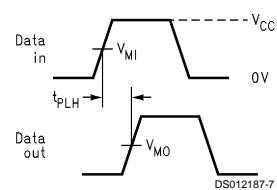
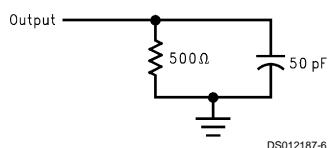





FIGURE 2. t_{PLH} , t_{PEN} , t_{PDIS} Test Load and Waveforms

A_1-A_8 to B_1-B_8 , A_9-A_{13} to Y_9-Y_{13}
 PLH_{IN} to PLH , HD to B_1-B_8 , Y_9-Y_{13} , PLH

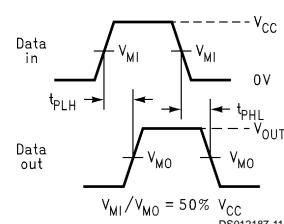
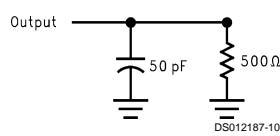
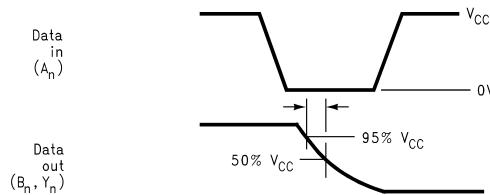
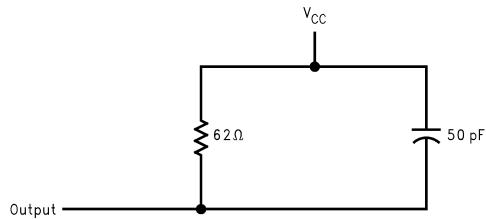
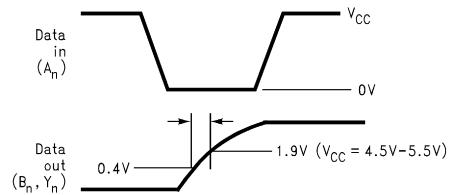
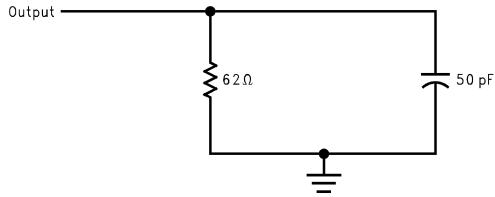
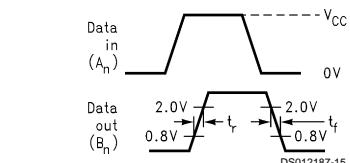
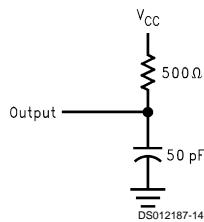





FIGURE 3. t_{PHL} , t_{PLH} Test Load and Waveforms



B_1-B_8 to A_1-A_8 , C_14-C_{17} to $A_{14}-A_{17}$, HLH_{IN} to HLH

AC Loading and Waveforms (Continued)



DS012187-12

**FIGURE 4. t_{SLEW} HL Test Load and Waveforms
 A_1-A_8 to B_1-B_8
 A_9-A_{13} to Y_9-Y_{13}**

DS012187-13

**FIGURE 5. t_{SLEW} LH Test Load and Waveforms
 A_1-A_8 to B_1-B_8
 A_9-A_{13} to Y_9-Y_{13}**

t_r = Output Rise Time, Open Drain
 t_f = Output Fall Time, Open Drain

DS012187-15

**FIGURE 6. t_{RISE} and t_{FALL} Test Load and Waveforms for Open Drain Outputs
 A_1-A_8 to B_1-B_8 , A_9-A_{13} to Y_9-Y_{13}**

AC Loading and Waveforms (Continued)

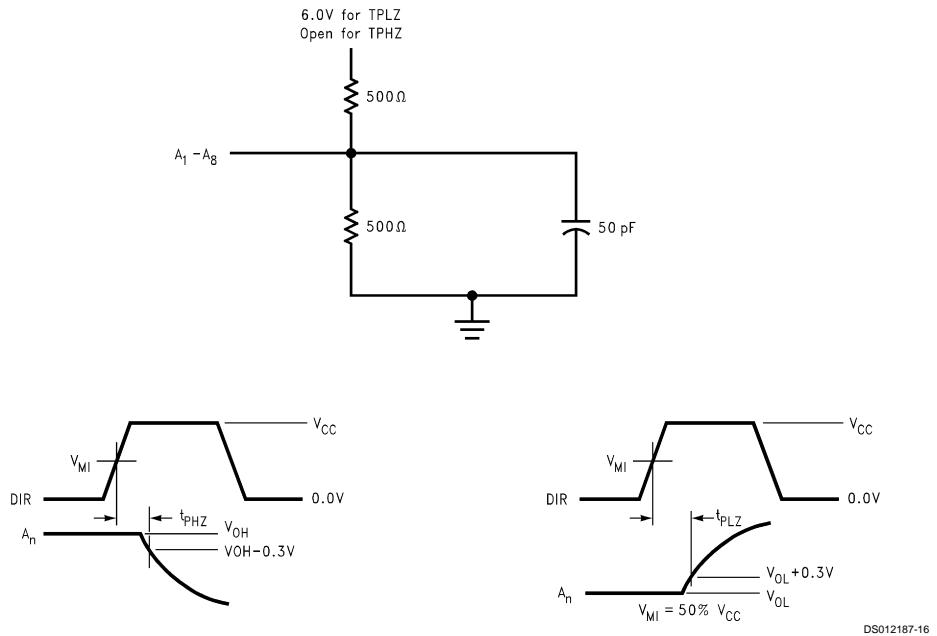


FIGURE 7. t_{PHZ} and t_{PZL} Test Load and Waveforms, DIR to A_1-A_8

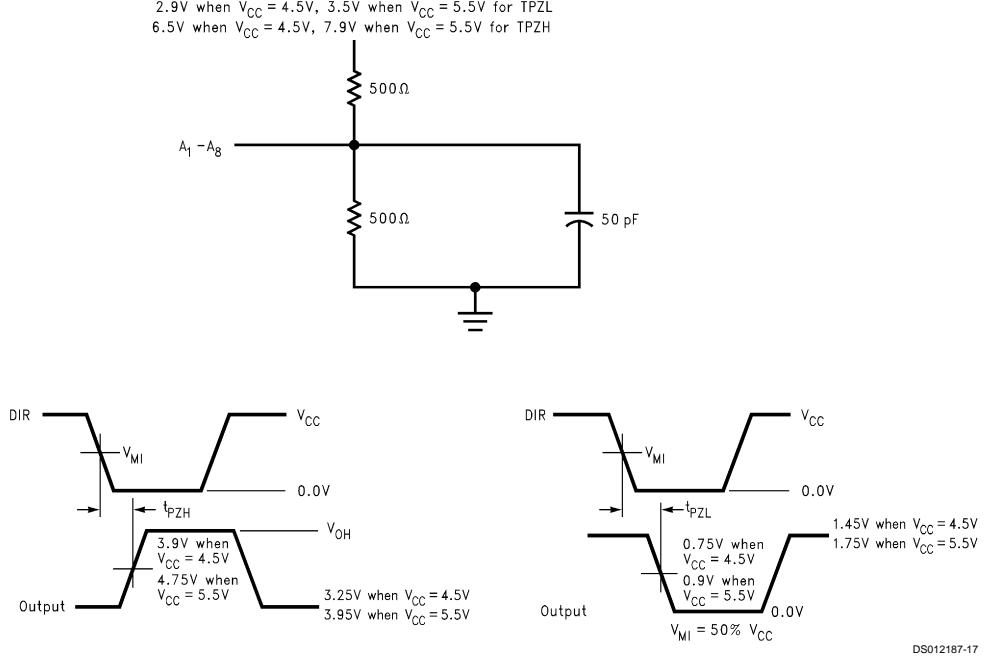


FIGURE 8. t_{PZH} and t_{PZL} Test Load and Waveforms, DIR to A_1-A_8

AC Loading and Waveforms (Continued)

