

National Semiconductor

July 1998

DS36C278 Low Power Multipoint EIA-RS-485 Transceiver

DS36C278

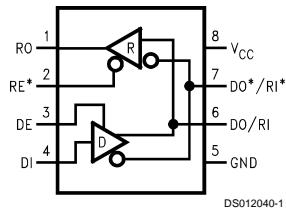
Low Power Multipoint EIA-RS-485 Transceiver

General Description

The DS36C278 is a low power differential bus/line transceiver designed to meet the requirements of RS-485 standard for multipoint data transmission. In addition it is compatible with TIA/EIA-422-B.

The CMOS design offers significant power savings over its bipolar and ALS counterparts without sacrificing ruggedness against ESD damage. The device is ideal for use in battery powered or power conscious applications. I_{CC} is specified at 500 μ A maximum.

The driver and receiver outputs feature TRI-STATE® capability. The driver outputs operate over the entire common mode range of -7V to +12V. Bus contention or fault situations that cause excessive power dissipation within the device are handled by a thermal shutdown circuit, which forces the driver outputs into the high impedance state.


The receiver incorporates a fail safe circuit which guarantees a high output state when the inputs are left open. (Note 1)

The DS36C278T is fully specified over the industrial temperature range (-40°C to +85°C).

Features

- 100% RS-485 compliant
 - Guaranteed RS-485 device interoperation
- Low power CMOS design: I_{CC} 500 μ A max
- Built-in power up/down glitch-free circuitry
 - Permits live transceiver insertion/displacement
- DIP and SOIC packages available
- Industrial temperature range: -40°C to +85°C
- On-board thermal shutdown circuitry
 - Prevents damage to the device in the event of excessive power dissipation
- Wide common mode range: -7V to +12V
- Receiver open input fail-safe (Note 1)
- 1/4 unit load (DS36C278): ≥ 128 nodes
- 1/2 unit load (DS36C278T): ≥ 64 nodes
- ESD (human body model): ≥ 2 kV
- Drop in replacement for:
 - LTC485, MAX485, DS75176, DS3695

Connection and Logic Diagram

Order Number DS36C278TM, DS36C278TN,
DS36C278M, DS36C278N
See NS Package Number M08A or N08E

Truth Table

DRIVER SECTION				
RE*	DE	DI	DO/RI	DO*/RI*
X	H	H	H	L
X	H	L	L	H
X	L	X	Z	Z

RECEIVER SECTION			
RE*	DE	RI-RI*	RO
L	L	$\geq +0.2V$	H
L	L	$\leq -0.2V$	L
H	L	X	Z
L	L	OPEN (Note 1)	H

Note 1: Non-terminated, open input only

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V_{CC})	+12V
Input Voltage (DE, RE*, & DI)	-0.5V to (V_{CC} +0.5V)
Common Mode (V_{CM})	
Driver Output/Receiver Input	±15V
Input Voltage (DO/RI, DO*/RI*)	±14V
Receiver Output Voltage	-0.5V to (V_{CC} +0.5V)
Maximum Package Power Dissipation @ +25°C	9.5 mW/°C above +25°C
M Package 1190 mW, derate	6.0 mW/°C above +25°C
N Package 744 mW, derate	

Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering 4 sec)	+260°C

Recommended Operating Conditions

	Min	Typ	Max	Units
Supply Voltage (V_{CC})	+4.75	+5.0	+5.25	V
Bus Voltage	-7		+12	V
Operating Free Air Temperature (Ta)				
DS36C278T	-40	25	+85	°C
DS36C278	0	25	+70	°C

Electrical Characteristics (Notes 3, 4)

