

High Efficiency Transmitter Driver for Wireless Power Systems

TRIUNE PRODUCTS

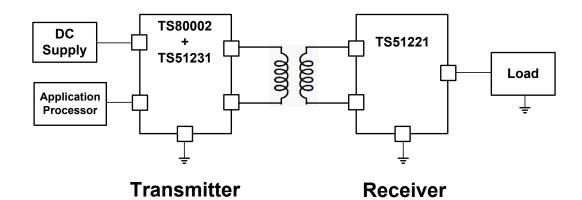
Features

- Supports portable wireless charging applications
- Wireless power systems up to 5W output
- Integrated gate driver and output stage
- Single pin control for switching the output stage
- Low external component count

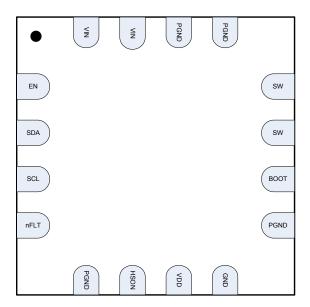
Applications

- Low-power wireless chargers for:
 - Smart Watches
 - Wearables
 - Toys
 - Portable Lighting
 - Medical Devices

Description

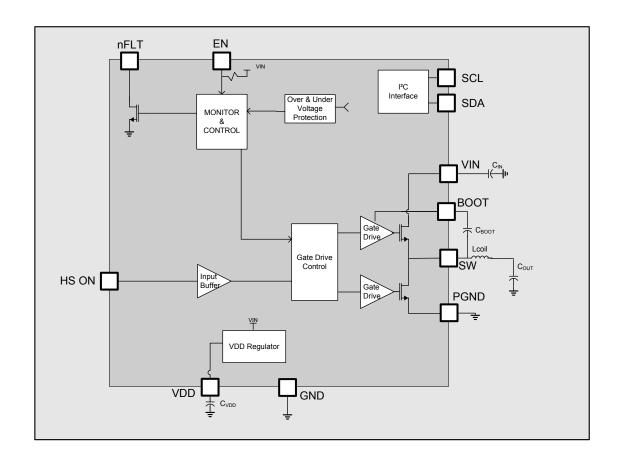

The TS51231 is a transmitter driver and output stage for wireless charging applications. The TS51231 can support systems up to 5W output and proprietary applications.

Switching of the TS51231 is controlled by the wireless power transmitter controller (TS80002 or similar).


Specification

• 16 pin 3x3 QFN

Typical Application Circuit


Pin-out (Top view)

Pin-out Configuration

Pin#	Pin Symbol	Function	Description
1	EN	Enable	Enable
2	SDA	I2C Serial Data	I2C Serial Data
3	SCL	I2C Serial Clock	I2C Serial Clock
4	nFLT	Status	Fault Status
5	PGND	Power GND	Power GND
6	HSON	Driver	Driver high-side control
7	VDD	Supply	Device Supply
8	GND	GND	Device GND
9	PGND	Power GND	Power GND
10	BOOT	Bootstrap Pin	Connected through 22nF capacitor to SW pin
11	SW	Switching Node	Connected to transmitter coil
12	SW	Switching Node	Connected to transmitter coil
13	PGND	Power GND	Power GND
14	PGND	Power GND	Power GND
15	VIN	Power Supply	Power Supply
16	VIN	Power Supply	Power Supply
17	PAD	Power PAD	Power GND

Functional Block Diagram

Absolute Maximum Ratings

Over operating free-air temperature range unless otherwise noted(1,2)

Parameter	Value	Unit
VDD, EN, NFLT, SCL, SDA, VTHERM, VBAT	-0.3 to 5.5	V
VIN	-0.3 to 20	V
BOOT	-0.3 to 25	V
SW	-1 to 20	V
Electrostatic Discharge – Human Body Model	+/-2k	V
Electrostatic Discharge – Charge Device Model	+/-500	V
Lead Temperature (soldering, 10 seconds)	260	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability.

Thermal Characteristics

Symbol	Parameter	Value	Units	
Θ_{JA}	Thermal Resistance Junction to Air (Note 1)	33 - 36	°C/W	
Θ_{JC}	Thermal Resistance Junction to Case (Note 1) 1.2 - 3.9 °C/W		°C/W	
T _{STG}	Storage Temperature Range -65 to 150		°C	
T _{J MAX}	Maximum Junction Temperature 150 °C		°C	
T _J Operating Junction Temperature Range -40 to 125 °C				
Note 1: Assumes 16LD 3x3 QFN with hi-K JEDEC board and 13.5 inch2 of 1 oz Cu and 4 thermal vias connected to PAD				

Recommended Operating Conditions

Symbol	Parameter		Тур	Max	Unit
VCC	Input Operating Voltage		12	16.5	V
LOUT	Transmitter Coil		6.0		μН
COUT	Output Filter Capacitor		100		nF
CIN	Input Bypass Capacitor		100		nF
CVDD	Internal Bypass Capacitor		100		nF
СВООТ	Bootstrap Capacitor		22		nF

⁽²⁾ All voltage values are with respect to network ground terminal.