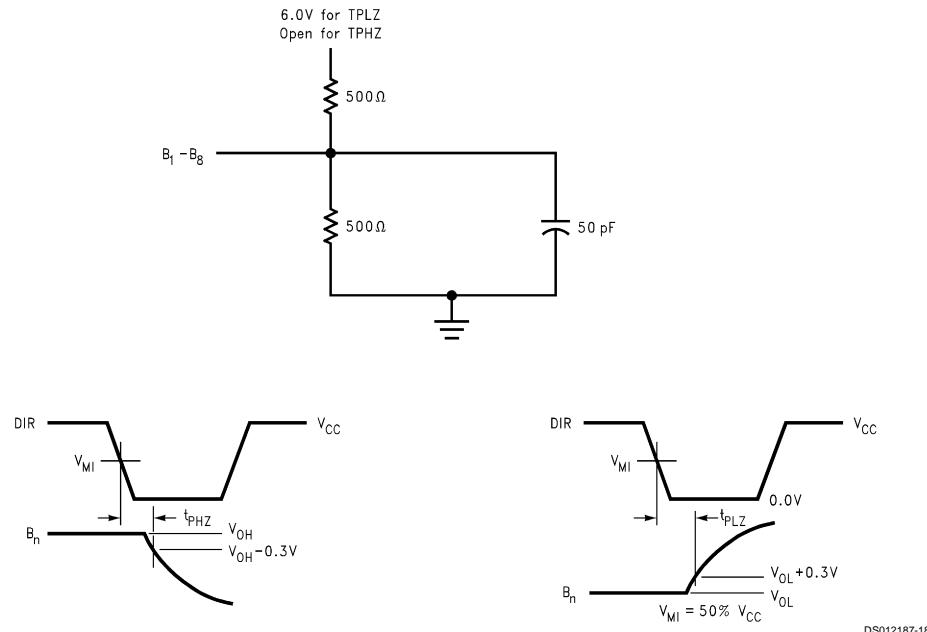
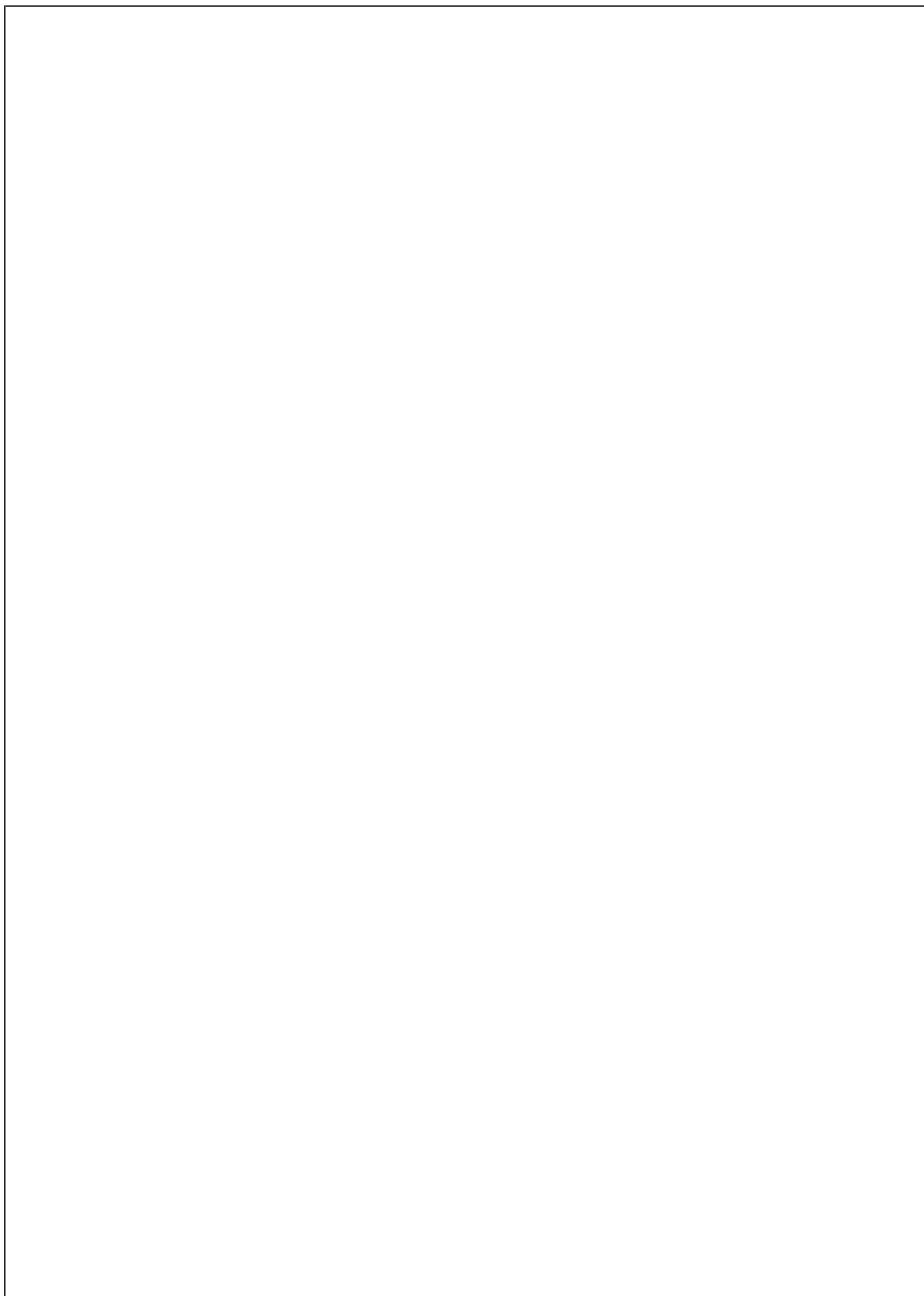
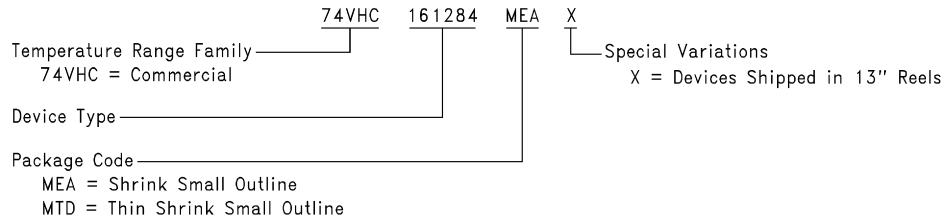
