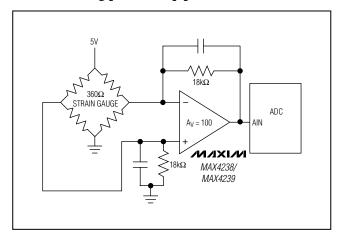


General Description


The MAX4238/MAX4239 are low-noise, low-drift, ultrahigh precision amplifiers that offer near-zero DC offset and drift through the use of patented autocorrelating zeroing techniques. This method constantly measures and compensates the input offset, eliminating drift over time and temperature and the effect of 1/f noise. Both devices feature rail-to-rail outputs, operate from a single 2.7V to 5.5V supply, and consume only 600µA. An activelow shutdown mode decreases supply current to 0.1µA.

The MAX4238 is unity-gain stable with a gain-bandwidth product of 1MHz, while the decompensated MAX4239 is stable with Ay ≥ 10V/V and a GBWP of 6.5MHz. The MAX4238/MAX4239 are available in 8-pin narrow SO, 6-pin TDFN and SOT23 packages.

Applications

Thermocouples Strain Gauges Electronic Scales Medical Instrumentation Instrumentation Amplifiers

Typical Application Circuit

Features

- ♦ Ultra-Low, 0.1µV Offset Voltage 2.0µV (max) at +25°C 2.5µV (max) at -40°C to +85°C 3.5µV (max) at -40°C to +125°C
- ♦ Low 10nV/°C Drift
- ♦ Specified over the -40°C to +125°C Automotive **Temperature Range**
- ♦ Low Noise: 1.5µV_{P-P} from DC to 10Hz
- ♦ 150dB Avol, 140dB PSRR, 140dB CMRR
- ♦ High Gain-Bandwidth Product 1MHz (MAX4238) 6.5MHz (MAX4239)
- ♦ 0.1µA Shutdown Mode
- ♦ Rail-to-Rail Output ($R_L = 1k\Omega$)
- ♦ Low 600µA Supply Current
- ♦ Ground-Sensing Input
- ♦ Single 2.7V to 5.5V Supply Voltage Range
- ♦ Available in a Space-Saving 6-Pin SOT23 and **TDFN Packages**

Ordering Information

PART	PIN- PACKAGE	TOP MARK	PKG CODE
MAX4238AUT-T	6 SOT23-6	AAZZ	U6F-6
MAX4238ASA	8 SO	_	S8-4
MAX4238ATT+T	6 TDFN-EP*	+ANG	T633-2
MAX4239AUT-T	6 SOT23-6	ABAA	U6F-6
MAX4239ASA	8 SO	_	S8-4
MAX4239ATT+T	6 TDFN-EP*	+ANH	T633-2

Note: All devices are specified over the -40°C to +125°C operating temperature range.

Selector Guide

PART	MINIMUM STABLE GAIN	GAIN BANDWIDTH (MHz)
MAX4238	1V/V	1
MAX4239	10V/V	6.5

Pin Configurations appear at end of data sheet.

MIXIM

Maxim Integrated Products 1

⁺Denotes lead-free package.

^{*}EP = Exposed paddle.

ABSOLUTE MAXIMUM RATINGS

6V	er-Supply Voltage (V _{CC} to GND).
$3ND - 0.3V$) to $(V_{CC} + 0.3V)$	ther Pins(G
	ut Short-Circuit Duration
	UT shorted to VCC or GND)
+70°C)	inuous Power Dissipation ($T_A = +$
	Pin Plastic SOT23
727mW	derate 9.1mW/°C above +70°C) .

