

SN54AS825, SN54AS826, SN74AS825, SN74AS826 8-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

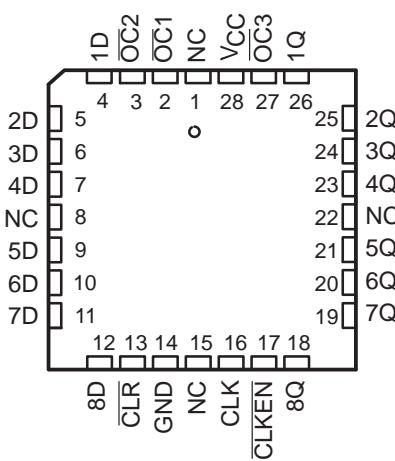
SDAS020A – D2825, JUNE 1984 – REVISED JANUARY 1986

- Functionally Equivalent to AMD's AM29825 and AM29826
- Improved I_{OH} Specifications
- Multiple Output Enables Allow Multiuser Control of the Interface
- Outputs Have Undershoot Protection Circuitry
- Powerup High-impedance State
- Package Options Include Plastic Small Outline Packages, Both Plastic and Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Buffered Control Inputs to Reduce DC Loading Effect
- Dependable Texas Instruments Quality and Reliability

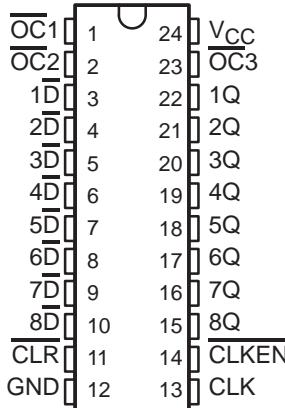
SN54AS825 . . . JT PACKAGE
SN74AS825 . . . DW OR NT PACKAGE
(TOP VIEW)

description

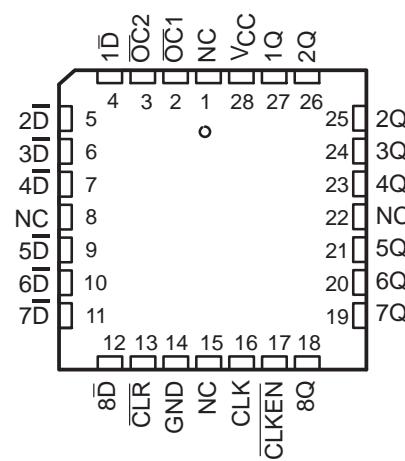
These 8-bit flip-flops feature 3-state outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. They are particularly suitable for implementing multiuser registers, I/O ports, bidirectional bus drivers, and working registers.


With the clock enable (CLKEN) low, the eight D-type edge-triggered flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN high will disable the clock buffer, thus latching the outputs. The 'AS825 has noninverting D inputs and the 'AS826 has inverting \bar{D} inputs. Taking the CLR input low causes the eight Q outputs to go low independently of the clock.

SN54AS825 . . . FK PACKAGE
SN74AS825 . . . FN PACKAGE


SN54AS826 . . . JT PACKAGE
SN74AS826 . . . DW OR NT PACKAGE

SN54AS826 . . . FK PACKAGE
SN74AS826 . . . FN PACKAGE


(TOP VIEW)

(TOP VIEW)

(TOP VIEW)

NC—No internal connection

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

TEXAS
INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1986, Texas Instruments Incorporated
5BASIC

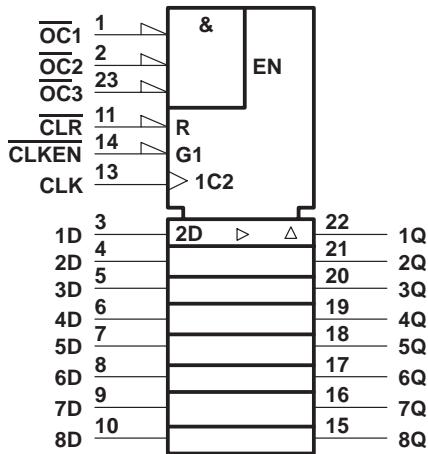
SN54AS825, SN54AS826, SN74AS825, SN74AS826 8-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

