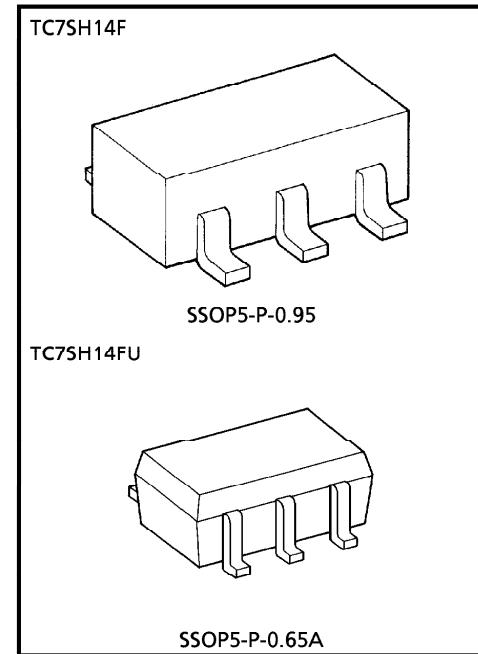


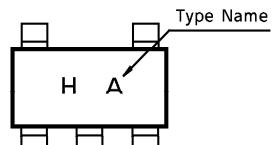
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC7SH14F, TC7SH14FU**SCHMITT INVERTER**

The TC7SH14 is an advanced high speed CMOS SCHMITT INVERTER fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. Pin configuration and function are the same as the TC7SH14 but the inputs have hysteresis and with its schmitt trigger function, the TC7SH14 can be used as a line receivers which will receive slow input signals.


An input protection circuit ensures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V system and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

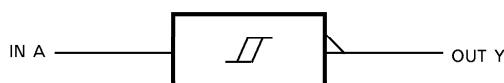
FEATURES


- High Speed $t_{pd} = 5.5\text{ns}$ (Typ.) at $V_{CC} = 5\text{V}$
- Low Power Dissipation $I_{CC} = 2\mu\text{A}$ (Max.) at $T_a = 25^\circ\text{C}$
- High Noise Immunity $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- Power Down Protection is provided on all inputs.
- Balanced Propagation Delays $t_{pLH} = t_{pHL}$
- Wide Operation Voltage Range $V_{CC}(\text{opr}) = 2\text{V} \sim 5.5\text{V}$

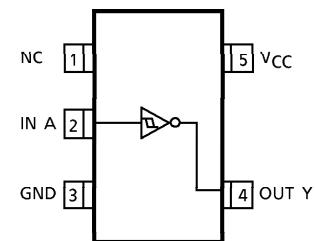
MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	V_{CC}	-0.5~7.0	V
DC Input Voltage	V_{IN}	-0.5~7.0	V
DC Output Voltage	V_{OUT}	-0.5~ $V_{CC} + 0.5$	V
Input Diode Current	I_{IK}	-20	mA
Output Diode Current	I_{OK}	± 20	mA
DC Output Current	I_{OUT}	± 25	mA
DC V_{CC} / Ground Current	I_{CC}	± 50	mA
Power Dissipation	P_D	200	mW
Storage Temperature	T_{stg}	-65~150	°C
Lead Temperature (10s)	T_L	260	°C

Weight SSOP5-P-0.95 : 0.016g (Typ.)
SSOP5-P-0.65A : 0.006g (Typ.)


MARKING**TRUTH TABLE**

A	Y
L	H
H	L


961001EBA2

● TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

LOGIC DIAGRAM

PIN ASSIGNMENT (TOP VIEW)

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	RATING		UNIT
Supply Voltage	V_{CC}	2.0~5.5		V
Input Voltage	V_{IN}	0~5.5		V
Output Voltage	V_{OUT}	0~ V_{CC}		V
Operating Temperature	T_{opr}	-40~85		°C
Input Rise and Fall Time	dt/dv	0~100 ($V_{CC} = 3.3 \pm 0.3$ V) 0~20 ($V_{CC} = 5 \pm 0.5$ V)		ns/V

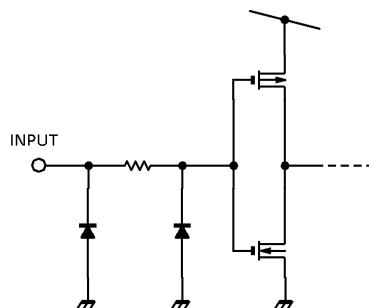
DC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL	TEST CONDITION	$T_a = 25^\circ C$			$T_a = -40 \sim 85^\circ C$		UNIT
			V_{CC}	MIN.	TYP.	MAX.	MIN.	
Positive Threshold Voltage	V_p		3.0	—	—	2.20	—	2.20
			4.5	—	—	3.15	—	3.15
			5.5	—	—	3.85	—	3.85
Negative Threshold Voltage	V_N		3.0	0.90	—	—	0.90	—
			4.5	1.35	—	—	1.35	—
			6.0	1.65	—	—	1.65	—
Hysteresis Voltage	V_H		3.0	0.30	—	1.20	0.30	1.20
			4.5	0.40	—	1.40	0.40	1.40
			5.5	0.50	—	1.60	0.50	1.60
High-Level Output Voltage	V_{OH}	$V_{IN} = V_{IL}$	$I_{OH} = -50 \mu A$	2.0	1.9	2.0	—	1.9
			$I_{OH} = -4mA$	3.0	2.9	3.0	—	2.9
			$I_{OH} = -8mA$	4.5	4.4	4.5	—	4.4
			$I_{OH} = -50 \mu A$	3.0	2.58	—	—	2.48
			$I_{OH} = -4mA$	4.5	3.94	—	—	3.80
Low-Level Output Voltage	V_{OL}	$V_{IN} = V_{IH}$	$I_{OL} = 50 \mu A$	2.0	—	0.0	0.1	—
			$I_{OL} = 4mA$	3.0	—	0.0	0.1	—
			$I_{OL} = 8mA$	4.5	—	0.0	0.1	—
			$I_{OL} = 50 \mu A$	3.0	—	0.36	—	0.44
			$I_{OL} = 4mA$	4.5	—	0.36	—	0.44
Input Leakage Current	I_{IN}	$V_{IN} = 5.5V$ or GND	0~5.5	—	—	± 0.1	—	± 1.0
Quiescent Supply Current	I_{CC}	$V_{IN} = V_{CC}$ or GND	5.5	—	—	2.0	—	20.0
								μA

961001EBA2'

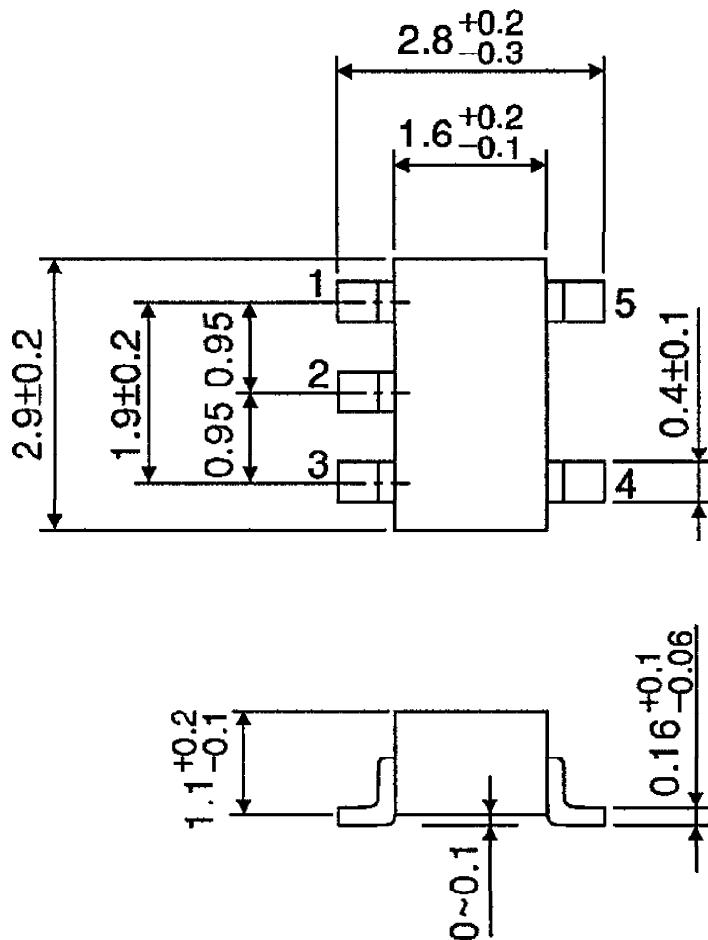
- The products described in this document are subject to foreign exchange and foreign trade control laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3\text{ns}$)


CHARACTERISTIC	SYMBOL	TEST CONDITION		Ta = 25°C			Ta = -40~85°C		UNIT	
		V _{CC} (V)	C _L (pF)	MIN.	TYP.	MAX.	MIN.	MAX.		
Propagation Delay Time	t _{pLH}	3.3 ± 0.3	15	—	8.3	12.8	1.0	15.0	ns	
			50	—	10.8	16.3	1.0	18.5		
	t _{pHL}	5.0 ± 0.5	15	—	5.5	8.6	1.0	10.0		
			50	—	7.0	10.6	1.0	12.0		
Input Capacitance	C _{IN}				—	4	10	—	10	pF
Power Dissipation Capacitance	C _{PD}	(Note 1)			—	21	—	—	—	pF

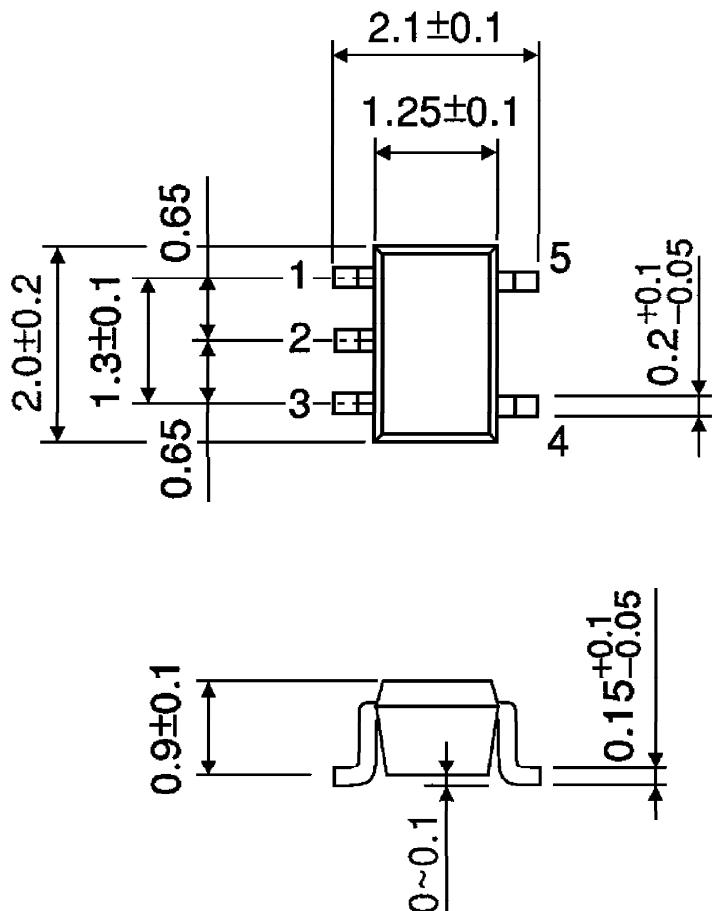
(Note 1) : C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation :


$$I_{CC(\text{opr})} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$$

INPUT EQUIVALENT CIRCUIT

OUTLINE DRAWING
SSOP5-P-0.95


Unit : mm

Weight : 0.016g (Typ.)

OUTLINE DRAWING

Unit : mm

Weight : 0.006g (Typ.)