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified

Symbol	Parameter	Conditions	Reference	Min	Typ	Max	Units	
DIFFERENTIAL DRIVER CHARACTERISTICS								
V_{OD1}	Differential Output Voltage	$I_O = 0$ mA (No Load)		1.5		5.0	V	
V_{OD0}	Output Voltage	$I_O = 0$ mA	(422) (485)	0		5.0	V	
V_{OD0^*}	Output Voltage	(Output to GND)		0		5.0	V	
V_{OD2}	Differential Output Voltage (Termination Load)	$R_L = 50\Omega$	(422) (485)	2.0	2.8		V	
		$R_L = 27\Omega$		1.5	2.3	5.0	V	
ΔV_{OD2}	Balance of V_{OD2} $ V_{OD2} - V_{OD2^*} $	$R_L = 27\Omega$ or 50Ω	(Note 5) (422, 485)	-0.2	0.1	+0.2	V	
V_{OD3}	Differential Output Voltage (Full Load)	$R1 = 54\Omega$, $R2 = 375\Omega$ $V_{TEST} = -7V$ to +12V		1.5	2.0	5.0	V	
V_{OC}	Driver Common Mode Output Voltage	$R_L = 27\Omega$	(485) (422)	0		3.0	V	
		$R_L = 50\Omega$		0		3.0	V	
ΔV_{OC}	Balance of V_{OC} $ V_{OC} - V_{OC^*} $	$R_L = 27\Omega$ or $R_L = 50\Omega$	(Note 5) (422, 485)	-0.2		+0.2	V	
I_{OSD}	Driver Output Short-Circuit Current	$V_O = +12V$	(485) Figure 4 (485)		200	+250	mA	
		$V_O = -7V$			-190	-250	mA	
RECEIVER CHARACTERISTICS								
V_{TH}	Differential Input High Threshold Voltage	$V_O = V_{OH}$, $I_O = -0.4V$ $-7V \leq V_{CM} \leq +12V$	(Note 6) (422, 485)		+0.035	+0.2	V	
V_{TL}	Differential Input Low Threshold Voltage	$V_O = V_{OL}$, $I_O = 0.4$ mA $-7V \leq V_{CM} \leq +12V$		-0.2	-0.035		V	
V_{HST}	Hysteresis	$V_{CM} = 0V$	(Note 7)		70		mV	
R_{IN}	Input Resistance	$-7V \leq V_{CM} \leq +12V$		DS36C278T	24	68	kΩ	
R_{IN}	Input Resistance	$-7V \leq V_{CM} \leq +12V$	DS36C278	48	68		kΩ	
I_{IN}	Line Input Current (Note 8)	Other Input = 0V, DE = V_{IL} , RE* = V_{IL} , $V_{CC} = 4.75$ to 5.25 or 0V	DS36C278	$V_{IN} = +12V$	0	0.19	0.25	mA
				$V_{IN} = -7V$	0	-0.1	-0.2	mA
		$V_{CC} = +3.0V$ or 0V, $T_A = 25^\circ C$	DS36C278T	$V_{IN} = +12V$	0	0.19	0.5	mA
				$V_{IN} = -7V$	0	-0.1	-0.4	mA
I_{ING}	Line Input Current Glitch (Note 8)	Other Input = 0V, DE = V_{IL} , RE* = V_{IL} , $V_{CC} = +3.0V$ or 0V, $T_A = 25^\circ C$	DS36C278	$V_{IN} = +12V$	0	0.19	0.25	mA
				$V_{IN} = -7V$	0	-0.1	-0.2	mA
		$T_A = 25^\circ C$	DS36C278T	$V_{IN} = +12V$	0	0.19	0.5	mA
				$V_{IN} = -7V$	0	-0.1	-0.4	mA
I_B	Input Balance Test	$RS = 500\Omega$	(422) (Note 10)			±400	mV	
V_{OH}	High Level Output Voltage	$I_{OH} = -4$ mA, $V_{ID} = +0.2V$	RO Figure 11	3.5	4.6		V	
V_{OL}	Low Level Output Voltage	$I_{OL} = +4$ mA, $V_{ID} = -0.2V$			0.3	0.5	V	

Electrical Characteristics (Notes 3, 4) (Continued)

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified

Symbol	Parameter	Conditions	Reference	Min	Typ	Max	Units
RECEIVER CHARACTERISTICS							
I_{OSR}	Short Circuit Current	$V_O = GND$	RO	7	35	85	mA
I_{OZR}	TRI-STATE Leakage Current	$V_O = 0.4V$ to $2.4V$				± 1	μA
DEVICE CHARACTERISTICS							
V_{IH}	High Level Input Voltage		DE, RE*, DI	2.0		V_{CC}	V
V_{IL}	Low Level Input Voltage			GND		0.8	V
I_{IH}	High Level Input Current	$V_{IH} = V_{CC}$				2	μA
I_{IL}	Low Level Input Current	$V_{CC} = 5V$				-2	μA
		$V_{CC} = +3.0V$				-2	μA
I_{CC}	Power Supply Current (No Load)	Driver and Receiver ON	V_{CC}		200	500	μA
I_{CCR}		Driver OFF, Receiver ON			200	500	μA
I_{CCD}		Driver ON, Receiver OFF			200	500	μA
I_{CCZ}		Driver and Receiver OFF			200	500	μA

Switching Characteristics (Notes 4, 9)