8-Pin Plastic SO (derate 5.88mW/°C above	ve +70°C)471mW
6-Pin TDFN-EP (derate 18.2mW above +	70°C)1454mW
Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(2.7 \text{V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{V}, \text{V}_{\text{CM}} = \text{GND} = 0 \text{V}, \text{V}_{\text{OUT}} = \text{V}_{\text{CC}}/2, \text{R}_{\text{L}} = 10 \text{k}\Omega \text{ connected to V}_{\text{CC}}/2, \overline{\text{SHDN}} = \text{V}_{\text{CC}}, \textbf{T}_{\textbf{A}} = +25 ^{\circ} \textbf{C}, \text{unless otherwise noted.})$

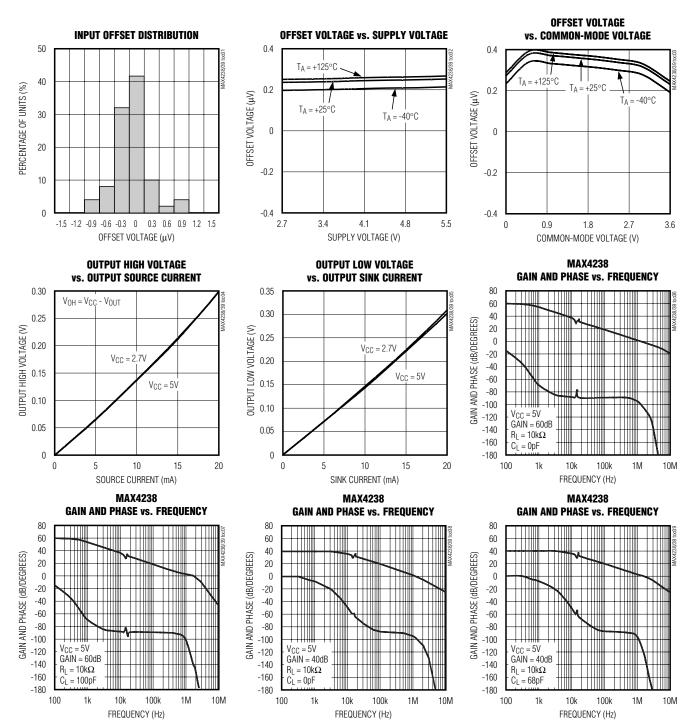
PARAMETER	SYMBOL	CONDITION	IS	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	(Note 1)			0.1	2	μV
Long-Term Offset Drift					50		nV/1000hr
Input Bias Current	ΙΒ	(Note 2)			1		рА
Input Offset Current	los	(Note 2)			2		рА
Peak-to-Peak Input Noise Voltage	e _{nP-P}	$R_S = 100\Omega$, 0.01Hz to 10Hz	•		1.5		μV _{P-P}
Input Voltage-Noise Density	en	f = 1kHz			30		NV/√Hz
Common-Mode Input Voltage Range	V _{CM}	Inferred from CMRR test		GND - 0.1		V _C C - 1.3	V
Common-Mode Rejection Ratio	CMRR	$-0.1V \le V_{CM} \le V_{CC} - 1.3V$ (1)	Note 1)	120	140		dB
Power-Supply Rejection Ratio	PSRR	2.7V ≤ V _{CC} ≤ 5.5V (Note 1)		120	140		dB
		0.05V ≤ V _{OUT} ≤ V _{CC} - 0.05V (Note 1)	$R_L = 10k\Omega$	125	150		10
Large-Signal Voltage Gain	Avol	0.1V ≤ V _{OUT} ≤ V _{CC} - 0.1V (Note 1)	$R_L = 1k\Omega$	125	145		dB
		D 401.0	V _{CC} - V _{OH}		4	10	
		$R_L = 10k\Omega$	V _{OL}		4	10	1 ,,
Output Voltage Swing	VOH/VOL	D. 4kO	Vcc - Voh		35	50	mV
		$R_L = 1k\Omega$	VoL		35	50	
Output Short-Circuit Current		To either supply			40		mA
Output Leakage Current		$0 \le V_{OUT} \le V_{CC}$, $\overline{SHDN} = G$	iND (Note 2)		0.01	1	μΑ
Slew Rate		$V_{CC} = 5V, C_L = 100pF,$	MAX4238		0.35		V/µs
Siew nate		V _{OUT} = 2V step	MAX4239		1.6		v/µs
Gain-Bandwidth Product	GBWP	$R_L = 10k\Omega$, $C_L = 100pF$,	MAX4238		1		MHz
Gain-Bandwidti i Toddet	GDVVI-	measured at f = 100kHz	MAX4239		6.5		IVII IZ
Minimum Stable Closed-Loop		$R_L = 10k\Omega$, $C_L = 100pF$,	MAX4238		1		V/V
Gain		phase margin = 60°	MAX4239		10		V / V

ELECTRICAL CHARACTERISTICS (continued)

 $(2.7V \le V_{CC} \le 5.5V, V_{CM} = GND = 0V, V_{OUT} = V_{CC}/2, R_L = 10kΩ$ connected to $V_{CC}/2, \overline{SHDN} = V_{CC}, T_A = +25°C$, unless otherwise noted.)

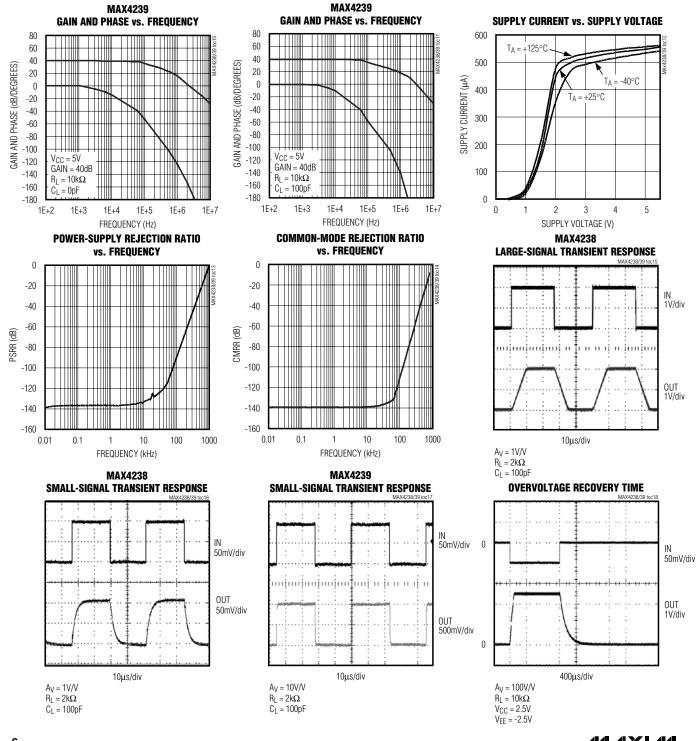
PARAMETER	SYMBOL	CONDITIO	ONS	MIN	TYP	MAX	UNITS
Maximum Closed-Loop Gain		$R_L = 10k\Omega$, $C_L = 100pF$,	MAX4238		1000		V/V
Maximum Closed-Loop Gain		phase margin = 60°	MAX4239		6700		V/V
			0.1% (10 bit)		0.5		
Cattling Time		1\/ atan	0.025% (12 bit)		1.0		ma
Settling Time		-1V step	0.006% (14 bit)		1.7		ms
			0.0015% (16 bit)		2.3		
			0.1% (10 bit)		3.3		
Overland Banavary Time		A _V = 10	0.025% (12 bit)		4.1		ma
Overload Recovery Time		(Note 4)	0.006% (14 bit)		4.9		ms
			0.0015% (16 bit)		5.7		
			0.1% (10 bit)		1.8		
Stortup Time		Ay = 10	0.025% (12 bit)		2.6		ma
Startup Time		AV = 10	0.006% (14 bit)		3.4		ms
			0.0015% (16 bit)		4.3		
Supply Voltage Range	Vcc	Inferred by PSRR test		2.7		5.5	V
Cupaly Current	las	SHDN = V _{CC} , no load, V _C	cc = 5.5V		600	850	
Supply Current	Icc	SHDN = GND, V _{CC} = 5.5	V		0.1	1	μΑ
Shutdown Logic-High	VIH			2.2			V
Shutdown Logic-Low	VIL					0.8	V
Shutdown Input Current		0V ≤ V SHDN ≤ VCC			0.1	1	μΑ

