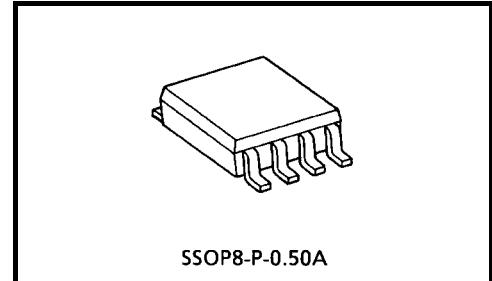


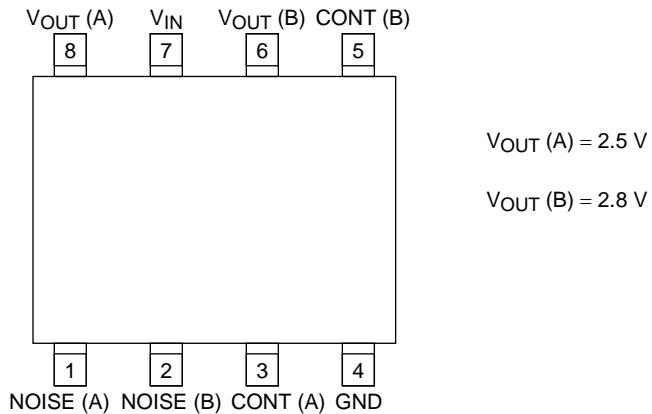
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC


T A R 8 D 0 1 K

Dual Low-Dropout Regulator

TAR8D01K is a bipolar type 2-output power supply with a control pin. ON and OFF can be switched using the control pin.

Features


- Include 2-LDO regulators. (2.5V, 2.8V)
- Output power supply can be independent control.
- Overtemperature/overcurrent protection.
- Very small 8-pin package.

SSOP8-P-0.50A

Weight: 0.01 g (typ.)

Pin Assignment (top view)

Marking

8D01

Overtemperature protection and overcurrent protection function are not necessary of operating ratings below the maximum ratings.

Do not use device under conditions in which their maximum ratings will be exceeded.

Maximum Ratings (Ta = 25°C)

Characteristics	Symbol	Rating	Unit
Supply Voltage	V _{IN}	15	V
Output Current (V _{OUT} (A))	I _{OUT} (A)	100	mA
Output Current (V _{OUT} (B))	I _{OUT} (B)		
Power Dissipation	P _D	200 (Note 1)	mW
		400 (Note 2)	
Operation Temp Range	T _{opr}	-40~85	°C
Storage Temp Range	T _{stg}	-55~150	°C

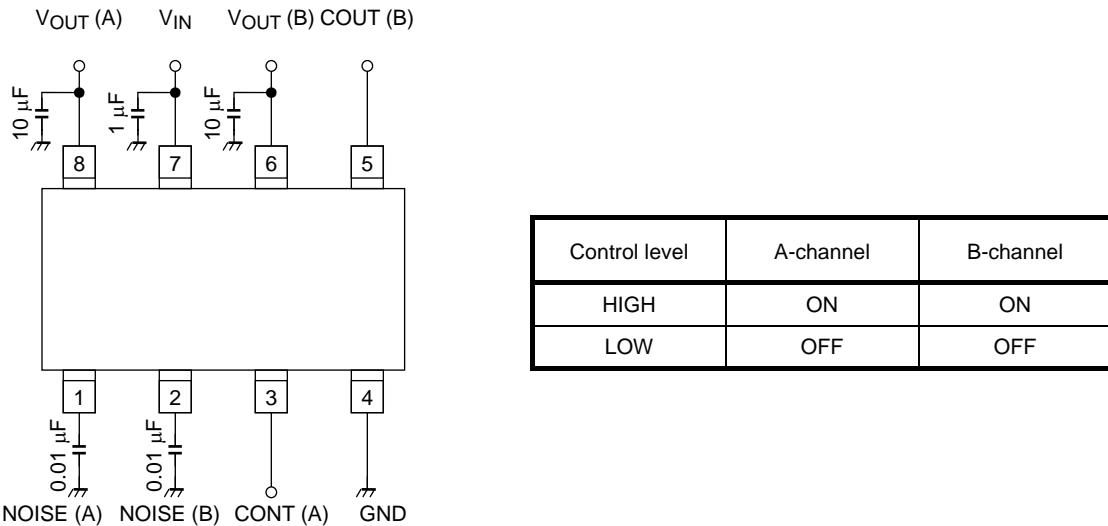
Note 1: Unit Rating

Note 2: Mounted on a glass epoxy circuit board of 30 mm × 30 mm Pad dimansion of 70 mm²