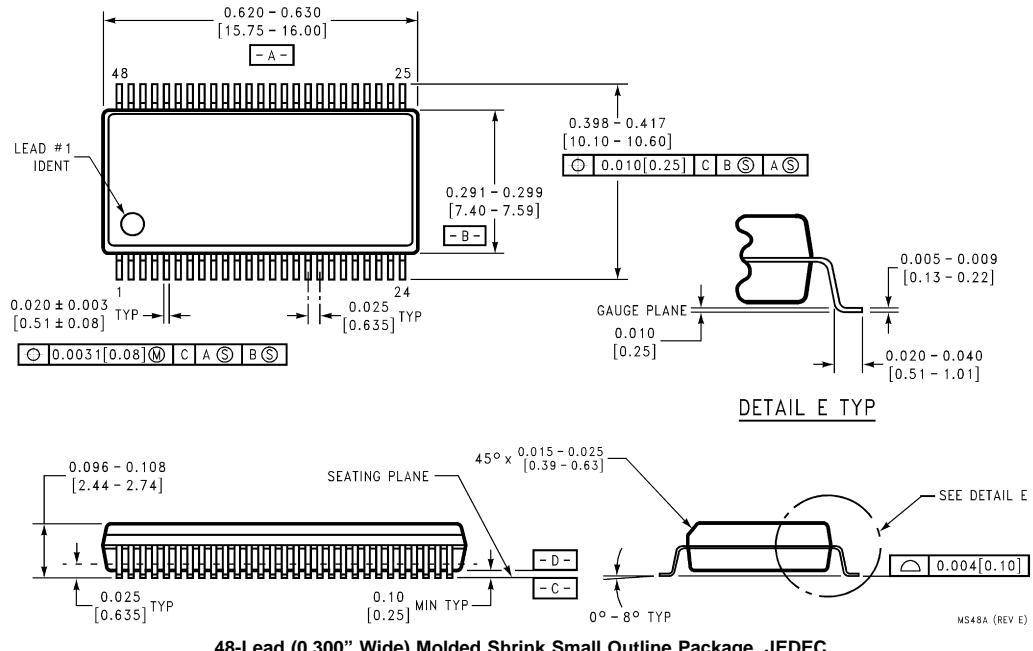
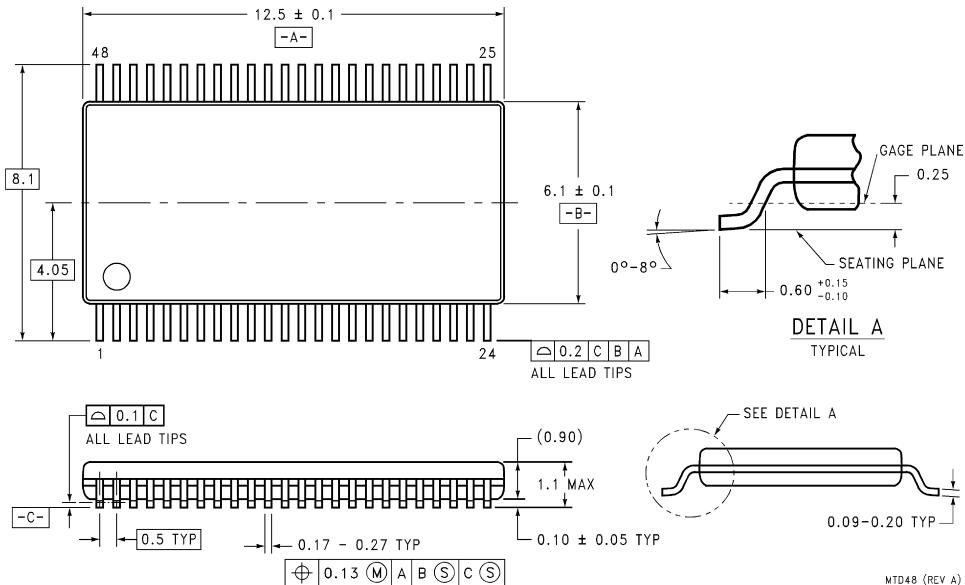




FIGURE 9. t_{PHZ} and t_{PLZ} Test Load and Waveforms, DIR to B_1-B_8


Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:


DS012187-19

Physical Dimensions inches (millimeters) unless otherwise noted

48-Lead (0.300" Wide) Molded Shrink Small Outline Package, JEDEC
Order Number 74VHC161284MEA or 74VHC161284MEAX
Package Number MS48A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

48-Lead Molded Thin Shrink Small Outline Package, JEDEC, 6.1mm Body Width
 Order Number 74VHC161284MTD or 74VHC161284MTDX
 Package Number MTD48

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor
 Corporation
 Americas
 Customer Response Center
 Tel: 1-888-522-5372

www.fairchildsemi.com

Fairchild Semiconductor
 Europe
 Fax: +49 (0) 1 80-530 85 86
 Email: europe.support@nsc.com
 Deutsch Tel: +49 (0) 8 141-35-0
 English Tel: +44 (0) 1 793-85-68-56
 Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor
 Hong Kong Ltd.
 13th Floor, Straight Block,
 Ocean Centre, 5 Canton Rd.
 Tsimshatsui, Kowloon
 Hong Kong
 Tel: +852 2737-7200
 Fax: +852 2314-0061

National Semiconductor
 Japan Ltd.
 Tel: 81-3-5620-6175
 Fax: 81-3-5620-6179