ELECTRICAL CHARACTERISTICS

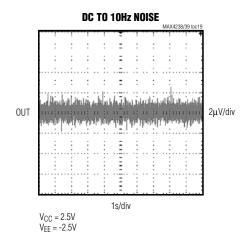

 $(2.7\text{V} \le \text{V}_{CC} \le 5.5\text{V}, \text{V}_{CM} = \text{GND} = 0\text{V}, \text{V}_{OUT} = \text{V}_{CC}/2, \text{R}_{L} = 10\text{k}\Omega$ connected to $\text{V}_{CC}/2, \overline{\text{SHDN}} = \text{V}_{CC}, \textbf{T}_{\textbf{A}} = \textbf{-40}^{\circ}\textbf{C}$ to $\textbf{+125}^{\circ}\textbf{C}$, unless otherwise noted.) (Note 5)

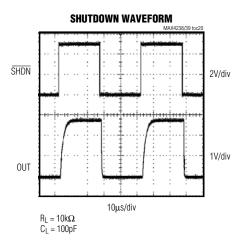
PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
Inner to Office to Voltage	\/	(Note 1)	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			2.5	\/
Input Offset Voltage	Vos	(Note 1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			3.5	μV
Input Offset Drift	TCVOS	(Note 1)			10		nV/°C
Common-Mode Input Voltage Range	V _{СМ}	Inferred from	CMRR test	GND - 0.05		V _C C - 1.4	V
Common-Mode Rejection Ratio	CMRR	GND - 0.05V ≤ V _{CM} ≤ V _{CC} -	$T_A = -40$ °C to $+85$ °C	115			dB
Common-wode nejection natio	CIVINN	1.4V (Note 1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	90			ив
Power-Supply Rejection Ratio	PSRR	$2.7V \le V_{CC} \le 1$	5.5V (Note 1)	120			dB
		$R_L = 10k\Omega$, $0.1V \le V_{OUT}$	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	125			dB
Lawre Cianal Welferra Onio		≤ V _{CC} - 0.1V (Note 1)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	95			αь
Large-Signal Voltage Gain	Avol	$R_L = 1k\Omega$	$0.1V \le V_{OUT} \le V_{CC} - 0.1V$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$	120			15
		(Note 1)	$0.2V \le V_{OUT} \le V_{CC} - 0.2V$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$	80		dB	
		D. 10k0	V _{CC} - V _{OH}			20	
Output Valtaga Cuina	\/\/	$R_L = 10k\Omega$	V _{OL}			20	ma\/
Output Voltage Swing	V _{OH} /V _{OL}	$R_L = 1k\Omega$	V _{CC} - V _{OH}			100	mV
		UL = 1KZZ	V _{OL}			100	
Output Leakage Current		$0V \le V_{OUT} \le V$ (Note 3)	I_{CC} , $\overline{SHDN} = GND$			2	μΑ
Supply Voltage Range	Vcc	Inferred by PS	SRR test	2.7		5.5	V
Cupply Current	loo	$\overline{SHDN} = V_{CC}$	no load, V _{CC} = 5.5V			900	
Supply Current	Icc	SHDN = GND	, V _{CC} = 5.5V			2	μΑ
Shutdown Logic High	VIH			2.2			V
Shutdown Logic Low	V _I L					0.7	V
Shutdown Input Current		0V ≤ V SHDN ≤	Vcc			2	μΑ