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified

Symbol	Parameter	Conditions	Reference	Min	Typ	Max	Units
DRIVER CHARACTERISTICS							
t_{PHLD}	Differential Propagation Delay High to Low	$R_L = 54\Omega$, $C_L = 100\text{ pF}$	<i>Figures 5, 6</i>	10	39	80	ns
t_{PLHD}	Differential Propagation Delay Low to High			10	40	80	ns
t_{SKD}	Differential Skew $ t_{PHLD} - t_{PLHD} $			0	1	10	ns
t_r	Rise Time			3	25	50	ns
t_f	Fall Time			3	25	50	ns
t_{PHZ}	Disable Time High to Z		<i>Figures 7, 8</i>	—	80	200	ns
t_{PLZ}	Disable Time Low to Z	$C_L = 15\text{ pF}$ $RE^* = L$		—	80	200	ns
t_{PZH}	Enable Time Z to High	$C_L = 100\text{ pF}$ $RE^* = L$	<i>Figures 7, 8</i>	—	50	200	ns
t_{PZL}	Enable Time Z to Low			—	65	200	ns
RECEIVER CHARACTERISTICS							
t_{PHL}	Propagation Delay High to Low	$C_L = 15\text{ pF}$	<i>Figures 12, 13</i>	30	210	400	ns
t_{PLH}	Propagation Delay Low to High			30	190	400	ns
t_{SK}	Skew, $ t_{PHL} - t_{PLH} $			0	20	50	ns
t_{PLZ}	Output Disable Time	$C_L = 15\text{ pF}$	<i>Figures 14, 15, 16</i>	—	50	150	ns
t_{PHZ}				—	55	150	ns
t_{PZL}	Output Enable Time			—	40	150	ns
t_{PZH}				—	45	150	ns

Switching Characteristics (Notes 4, 9) (Continued)

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except V_{OD1} and V_{OD2} .

Note 4: All typicals are given for: $V_{CC} = +5.0V$, $T_A = +25^\circ C$.

Note 5: Delta $|V_{OD2}|$ and Delta $|V_{OC}|$ are changes in magnitude of V_{OD2} and V_{OC} , respectively, that occur when input changes state.

Note 6: Threshold parameter limits specified as an algebraic value rather than by magnitude.

Note 7: Hysteresis defined as $V_{HST} = V_{TH} - V_{TL}$.

Note 8: I_{IN} includes the receiver input current and driver TRI-STATE leakage current.

Note 9: C_L includes probe and jig capacitance.

Note 10: For complete details of test, see RS-485.

Parameter Measurement Information

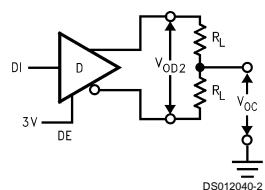


FIGURE 1. Driver V_{OD2} and V_{OC}

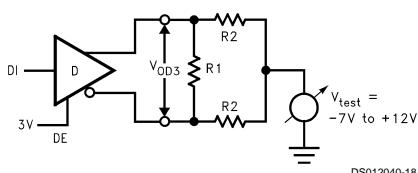


FIGURE 2. Driver V_{OD3}

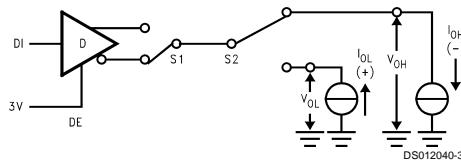


FIGURE 3. Driver V_{OH} and V_{OL}

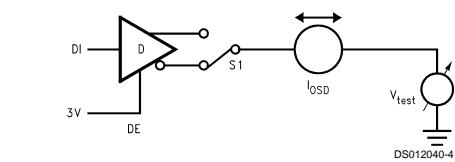


FIGURE 4. Driver I_{OSD}

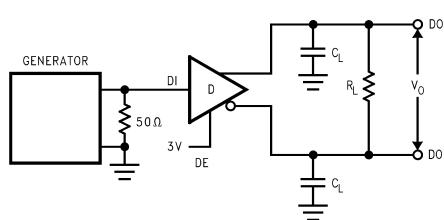


FIGURE 5. Driver Differential Propagation Delay Test Circuit

Parameter Measurement Information (Continued)

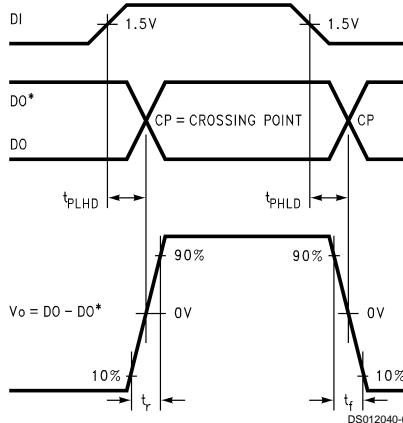


FIGURE 6. Driver Differential Propagation Delays and Differential Rise and Fall Times

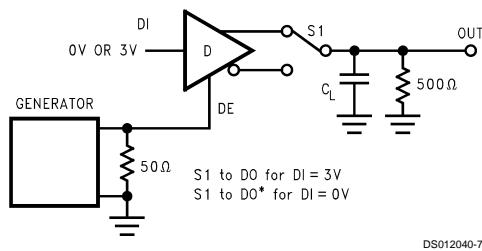


FIGURE 7. TRI-STATE Test Circuit (t_{PZH} , t_{PHZ})

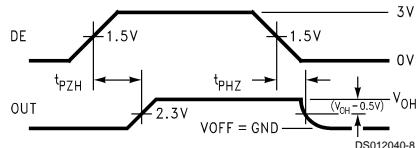


FIGURE 8. TRI-STATE Waveforms (t_{PZH} , t_{PHZ})

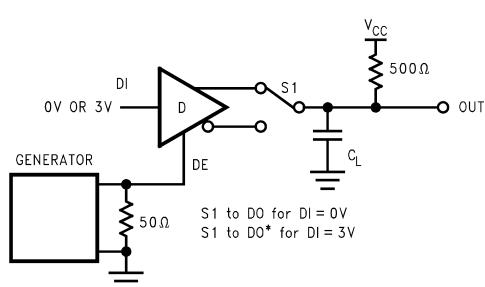


FIGURE 9. TRI-STATE Test Circuit (t_{PZL} , t_{PLZ})

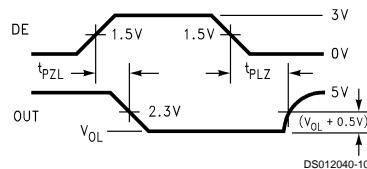


FIGURE 10. TRI-STATE Waveforms (t_{PZL} , t_{PLZ})

FIGURE 11. Receiver V_{OH} and V_{OL}

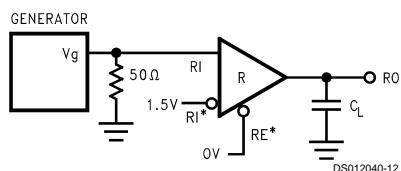


FIGURE 12. Receiver Differential Propagation Delay Test Circuit

Parameter Measurement Information (Continued)

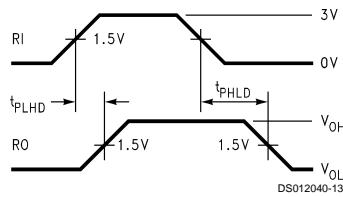


FIGURE 13. Receiver Differential Propagation Delay Waveforms

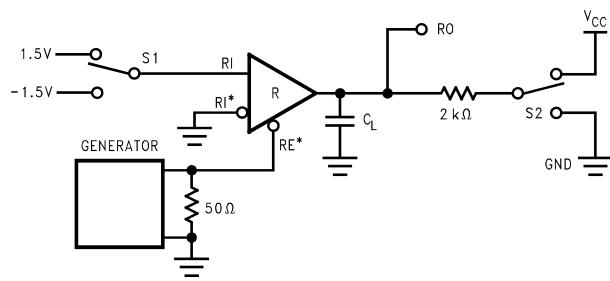


FIGURE 14. Receiver TRI-STATE Test Circuit

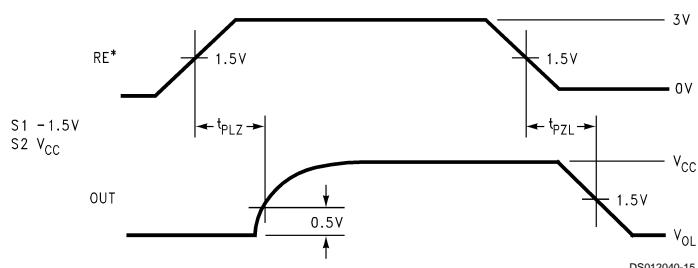


FIGURE 15. Receiver Enable and Disable Waveforms (t_{PLZ} , t_{PZL})

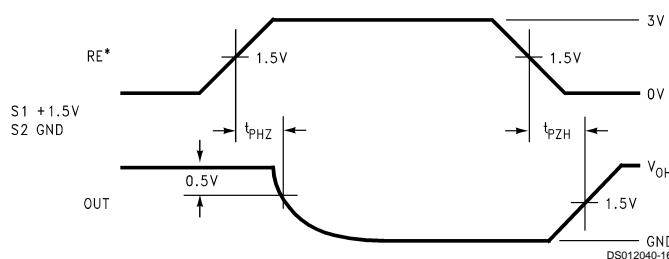


FIGURE 16. Receiver Enable and Disable Waveforms (t_{PHZ} , t_{PZH})

Typical Application Information

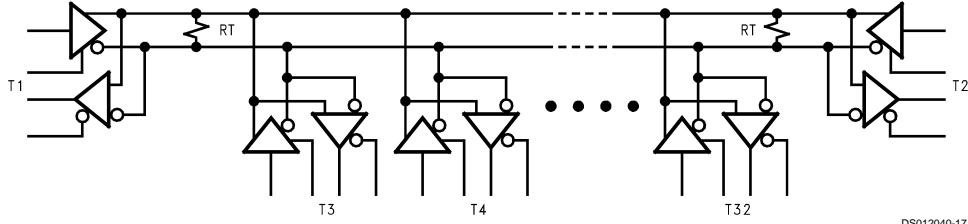


FIGURE 17. Typical RS-485 Bus Interface

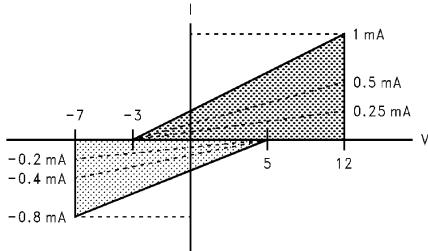
TABLE 1. Device Pin Descriptions

Pin No.	Name	Description
1	RO	Receiver Output: When RE (Receiver Enable) is LOW, the receiver is enabled (ON), if $DO/RI \geq DO^*/RI^*$ by 200 mV, RO will be HIGH. If $DO/RI \leq DO^*/RI^*$ by 200 mV, RO will be LOW. Additionally RO will be HIGH for OPEN (Non-terminated) Inputs.
2	RE*	Receiver Output Enable: When RE* is LOW the receiver output is enabled. When RE* is HIGH, the receiver output is in TRI-STATE (OFF).
3	DE	Driver Output Enable: When DE is HIGH, the driver outputs are enabled. When DE is LOW, the driver outputs are in TRI-STATE (OFF).
4	DI	Driver Input: When DE (Driver Enable) is HIGH, the driver is enabled, if DI is LOW, then DO/RI will be LOW and DO^*/RI^* will be HIGH. If DI is HIGH, then DO/RI is HIGH and DO^*/RI^* is LOW.
5	GND	Ground Connection.
6	DO/RI	Driver Output/Receiver Input, 485 Bus Pin.
7	DO^*/RI^*	Driver Output/Receiver Input, 485 Bus Pin.
8	V _{CC}	Positive Power Supply Connection: Recommended operating range for V _{CC} is +4.75V to +5.25V.

Unit Load

A unit load for an RS-485 receiver is defined by the input current versus the input voltage curve. The gray shaded region is the defined operating range from -7V to +12V. The top border extending from -3V at 0 mA to +12V at +1 mA is defined as one unit load. Likewise, the bottom border extending from +5V at 0 mA to -7V at -0.8 mA is also defined as one unit load (see Figure 18). An RS-485 driver is capable of driving up to 32 unit loads. This allows up to 32 nodes on a single bus. Although sufficient for many applications, it is sometimes desirable to have even more nodes. For example, an aircraft that has 32 rows with 4 seats per row would benefit from having 128 nodes on one bus. This would allow signals to be transferred to and from each individual seat to 1 main station. Usually there is one or two less seats in the last row of the aircraft near the restrooms and food storage area. This frees the node for the main station.

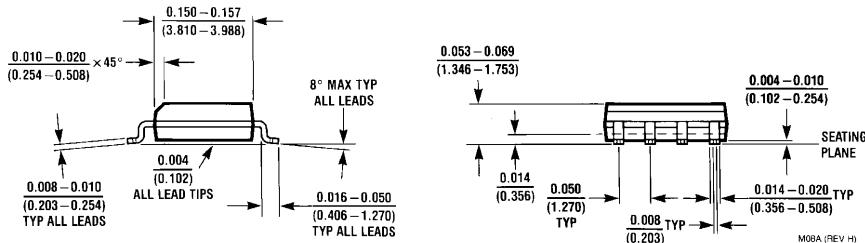
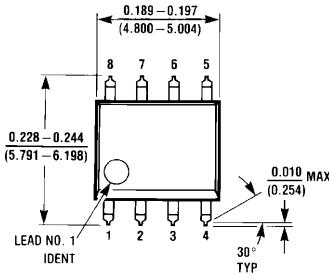
The DS36C278, the DS36C279, and the DS36C280 all have 1/2 unit load and 1/4 unit load (UL) options available. These devices will allow up to 64 nodes or 128 nodes guaranteed over temperature depending upon which option is selected. The 1/2 UL option is available in industrial temperature and the 1/4 UL is available in commercial temperature.


First, for a 1/2 UL device the top and bottom borders shown in Figure 18 are scaled. Both 0 mA reference points at +5V and

-3V stay the same. The other reference points are +12V at +0.5 mA for the top border and -7V at -0.4 mA for the bottom border (see Figure 18). Second, for a 1/4 UL device the top and bottom borders shown in Figure 18 are scaled also. Again, both 0 mA reference points at +5V and -3V stay the same. The other reference points are +12V at +0.25 mA for the top border and -7V at -0.2 mA for the bottom border (see Figure 18).

The advantage of the 1/2 UL and 1/4 UL devices is the increased number of nodes on one bus. In a single master multi-slave type of application where the number of slaves exceeds 32, the DS36C278/279/280 may save in the cost of extra devices like repeaters, extra media like cable, and/or extra components like resistors.

The DS36C279 and DS36C280 have an additional feature which offers more advantages. The DS36C279 has an automatic sleep mode function for power conscious applications. The DS36C280 has a slew rate control for EMI conscious applications. Refer to the sleep mode and slew rate control portion of the application information section in the corresponding datasheet for more information on these features.



Unit Load (Continued)

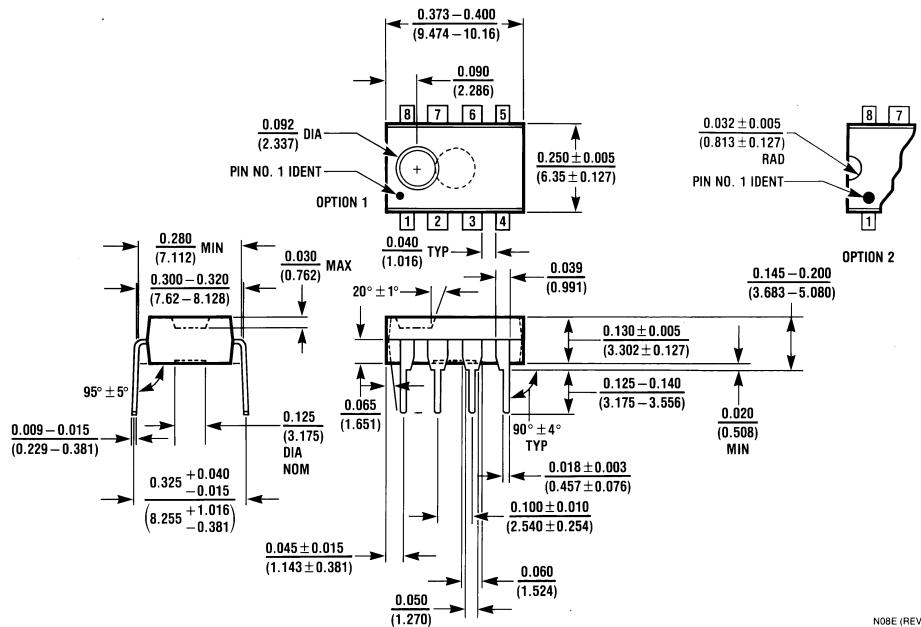

DS012040-19

FIGURE 18. Input Current vs Input Voltage Operating Range

Physical Dimensions inches (millimeters) unless otherwise noted

**8-Lead (0.150" Wide) Molded Small Outline Package, JEDEC
Order Number DS36C278TM, DS36C278M
NS Package Number M08A**

**8-Lead (0.300" Wide) Molded Dual-In-Line Package
Order Number DS36C278TN, DS36C278N
NS Package Number N08E**

DS36C278 Low Power Multipoint EIA-RS-485 Transceiver

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com
www.national.com

National Semiconductor Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: sea.support@nsc.com

National Semiconductor Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507