Electrical Characteristics (unless otherwise specified, V_{IN} = V_{OUT} (B) + 1 V, I_{OUT} = 30 mA, C_{IN} = 1 μF, C_{OUT} = 10 μF, C_{NOISE} = 0.01 μF, T_j = 25°C)

2.5 V output Characteristics (V_{OUT} (A))

Characteristics	Symbol	Test Condition	Min	Typ	Max	Unit
Output Voltage	V _{OUT}	I _{OUT} = 30 mA	2.43	2.5	2.57	V
Dropout Voltage	V _{IN} -V _{OUT}	I _{OUT} = 30 mA		120	180	
Input Voltatge	V _{IN}		V _{OUT} + 0.18 V	—	15	V
Load Regulation	Reg· load	I _{OUT} = 0 mA~30 mA	—	2	12	mV
Line Reguration	Reg· line	V _{IN} = 3.8 V~15.0 V	—	3	15	mV
Temp. Coeffcient	T _{CVO}	T _a = -40°C~85°C	—	100	—	ppm/°C
Ripple Rejection	R.R	I _{OUT} = 10 mA, f = 1 kHz, V _{Ripple} = 500 mV _{p-p} , T _a = 25°C	—	70	—	dB
Output Noise Voltage	V _{NO}	I _{OUT} = 10 mA, 10 Hz ≤ f ≤ 10 kHz, T _a = 25°C	—	30	—	μV _{rms}


2.8 V output Characteristics (V_{OUT} (B))

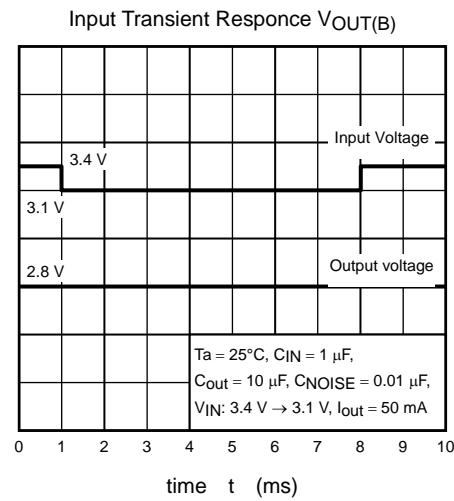
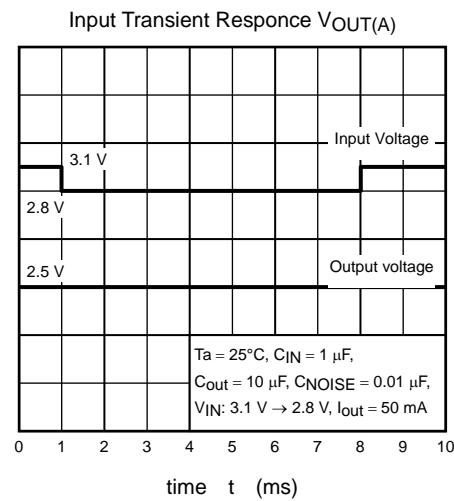
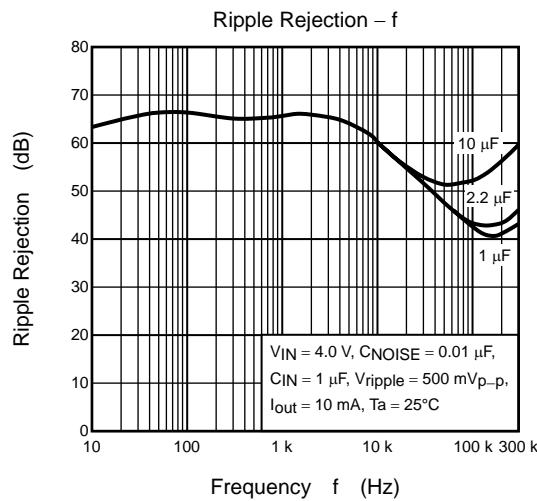
Characteristics	Symbol	Test Condition	Min	Typ	Max	Unit
Output Voltage	V _{OUT}	I _{OUT} = 30 mA	2.73	2.8	2.87	V
Dropout Voltage	V _{IN} -V _{OUT}	I _{OUT} = 30 mA		120	180	
Input Voltatge	V _{IN}		V _{OUT} + 0.18 V	—	15	V
Load Regulation	Reg· load	I _{OUT} = 0 mA~30 mA	—	2	12	mV
Line Reguration	Reg· line	V _{IN} = 3.8 V~15.0 V	—	3	15	mV
Temp. Coeffcient	T _{CVO}	T _a = -40°C~85°C	—	100	—	ppm/°C
Ripple Rejection	R.R	I _{OUT} = 10 mA, f = 1 kHz, V _{Ripple} = 500 mV _{p-p} , T _a = 25°C	—	70	—	dB
Output Noise Voltage	V _{NO}	I _{OUT} = 10 mA, 10 Hz ≤ f ≤ 10 kHz, T _a = 25°C	—	30	—	μV _{rms}

Common Characteristics

Characteristics	Symbol	Test Condition	Min	Typ	Max	Unit
Stand-by Current	I_B (OFF)	$V_{CT} = 0$ V	—	—	1	μ A
Quiescent Current	I_{B1}	I_{OUT} (A) = 0 mA, I_{OUT} (B) = 0 mA	—	350	700	μ A
	I_{B2}	I_{OUT} (A) = 30 mA, I_{OUT} (B) = 30 mA	—	850	1800	μ A
Control Voltage (ON)	V_{CT} (ON)	—	1.5	—	V_{IN}	V
Control Voltage (OFF)	V_{CT} (OFF)	—	—	—	0.4	V
Control Input Current	I_{CT}	$V_{CT} = 1.5$ V (output ON)	—	—	15	μ A

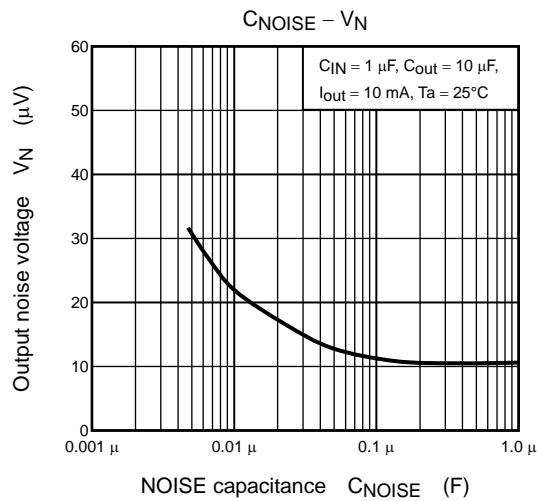
Application Note • Recommended Application circuit

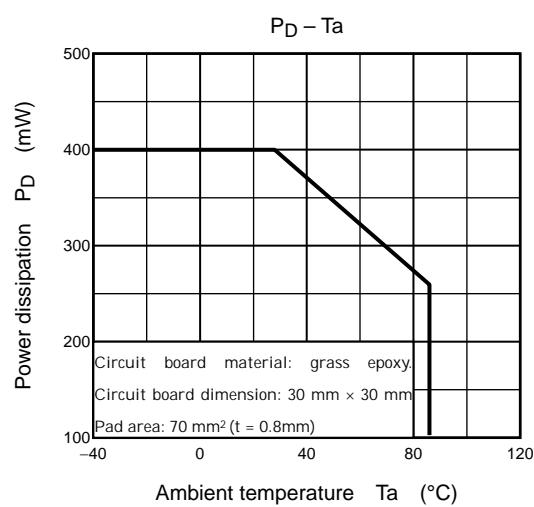
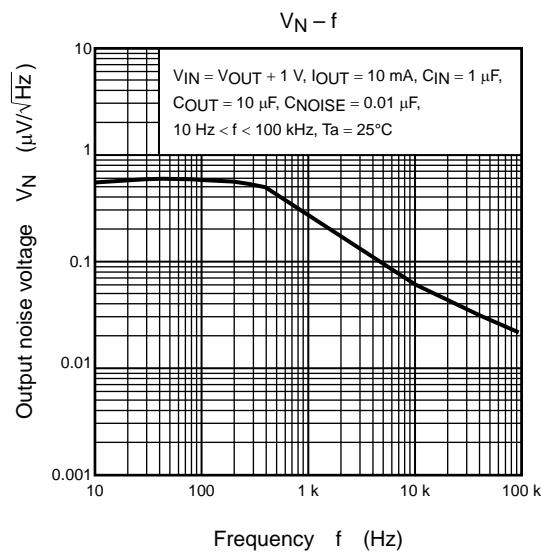
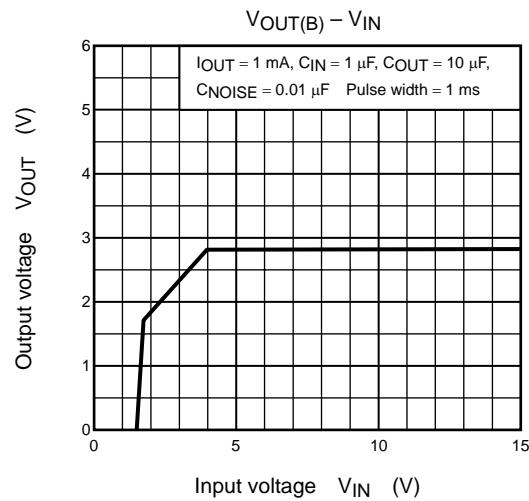
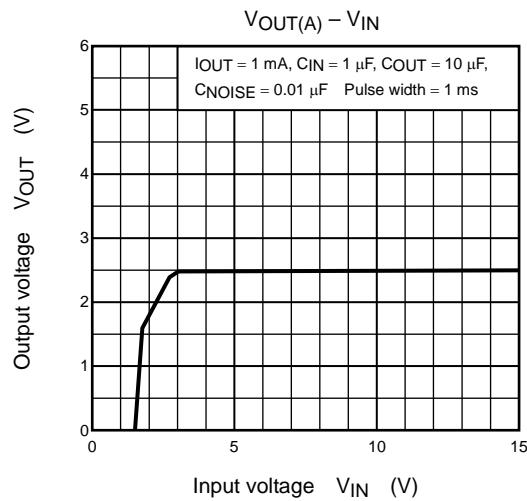
The noise capacitor should be connected to NOISE pin to GND for stable operation.




The recommended value is higher than 0.0047μF.

The figure above shows commended configuration for using a point regulator. Insert a capacitor for stable input/output operation.

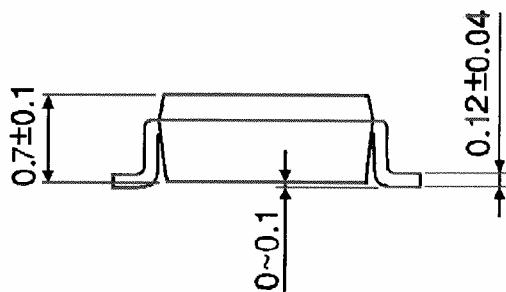
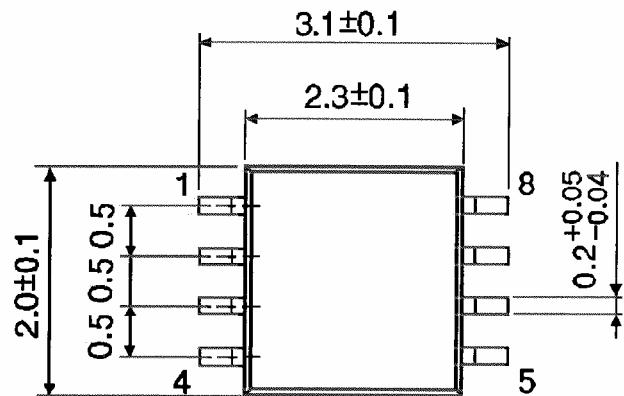
If the control function is not to be used, Toshiba recommended that the control pin be connected to the V_{CC} pin.


Ripple Rejection





TAR8D01K feature a circuit with an excellent ripple rejection characteristic. Because the circuit also features an excellent output fluctuation characteristic for sudden supply voltage drops, the circuit is ideal for in the RF blocks incorporated in all mobile telephones.

NOISE Pin

TAR8D01K device incorporate a NOISE pin to reduce output noise voltage. Inserting a capacitor between the NOISE pin and GND reduces output noise. To ensure stable operation, insert a capacitor of 0.0047 μ F or more between the NOISE pin and GND.

Package Dimensions

SSOP8-P-0.50A

Unit : mm

Weight: 0.01 g (Typ.)

RESTRICTIONS ON PRODUCT USE

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.