- **Note 1**: Guaranteed by design. Thermocouple and leakage effects preclude measurement of this parameter during production testing. Devices are screened during production testing to eliminate defective units.
- Note 2: IN+ and IN- are gates to CMOS transistors with typical input bias current of 1pA. CMOS leakage is so small that it is impractical to test and guarantee in production. Devices are screened during production testing to eliminate defective units.
- Note 3: Leakage does not include leakage through feedback resistors.
- **Note 4**: Overload recovery time is the time required for the device to recover from saturation when the output has been driven to either rail.
- Note 5: Specifications are 100% tested at TA = +25°C, unless otherwise noted. Limits over temperature are guaranteed by design.


Typical Operating Characteristics

 $(V_{CC} = 5V, V_{CM} = 0V, R_L = 10k\Omega \text{ connected to } V_{CC}/2, \overline{SHDN} = V_{CC}, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$


Typical Operating Characteristics (continued)


 $(V_{CC} = 5V, V_{CM} = 0V, R_L = 10k\Omega$ connected to $V_{CC}/2$, $\overline{SHDN} = V_{CC}$, $T_A = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{CC} = 5V, V_{CM} = 0V, R_L = 10k\Omega$ connected to $V_{CC}/2$, $\overline{SHDN} = V_{CC}$, $T_A = +25^{\circ}C$, unless otherwise noted.)

Pin Description

	PIN		NAME	FUNCTION
TDFN	SOT23	so	NAME	FUNCTION
1	1	6	OUT	Amplifier Output
2	2	4	GND	Ground
3	3	3	IN+	Noninverting Input
4	4	2	IN-	Inverting Input
5	5	1	SHDN	Shutdown Input. Active-low shutdown, connect to V _{CC} for normal operation.
6	6	7	Vcc	Positive Power Supply
_		5, 8	N.C.	No Connection. Not internally connected.
EP	_	_	EP	Exposed Pad. Connect EP to GND.

Detailed Description

The MAX4238/MAX4239 are high-precision amplifiers that have less than 2.5µV of input-referred offset and low 1/f noise. These characteristics are achieved through a patented autozeroing technique that samples and cancels the input offset and noise of the amplifier. The pseudorandom clock frequency varies from 10kHz to 15kHz, reducing intermodulation distortion present in chopper-stabilized amplifiers.

Offset Error Sources

To achieve very low offset, several sources of error common to autozero-type amplifiers need to be considered. The first contributor is the settling of the sampling capacitor. This type of error is independent of input-source impedance, or the size of the external gain-setting resistors. Maxim uses a patented design technique to avoid large changes in the voltage on the sampling capacitor to reduce settling time errors.

The second error contributor, which is present in both autozero and chopper-type amplifiers, is the charge injection from the switches. The charge injection appears as current spikes at the input, and combined with the impedance seen at the amplifier's input, contributes to input offset voltage. Minimize this feedthrough by reducing the size of the gain-setting resistors and the input-source impedance. A capacitor in parallel with the feedback resistor reduces the amount of clock feedthrough to the output by limiting the closed-loop bandwidth of the device.

The design of the MAX4238/MAX4239 minimizes the effects of settling and charge injection to allow specification of an input offset voltage of 0.1µV (typ) and less than 2.5µV over temperature (-40°C to +85°C).

1/f Noise

1/f noise, inherent in all semiconductor devices, is inversely proportional to frequency. 1/f noise increases 3dB/octave and dominates amplifier noise at lower frequencies. This noise appears as a constantly changing voltage in series with any signal being measured. The MAX4238/MAX4239 treat 1/f noise as a slow varying offset error, inherently canceling the 1/f noise.

Output Overload Recovery

Autozeroing amplifiers typically require a substantial amount of time to recover from an output overload. This is due to the time it takes for the null amplifier to correct the main amplifier to a valid output. The MAX4238/MAX4239 require only 3.3ms to recover from an output overload (see *Electrical Characteristics* and *Typical Operating Characteristics*).