SDAS020A – D2825, JUNE 1984 – REVISED JANUARY 1986

description (continued)

Multiuser buffered output-control inputs ($\overline{OC_1}$, $\overline{OC_2}$, and $\overline{OC_3}$) can be used to place the eight outputs in either a normal logic state (high or low level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pullup components. The output controls do not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

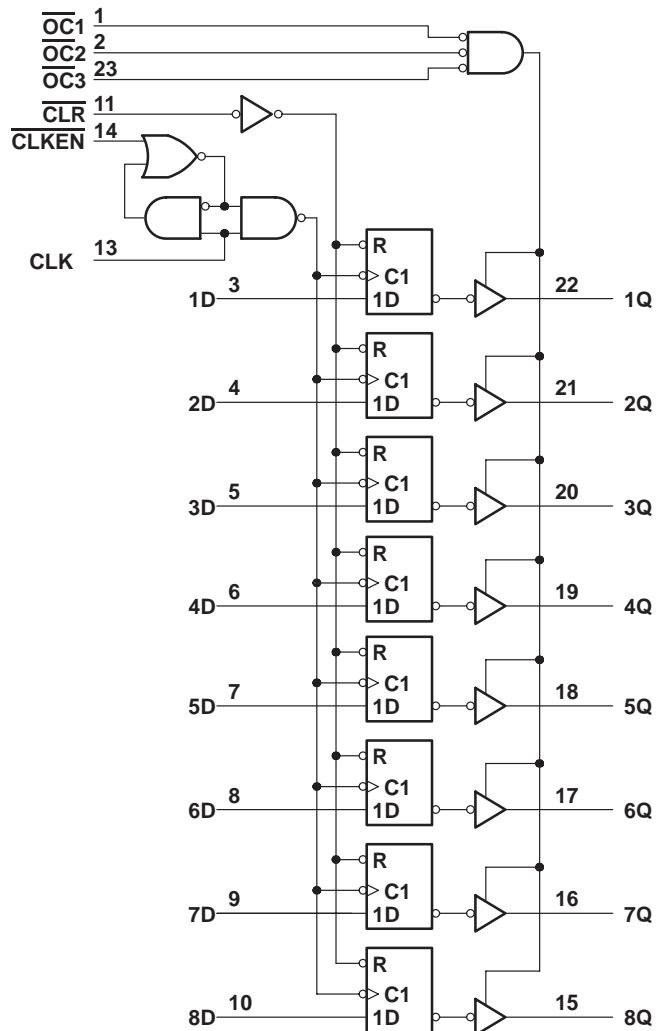
The SN54AS' family is characterized for operation over the full military temperature range of -55°C to 125°C . The SN74AS' family is characterized for operation from 0°C to 70°C .


'AS825 FUNCTION TABLE

INPUTS					OUTPUT Q
OCT†	CLR	CLKEN	CLK	D	
L	L	X	X	X	L
L	H	L	↑	H	H
L	H	L	↑	L	L
L	H	H	X	X	Q_0
H	X	X	X	X	Z

† $OC = H$ if any of OC_1 , OC_2 , or OC_3 are high.

$OC = L$ if all of OC_1 , OC_2 , and OC_3 are low.

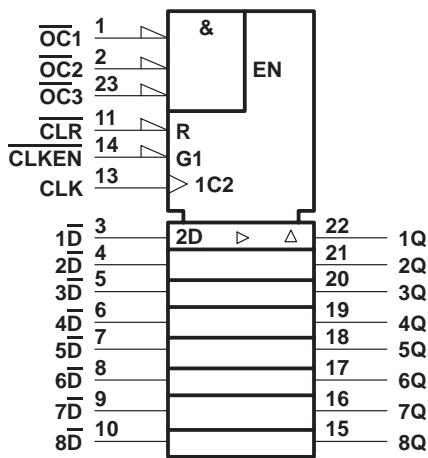

'AS825 logic symbol‡

‡ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers are for DW, JT, and NT packages.

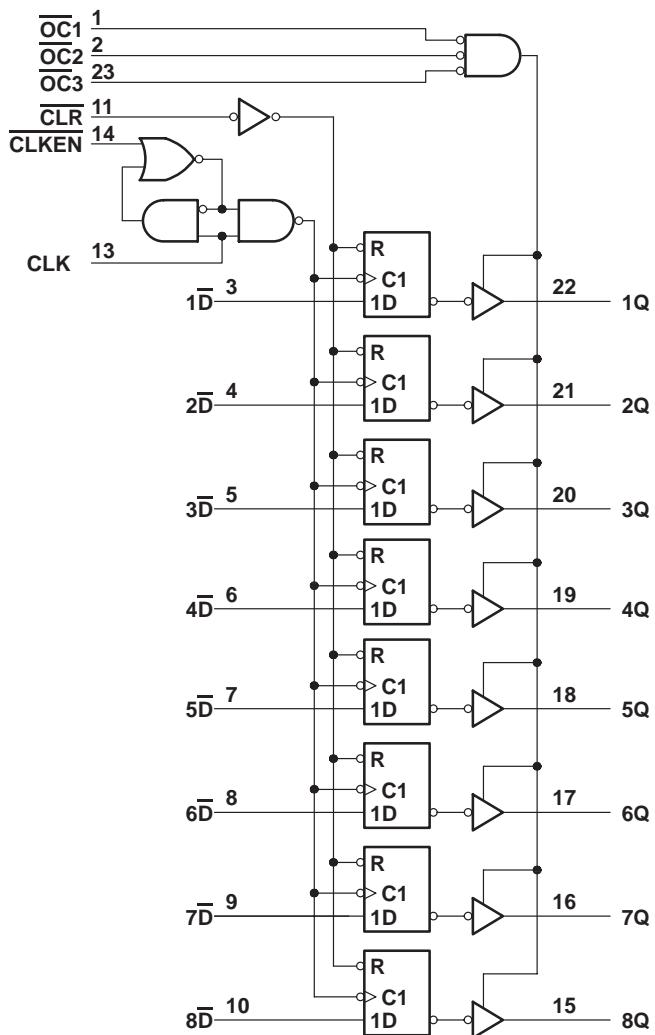
'AS825 logic diagram (positive logic)

SN54AS826, SN74AS826
8-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS


SDAS020A – D2825, JUNE 1984 – REVISED JANUARY 1986

'AS826 FUNCTION TABLE

INPUTS					OUTPUT
OCT	CLR	CLKEN	CLK	D	Q
L	L	X	X	X	L
L	H	L	↑	H	L
L	H	L	↑	L	H
L	H	H	X	X	Q_0
H	X	X	X	X	Z


† $\overline{OC} = H$ if any of $\overline{OC1}$, $\overline{OC2}$, or $\overline{OC3}$ are high.
 $\overline{OC} = L$ if all of $\overline{OC1}$, $\overline{OC2}$, and $\overline{OC3}$ are low.

'AS826 logic symbol‡

‡ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

'AS826 logic diagram (positive logic)

Pin numbers shown are for DW, JT, and NT packages.

SN54AS825, SN54AS826, SN74AS825, SN74AS826

8-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

SDAS020A – D2825, JUNE 1984 – REVISED JANUARY 1986

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC}	7 V
Input voltage	7 V
Voltage applied to a disabled 3-state output	5.5 V
Operating free-air temperature range:	
SN54AS825, SN54AS826	–55°C to 125°C
SN74AS825, SN74AS826	0°C to 70°C
Storage temperature range	–65°C to 150°C

recommended operating conditions

		SN54AS825			SN74AS826			UNIT	
		SN54AS826			SN74AS826				
		MIN	NOM	MAX	MIN	NOM	MAX		
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V	
V_{IH}	High-level input voltage	2			2			V	
V_{IL}	Low-level input voltage			0.8			0.8	V	
I_{OH}	High-level output current			–24			–24	mA	
I_{OL}	Low-level output current			32			48	mA	
t_w	Pulse duration	CLR low	5		4			ns	
		CLK high or low	9		8				
t_{su}	Setup time before CLK^\uparrow	CLR inactive	8		8			ns	
		Data	7		6				
		CLKEN high or low	7		6				
t_h	Hold time, CLKEN low or data after CLK^\uparrow	0			0			ns	
T_A	Operating free-air temperature	–55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54AS825			SN74AS825			UNIT
		MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	
V_{IK}	$V_{CC} = 4.5$ V, $I_I = -18$ mA			–1.2			–1.2	V
V_{OH}	$V_{CC} = 4.5$ V to 5.5 V, $I_{OH} = -2$ mA	$V_{CC} - 2$			$V_{CC} - 2$			V
	$V_{CC} = 4.5$ V, $I_{OH} = -15$ mA	2.4	3.2		2.4	3.2		
	$V_{CC} = 4.5$ V, $I_{OH} = -24$ mA	2			2			
V_{OL}	$V_{CC} = 4.5$ V, $I_{OL} = 32$ mA	0.3	0.5					V
	$V_{CC} = 4.5$ V, $I_{OL} = 48$ mA				0.35	0.5		
I_{OZH}	$V_{CC} = 5.5$ V, $V_O = 2.7$ V			50			50	μA
I_{OZL}	$V_{CC} = 5.5$ V, $V_O = 0.4$ V			–50			–50	μA
I_I	$V_{CC} = 5.5$ V, $V_I = 7$ V			0.1			0.1	mA
I_{IH}	$V_{CC} = 5.5$ V, $V_I = 2.7$ V			20			20	μA
I_{IL}	$V_{CC} = 5.5$ V, $V_I = 0.4$ V			–0.5			–0.5	mA
$I_{O^{\ddagger}}$	$V_{CC} = 5.5$ V, $V_O = 2.25$ V	–30	–112		–30		–112	mA
I_{CC}	'AS825	$V_{CC} = 5.5$ V	Outputs high	45	73	45	73	mA
			Outputs low	56	90	56	90	
			Outputs disabled	59	95	59	95	
	'AS826	$V_{CC} = 5.5$ V	Outputs high	45	73	45	73	mA
			Outputs low	56	90	56	90	
			Outputs disabled	59	95	59	95	

[†] All typical values are at $V_{CC} = 5$ V, $T_A = 25^\circ\text{C}$.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS} .

SN54AS825, SN54AS826, SN74AS825, SN74AS826
8-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

SDAS020A – D2825, JUNE 1984 – REVISED JANUARY 1986

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$, $C_L = 50 \text{ pF}$, $R1 = 500 \text{ } \Omega$, $R2 = 500 \text{ } \Omega$, $T_A = \text{MIN to MAX}^{\dagger}$				UNIT	
			SN54AS825		SN74AS825			
			MIN	MAX	MIN	MAX		
t_{PLH}	CLK	Any Q	3.5	9	3.5	7.5	ns	
t_{PHL}			3.5	11.5	3.5	11		
t_{PHL}	CLR	Any Q	3.5	14	3.5	13	ns	
t_{PZH}	\overline{OC}	Any Q	4	12	4	11	ns	
t_{PZL}			4	13	4	12		
t_{PHZ}	\overline{OC}	Any Q	2	10	2	8	ns	
t_{PLZ}			2	10	2	8		

[†] The conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 1: Load circuit and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated