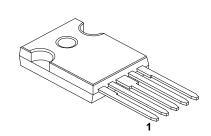


N-MOS VCS, TO-247

Description

This voltage controlled Solidtron (VCS) discharge switch utilizes an n-type MOS-Controlled Thyristor mounted in a five leaded TO-247 plastic package.


The VCS features the high peak current capability and low Onstate voltage drop common to SCR thyristors combined with extremely high dl/dt capability. This semiconductor is intended for the control of high power circuits with the use of very small amounts of input energy and is ideally suited for capacitor discharge applications.

The industry standard TO-247 package allows for assembly of the Solidtron using automated insertion equipment.

Features

- 1400V Peak Off-State Voltage
- 65A Continuous Rating
- 6kA Surge Current Capability
- >100kA/uSec dl/dt Capability
- <150nSec Turn-On Delay
- Low On-State Voltage
- MOS Gated Control
- Low Inductance Package

Package

5 Lead TO-247

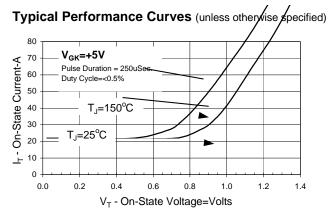
Gate (G) O Gate Return (GR) O Cathode (K)

Absolute Maximum Ratings

	SYMBOL	VALUE	UNITS
Peak Off-State Voltage	V_{DRM}	1400	V
Peak Reverse Voltage	V_{RRM}	-5	V
Off-State Rate of Change of Voltage Immunity	dv/dt	5000	V/uSec
Continuous Anode Current at 110°C	I _{A110}	65	А
Repetitive Peak Anode Current (Pulse Width=1uSec)	I _{ASM}	6000	А
Rate of Change of Current	dl/dt	125	kA/uSec
Continuous Gate-Cathode Voltage	V_{GKS}	+/-20	V
Peak Gate-Cathode Voltage	V_{GKM}	+/-25	V
Minimum Negative Gate-Cathode Voltage Required for Garanteed Off-State	$V_{GK(OFF-MIN)}$	-5	V
Maximum Junction Temperature	T_JM	150	°C
Maximum Soldering Temperature (Installation)		260	°C

This **SILICON POWER** product is protected by one or more of the following U.S. Patents:

5,521,436	5,446,316	5,105,536	5,209,390	4,958,211	5,206,186	4,857,983	5,082,795	4,644,637
5,585,310	5,557,656	5,777,346	5,139,972	5,111,268	5,757,036	4,888,627	4,980,741	4,374,389
5,248,901	5,564,226	5,446,316	5,103,290	5,260,590	5,777,346	4,912,541	4,941,026	4,750,666
5,366,932	5,517,058	5,577,656	5,028,987	5,350,935	5,995,349	5,424,563	4,927,772	4,429,011
5,497,013	4,814,283	5,473,193	5,304,847	5,640,300	4,801,985	5,399,892	4,739,387	5,293,070
5.532.635	5.135.890	5.166.773	5.569.957	5.184.206	4.476.671	5.468.668	4.648.174	

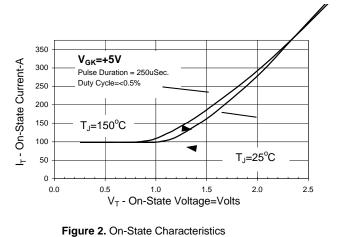


SMCT AA65N14A10

Advanced Pulse Power Device

N-MOS VCS, TO-247

Performance Characteristics T _J =25°C unless otherwise specified				Measurements			
Parameters	Symbol	Test Conditions		Min.	Тур.	Max.	Units
Anode to Cathode Breakdown Voltage	$V_{(BR)}$	V _{GK} =-5, I _A =1mA		1400			V
Anode-Cathode Off-State Current	i _D	V _{GE} =-5V, V _{AK} =1200V	T _C =25°C		<10	100	uA
			T _C =150°C		250	1000	uA
Gate-Cathode Turn-On Threshold Voltage	V _{GK(TH)}	V _{AK} =V _{GK} , I _{AK} =1mA			0.7		V
Gate-Cathode Leakage Current	I _{GK(lkg)}	V _{GK} =+/-20V				750	nA
Anode-Cathode On-State Voltage	V_{T}	I _T =65A, V _{GK} =+5V	T _C =25°C		1.3	1.8	V
		(See Figures 1,2 & 3)	T _C =150°C		1.1	1.4	V
Input Capacitance	C _{ISS}				18		nF
Turn-on Delay Time	t _{D(ON)}	0.2uF Capacitor Discharge			82	150	nS
Rate of Change of Current	dl/dt	$T_J=25$ °C, $V_{GK}=$ -5V to +5V			58		kA/uSec
Peak Anode Current	I _P	V_{AK} =800V, RG=4.7 Ω			3300		Α
Discharge Event Energy	E _{DIS}	L _S = 8nH (See Figures 4,5 & 6)			36		mJ
Turn-on Delay Time	t _{D(ON)}	0.2uF Capacitor Discharge			64	120	nS
Rate of Change of Current	dl/dt	$T_J = 150^{\circ}C$, $V_{GK} = -5V$ to $+5V$			100		kA/uSec
Peak Anode Current	I _P	V _{AK} =1200V, RG=4.7Ω			5200		Α
Discharge Event Energy	E _{DIS}	L _S = 8nH (See Figures 4,5 & 6)			74		mJ
Junction to Case Thermal Resistance	$R_{\theta JC}$	Anode (bottom) side cooled (Note 1.)			0.035		°C/W



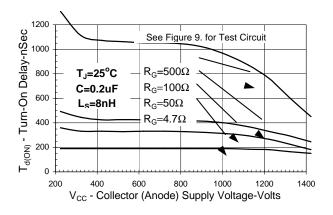

Figure 1. On-State Characteristics

Figure 3. Predicted High Current On-State Characteristics

N-MOS VCS, TO-247

Typical Performance Curves (Continued)

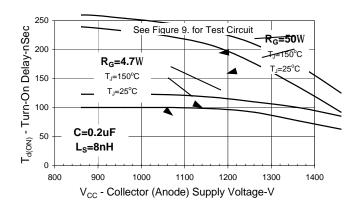


Figure 4. Turn-On Delay Characteristics $R_G{=}4.7\Omega - 500\Omega, \ T_J{=}25^{o}C$

Figure 5. Turn-On Delay Characteristics $R_G = 4.7\Omega \& 50\Omega, \ T_J = 25^{\circ}C \& 150^{\circ}C$

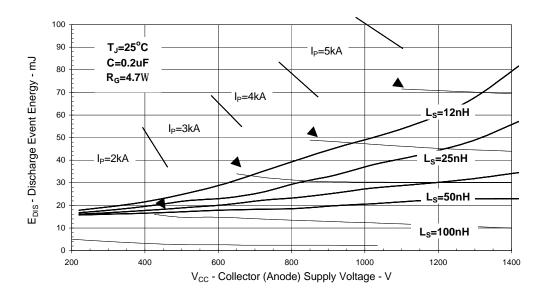


Figure 6. 0.2uF Discharge Pulse Performance Characteristics (See Figure 9.)

N-MOS VCS, TO-247

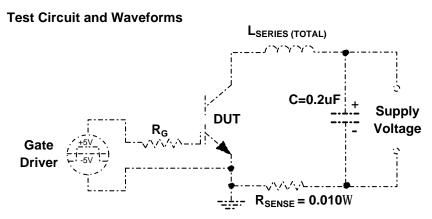
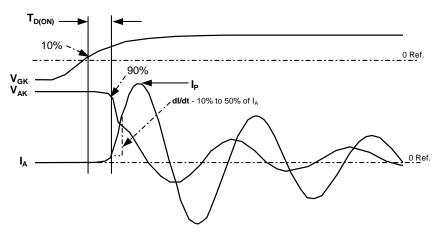
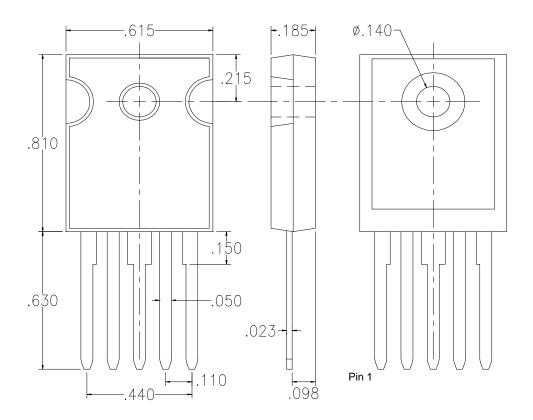



Figure 9. 0.2uF Pulsed Discharge Circuit Schematic

- $L_{SERIES(TOTAL)}$ is caculated using 1 / $(f 2\pi)^2C$ where f = frequency of I_A (See Figure 10)
- R_{SENSE} is a calibrated
 Current Viewing Resistor (CVR)

- The waveform shown is representative of one produced using a very low inductance circuit (<10nH).
- V_{GK} is held positive until I_A oscillations have ended (I_A =0).

Figure 10. 0.2uF Pulsed Discharge Circuit Waveforms


N-MOS VCS, TO-247

Application Notes

A1. Use of Gate Return

The VCS was designed for high di/dt applications. An independent cathode connection for use as "gate return" is provided on pin 2 to minimize the effects of rapidly changing Anode-Cathode current on the Gate control voltage, (V=L*di/dt). It is therefore, critical that the user utilize the Gate Return as the point at which the gate driver reference (return) is attached to the VCS device.

Packaging and Handling

Pin 1 : Gate

Pin 2 : Gate return

Pin 3: Anode

Pin 4 : Cathode

Pin 5 : Cathode

As with all MOS gated devices, proper handling procedures must be observed to prevent electrostatic discharge which may result in permanant damage to the gate of the device