Electrical Characteristics (T=25°C unless otherwise specified)

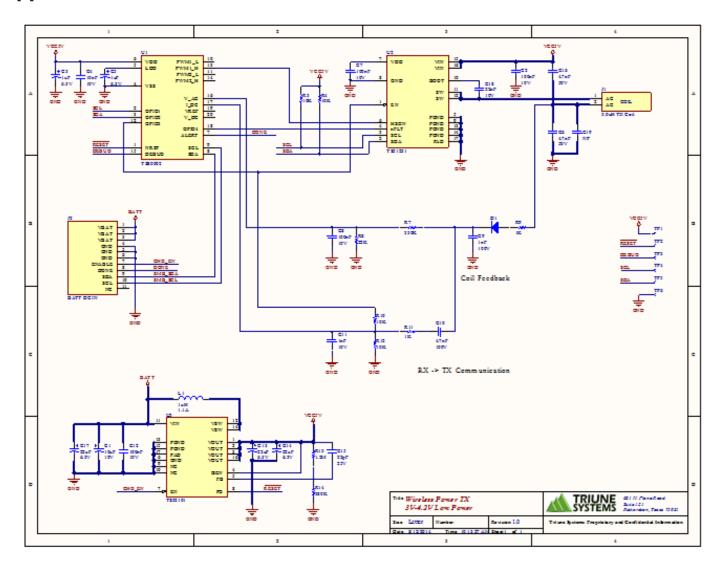
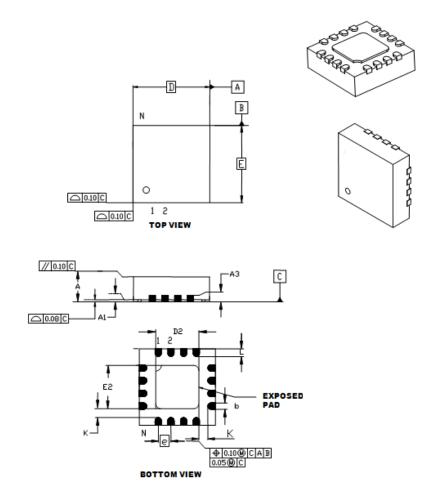
Electrical Characteristics, TJ = -40C to 125C (unless otherwise noted)

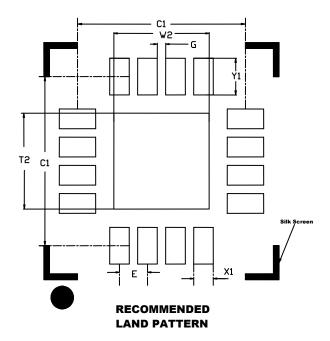
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Output Stage						
High Side Switch On Resistance	DDCON	ISW = -1A, TJ=25C			100	mΩ
Low Side Switch On Resistance	RDSON	ISW = 1A, TJ=25C			100	mΩ
Max Output Current	IOUT			2.0		А
Over Current Detect	IOCD	HS switch current	2.5			А
VDD LDO Output						
LDO Output Voltage	VLDO		4.75	5.0	5.25	V
LDO Output Current	ILDO				50	mA
Drop Out Voltage	LDODO	Vin=5V, lout=50mA			400	mV

Functional Description

Switching of the TS51231 transmitter driver is controlled by the wireless transmitter controller via the HSON pin. When the HSON pin is high, the high-side FET is switched on and the low-side FET is switched off. When the HSON pin is low, the high-side FET is switched off and the low-side FET is switched on.

Application Schematic


Figure 1: TS80002 Application Schematic

Package Mechanical Drawings (all dimensions in mm)

Units	Millimeters				
Dimensions Limits		MIN	NOM	MAX	
Number of Pins	N	16			
Pitch	e	0.50 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Length D		3.00 BSC			
Exposed Pad Width	E2	1.55	1.70	1.80	
Overall Width	E	3.00 BSC			
Exposed Pad Length	D2	1.55	1.70	1.80	
Contact Width	р	0.20	0.25	0.30	
Contact Length	L	0.20	0.30	0.40	
Contact-to-Exposed Pad	K	0.20	-	-	

Recommended PCB Land Pattern

	Millimeters				
Dimension	ns Limits	MIN	NOM	MAX	
Contact Pitch	Е		0.50 BSC		
Optional Center Pad Width	W2	-	-	1.70	
Optional Center Pad Length	T2	-	-	1.70	
Contact Pad Spacing	C1	-	3.00	-	
Contact Pad Spacing	C2	-	3.00	-	
Contact Pad Width (X16)	X1	-	-	0.35	
Contact Pad Length (X16)	Y1	-	-	0.65	
Distance Between Pads	G	0.15	-	-	

Notes:

Dimensions and tolerances per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact values shown without tolerances. REF: Reference Dimension, usually without tolerance, for information only

Ordering Information

Part Number		Description	
	TS51231-QFNR	Transmitter Driver	

RoHS and Reach Compliance

Triune Systems is fully committed to environmental quality. All Triune Systems materials and suppliers are fully compliant with RoHS (European Union Directive 2011/65/EU), REACH SVHC Chemical Restrictions (EC 1907/2006), IPC-1752 Level 3 materials declarations, and their subsequent amendments. Triune Systems maintains certified laboratory reports for all product materials, from all suppliers, which show full compliance to restrictions on the following:

- Cadmium (Cd)
- Chlorofluorocarbons (CFCs)
- Chlorinate Hydrocarbons (CHCs)
- Halons (Halogen free)
- Hexavalent Chromium (CrVI)
- Hydrobromofluorocarbons (HBFCs)
- Hydrochlorofluorocarbons (HCFCs)
- · Lead (Pb)
- Mercury (Hg)
- Perfluorocarbons (PFCs)
- Polybrominated biphenyls (PBB)
- Polybrominated Diphenyl Ethers (PBDEs)

IMPORTANT NOTICE

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech's standard terms and conditions of sale.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

The Semtech name and logo are registered trademarks of the Semtech Corporation. Triune Systems, L.L.C. is now a wholly-owned subsidiary of Semtech Corporation. The Triune Systems® name and logo, MPPT-lite™, and nanoSmart® are trademarks of Triune Systems, L.L.C. in the U.S.A. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose. All rights reserved.

© Semtech 2015

Contact Information

Semtech Corporation 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111, Fax: (805) 498-3804 www.semtech.com