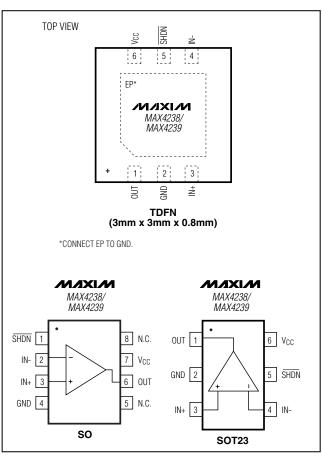
Shutdown

The MAX4238/MAX4239 feature a low-power (0.1 μ A) shutdown mode. When \overline{SHDN} is pulled low, the clock stops and the device output enters a high-impedance state. Connect \overline{SHDN} to VCC for normal operation.

Applications Information

Minimum and Maximum Gain Configurations

The MAX4238 is a unity-gain stable amplifier with a gain-bandwidth product (GBWP) of 1MHz. The MAX4239 is decompensated for a GBWP of 6.5MHz and is stable with a gain of 10V/V. Unlike conventional operational amplifiers, the MAX4238/MAX4239 have a maximum gain specification. To maintain stability, set the gain of the MAX4238 between Av = 1000V/V to 1V/V, and set the gain of the MAX4239 between Av = 6700V/V and 10V/V.

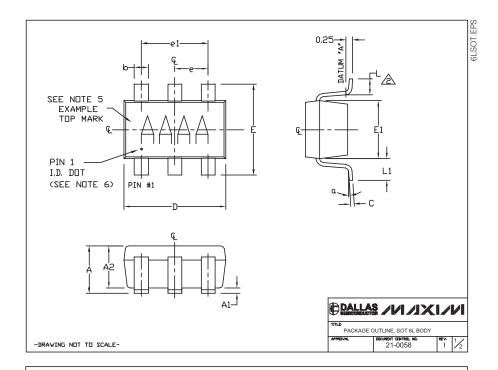

ADC Buffer Amplifier

The low offset, fast settling time, and 1/f noise cancellation of the MAX4238/MAX4239 make these devices ideal for ADC buffers. The MAX4238/MAX4239 are well suited for low-speed, high-accuracy applications such as strain gauges (see *Typical Application Circuit*).

Error Budget Example

When using the MAX4238/MAX4239 as an ADC buffer, the temperature drift should be taken into account when determining the maximum input signal. With a typical offset drift of $10nV/^{\circ}C$, the drift over a $10^{\circ}C$ range is 100nV. Setting this equal to 1/2LSB in a 16-bit system yields a full-scale range of 13mV. With a single 2.7V supply, an acceptable closed-loop gain is $A_V = 200$. This provides sufficient gain while maintaining headroom.

Pin Configurations


Chip Information

TRANSISTOR COUNT: 821

PROCESS: BICMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

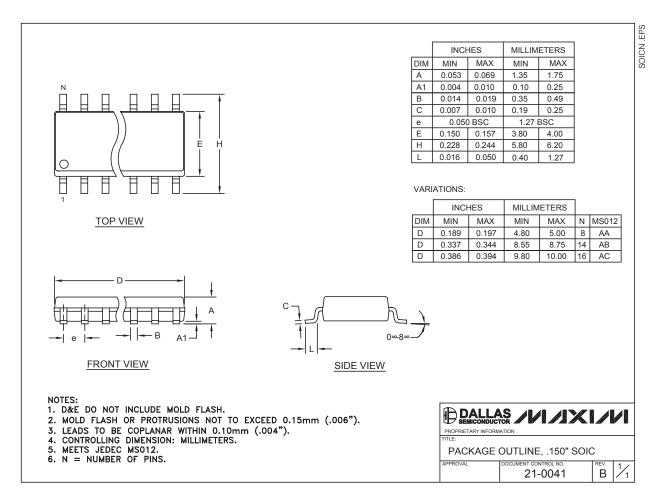
NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- EAD SURFACE.
- 3. PACKAGE DUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR. MOLD FLASH, PROTRUSION OR METAL BURR SHOULD NOT EXCEED 0.25mm.
- 4. PACKAGE DUTLINE INCLUSIVE DF SDLDER PLATING.
- 5. PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT. (SEE EXAMPLE TOP MARK)
- 6. PIN 1 I.D. DOT IS 0.3mm Ø MIN. LOCATED ABOVE PIN 1.
- 7. MEETS JEDEC MO178, VARIATION AB.
- 8. SDLDER THICKNESS MEASURED AT FLAT SECTION OF LEAD BETWEEN 0.08mm AND 0.15mm FROM LEADTIP.
- 9. LEAD TO BE COPLANAR WITHIN 0.1mm.
- 10. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
- 11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.

SYMBOL	MIN	NDMINAL	MAX
Α	0.90	1.25	1.45
A1	0.00	0.05	0.15
A2	0.90	1.10	1.30
b	0.35	0.40	0.50
С	0.08	0.15	0.20
D	2,80	2,90	3.00
E	2.60	2.80	3.00
E1	1.50	1.625	1.75
L	0.35	0.45	0.60
L1		0.60 REF	
el		1.90 BSC	:.
6		0.95 BS0).
۵	0*	2.5*	10°
	PKG	CODES:	
U6SN-1,	, UGCN-	-4, U6C- 2, U6S-3, , U6FH-6	

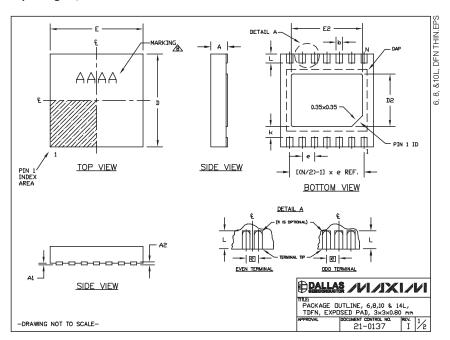
TITLE
PACKAGE OUTLINE, SOT 6L BODY

APPROVAL


BROWDERT EXAMBLE IN

BROWD

-DRAWING NOT TO SCALE-


Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

SYMBOL A	MIN.			ACKAGE VA	RIATI	ONS						
Α		MAX.	PI	KG. CODE	N	D2	E2	е	JEDEC SPEC	b	[(N/2)-1] x e	
	0.70	0.80	T	T633-2	6	1.50±0.10	2.30±0.10	0.95 BSC	MO229 / WEEA	0.40±0.05	1.90 REF	
D	2.90	3.10	T	T833-2	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF	
E	2.90	3.10	T	T833-3	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF	
A1	0.00	0.05	Т	T1033-1	10	1.50±0.10	2.30±0.10	0.50 BSC	MO229 / WEED-3	0.25±0.05	2.00 REF	
L	0.20	0.40	Т	T1033-2	10	1.50±0.10	2.30±0.10	0.50 BSC	MO229 / WEED-3	0.25±0.05	2.00 REF	
k	0.25	MIN.	Т	T1433-1	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF	
A2	0.20	REF.	Т	T1433-2	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF	
NOTES:												
1. ALL I 2. COPL 3. WARF 4. PACK 5. DRAW 6. "N" I 7. NUME	ANARITY AGE SH. AGE LEN ING COI S THE TERM OF	SHALL IALL NO NGTH/PA NFORMS TOTAL N LEADS	OT EXCEE EXCEED O KAGE WID O JEDEC MBER OF HOWN ARE	MO229, E LEADS. E FOR REFE	m. DNSID XCEP EREN	ERED AS S T DIMENSIO			C(S). ND T1433-1 & T	1433–2.		

MAX4238/MAX4239 Package Code: T633-2

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.