

N-channel 600 V, 0.110 Ω typ., 26 A MDmesh™ M2 EP Power MOSFET in a TO-220 package

Datasheet - production data

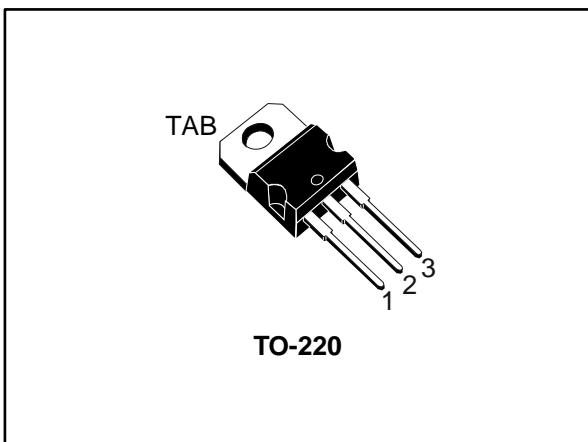


Figure 1: Internal schematic diagram

Features

Order code	$V_{DS} @ T_{Jmax}$	$R_{DS(on)} \text{ max.}$	I_D
STP35N60M2-EP	650 V	0.130 Ω	26 A

- Extremely low gate charge
- Excellent output capacitance (C_{oss}) profile
- Very low turn-off switching losses
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications
- Tailored for very high-frequency converters ($f > 150$ kHz)

Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STP35N60M2-EP	35N60M2EP	TO-220	Tube

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
2.1	Electrical characteristics (curves).....	6
3	Test circuits	9
4	Package information	10
4.1	TO-220 type A package information.....	11
5	Revision history	13

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	± 25	V
I_D	Drain current (continuous) at $T_C = 25^\circ\text{C}$	26	A
I_D	Drain current (continuous) at $T_C = 100^\circ\text{C}$	16	A
$I_{DM}^{(1)}$	Drain current (pulsed)	70	A
P_{TOT}	Total dissipation at $T_C = 25^\circ\text{C}$	190	W
$dv/dt^{(2)}$	Peak diode recovery	15	V/ns
$dv/dt^{(3)}$	MOSFET dv/dt ruggedness	50	V/ns
T_{stg}	Storage temperature range	-55 to 150	$^\circ\text{C}$
T_j	Operating junction temperature range		

Notes:

(1) Pulse width is limited by safe operating area.

(2) $I_{SD} \leq 26$ A, $di/dt \leq 400$ A/ μs , V_{DS} peak < $V_{(BR)DSS}$, $V_{DD} = 400$ V(3) $V_{DS} \leq 480$ V

Table 3: Thermal data

Symbol	Parameter	Value	Unit
$R_{thj-case}$	Thermal resistance junction-case	0.66	$^\circ\text{C}/\text{W}$
$R_{thj-amb}$	Thermal resistance junction-ambient	62.5	$^\circ\text{C}/\text{W}$

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I_{AR}	Avalanche current, repetitive or non-repetitive (pulse width limited by T_{jmax})	5	A
E_{AS}	Single pulse avalanche energy (starting $T_j = 25^\circ\text{C}$, $I_D = I_{AR}$, $V_{DD} = 50$ V)	500	mJ

2 Electrical characteristics

$T_C = 25^\circ\text{C}$ unless otherwise specified

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}$, $I_D = 1 \text{ mA}$	600			V
I_{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}$, $V_{DS} = 600 \text{ V}$			1	μA
		$V_{GS} = 0 \text{ V}$, $V_{DS} = 600 \text{ V}$, $T_C = 125^\circ\text{C}$ ⁽¹⁾			100	μA
I_{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}$, $V_{GS} = \pm 25 \text{ V}$			± 10	μA
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu\text{A}$	2	3	4	V
$R_{DS(on)}$	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}$, $I_D = 13 \text{ A}$		0.110	0.130	Ω

Notes:

⁽¹⁾Defined by design, not subject to production test

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
C_{iss}	Input capacitance	$V_{DS} = 100 \text{ V}$, $f = 1 \text{ MHz}$, $V_{GS} = 0 \text{ V}$	-	1750	-	pF
C_{oss}	Output capacitance		-	97	-	pF
C_{rss}	Reverse transfer capacitance		-	2.5	-	pF
$C_{oss \text{ eq.}}^{(1)}$	Equivalent output capacitance	$V_{DS} = 0$ to 480 V , $V_{GS} = 0 \text{ V}$	-	204	-	pF
R_G	Intrinsic gate resistance	$f = 1 \text{ MHz}$, $I_D = 0 \text{ A}$	-	5	-	Ω
Q_g	Total gate charge	$V_{DD} = 480 \text{ V}$, $I_D = 26 \text{ A}$, $V_{GS} = 0$ to 10 V (see Figure 16: "Test circuit for gate charge behavior")	-	41	-	nC
Q_{gs}	Gate-source charge		-	7	-	nC
Q_{gd}	Gate-drain charge		-	20	-	nC

Notes:

⁽¹⁾ $C_{oss \text{ eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7: Switching energy

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$E_{(off)}$	Turn-off energy (from 90% V_{GS} to 0% I_D)	$V_{DD} = 400 \text{ V}$, $I_D = 4 \text{ A}$, $R_G = 4.7 \Omega$, $V_{GS} = 10 \text{ V}$	-	22	-	μJ
		$V_{DD} = 400 \text{ V}$, $I_D = 10 \text{ A}$, $R_G = 4.7 \Omega$, $V_{GS} = 10 \text{ V}$	-	44	-	μJ

Table 8: Switching times

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
$t_{d(on)}$	Turn-on delay time	$V_{DD} = 300 \text{ V}$, $I_D = 13 \text{ A}$, $R_G = 4.7 \Omega$, $V_{GS} = 10 \text{ V}$ (see Figure 15: "Test circuit for resistive load switching times" and Figure 20: "Switching time waveform")	-	16.5	-	ns
t_r	Rise time		-	13.5	-	ns
$t_{d(off)}$	Turn-off-delay time		-	70	-	ns
t_f	Fall time		-	7	-	ns

Table 9: Source drain diode

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
I_{SD}	Source-drain current		-		26	A
$I_{SDM}^{(1)}$	Source-drain current (pulsed)		-		70	A
$V_{SD}^{(2)}$	Forward on voltage	$V_{GS} = 0 \text{ V}$, $I_{SD} = 26 \text{ A}$	-		1.6	V
t_{rr}	Reverse recovery time	$I_{SD} = 26 \text{ A}$, $di/dt = 100 \text{ A}/\mu\text{s}$, $V_{DD} = 60 \text{ V}$ (see Figure 17: "Test circuit for inductive load switching and diode recovery times")	-	273		ns
Q_{rr}	Reverse recovery charge		-	3.6		μC
I_{RRM}	Reverse recovery current		-	26.5		A
t_{rr}	Reverse recovery time	$I_{SD} = 26 \text{ A}$, $di/dt = 100 \text{ A}/\mu\text{s}$, $V_{DD} = 60 \text{ V}$, $T_j = 150 \text{ }^\circ\text{C}$ (see Figure 17: "Test circuit for inductive load switching and diode recovery times")	-	400		ns
Q_{rr}	Reverse recovery charge		-	6.3		μC
I_{RRM}	Reverse recovery current		-	31.5		A

Notes:

(1)Pulse width is limited by safe operating area.

(2)Pulsed: pulse duration = 300 μs , duty cycle 1.5%

2.1 Electrical characteristics (curves)

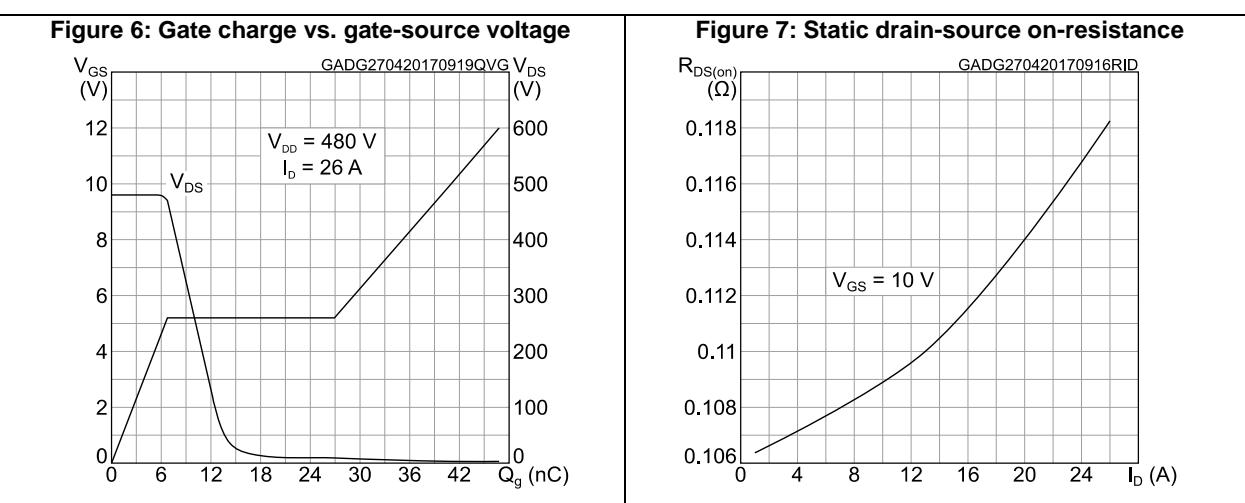
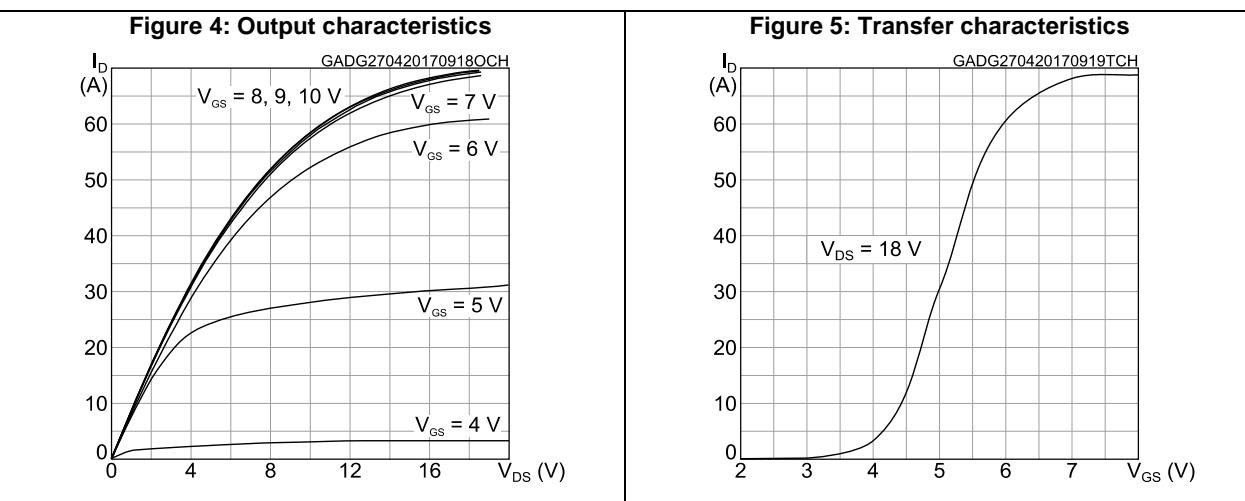
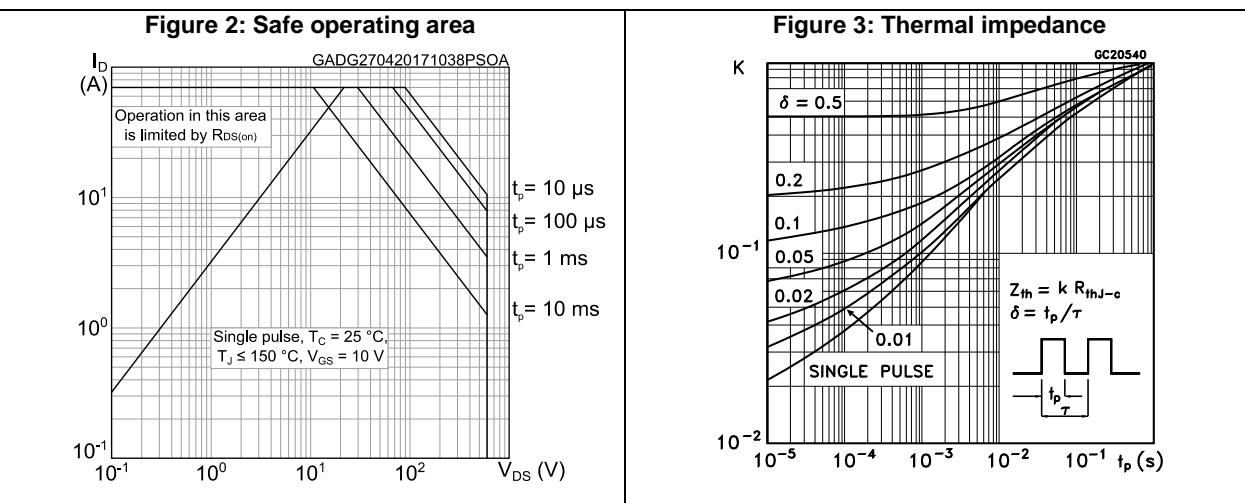




Figure 8: Capacitance variations

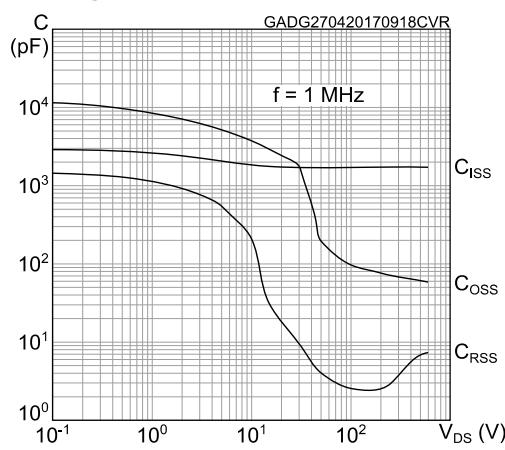


Figure 9: Output capacitance stored energy

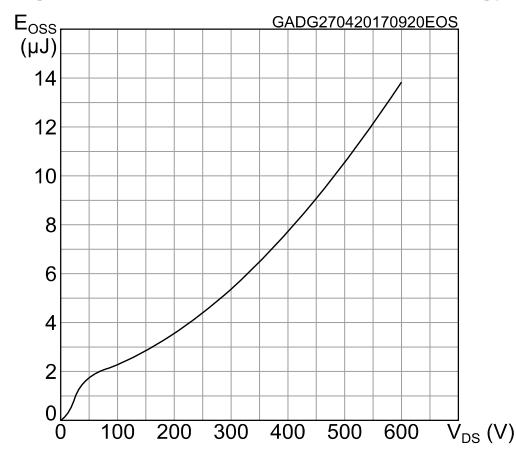


Figure 10: Turn-off switching energy vs. drain current

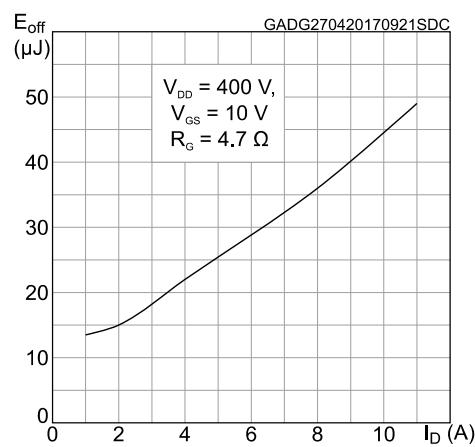


Figure 11: Normalized gate threshold voltage vs. temperature

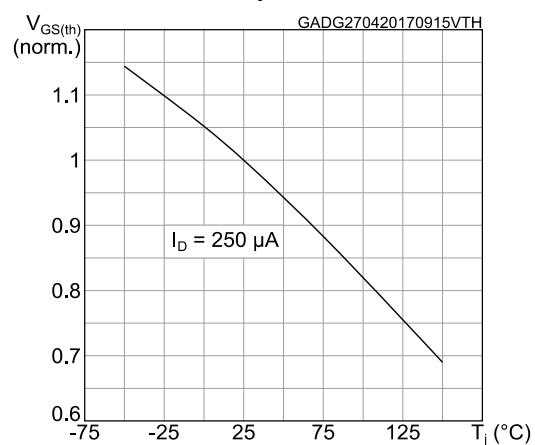


Figure 12: Normalized on-resistance vs. temperature

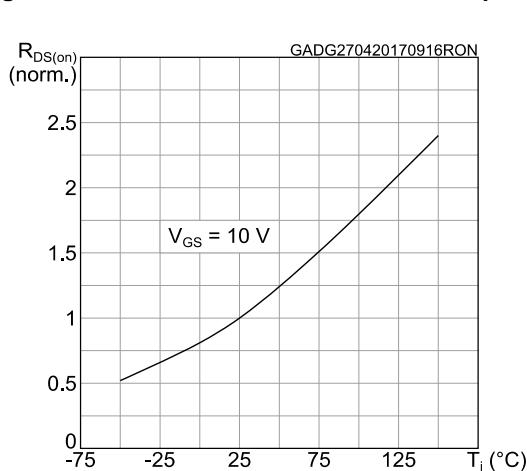


Figure 13: Source-drain diode forward characteristics

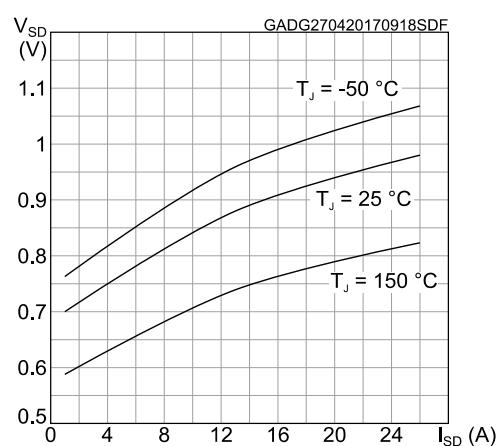
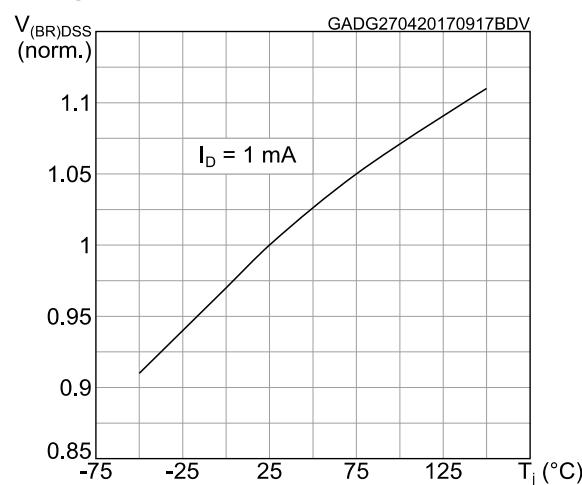



Figure 14: Normalized $V_{(BR)DSS}$ vs. temperature

3 Test circuits

Figure 15: Test circuit for resistive load switching times

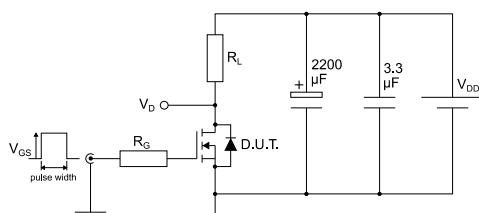


Figure 16: Test circuit for gate charge behavior

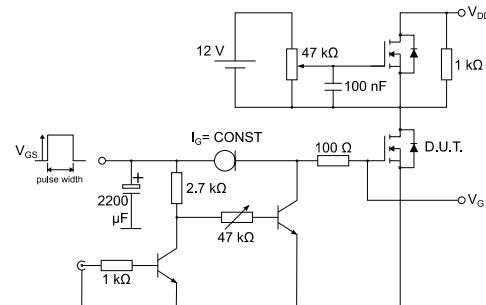


Figure 17: Test circuit for inductive load switching and diode recovery times

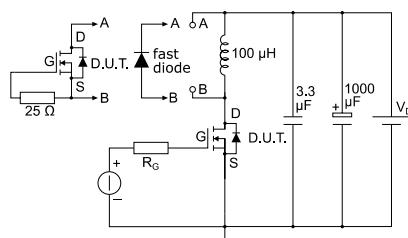


Figure 18: Unclamped inductive load test circuit

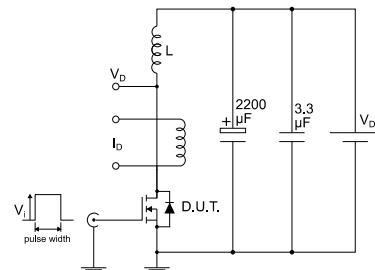


Figure 19: Unclamped inductive waveform

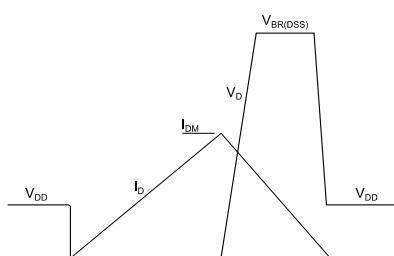
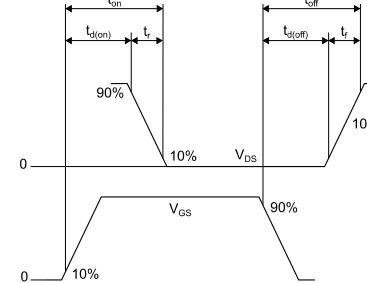
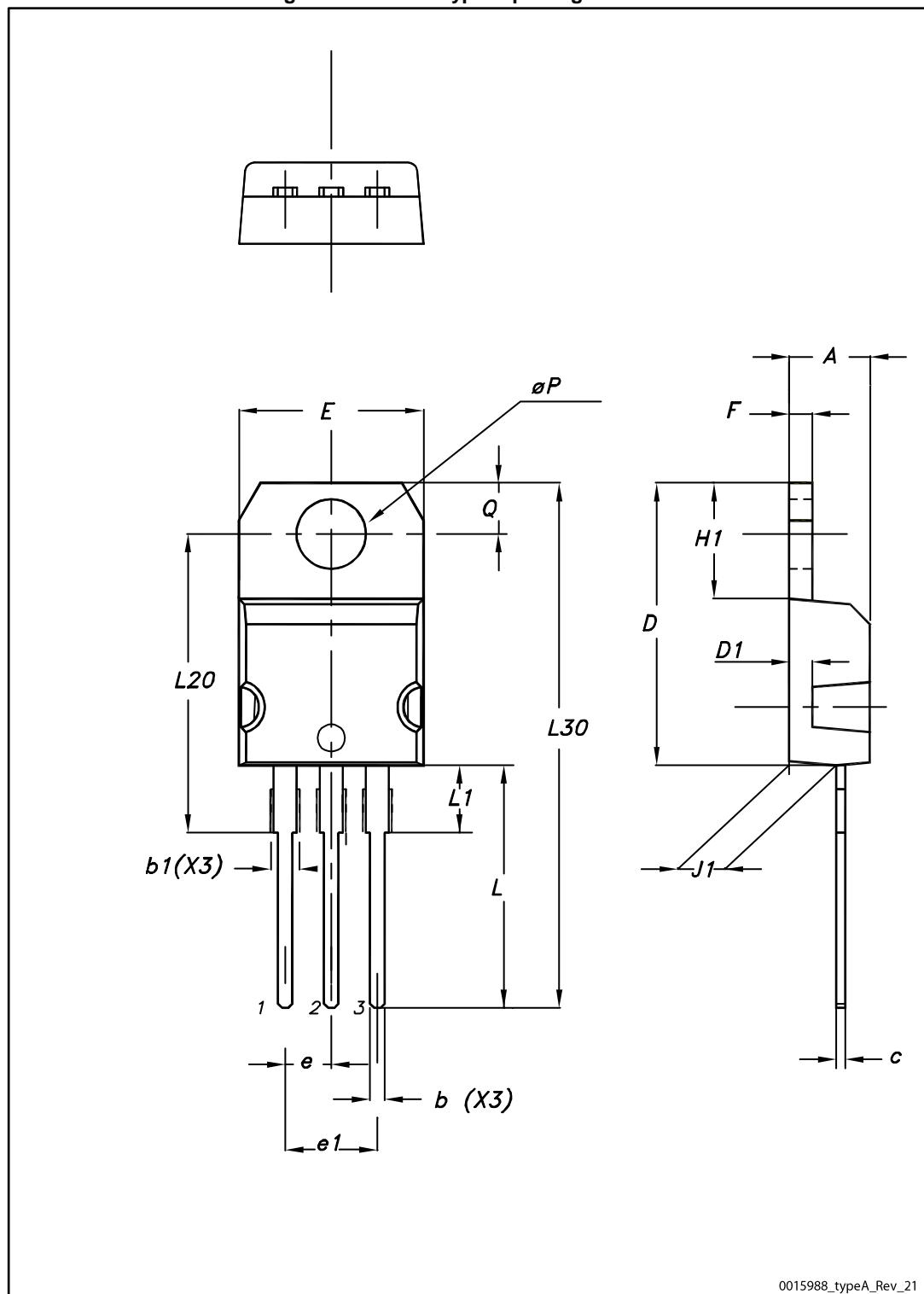



Figure 20: Switching time waveform



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

4.1 TO-220 type A package information

Figure 21: TO-220 type A package outline

0015988_typeA_Rev_21

Table 10: TO-220 type A package mechanical data

Dim.	mm		
	Min.	Typ.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
c	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10.00		10.40
e	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øP	3.75		3.85
Q	2.65		2.95

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
02-May-2017	1	First release

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved