

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT132

Quad 2-input NAND Schmitt trigger

Product specification
File under Integrated Circuits, IC06

September 1993

Quad 2-input NAND Schmitt trigger

74HC/HCT132

FEATURES

- Output capability: standard
- I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HC/HCT132 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT132 contain four 2-input NAND gates which accept standard input signals. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

The gate switches at different points for positive and negative-going signals. The difference between the positive voltage V_{T+} and the negative voltage V_{T-} is defined as the hysteresis voltage V_H .

QUICK REFERENCE DATA

$GND = 0 \text{ V}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
t_{PHL}/t_{PLH}	propagation delay nA, nB to nY	$C_L = 15 \text{ pF}$; $V_{CC} = 5 \text{ V}$	11	17	ns
C_I	input capacitance		3.5	3.5	pF
C_{PD}	power dissipation capacitance per gate	notes 1 and 2	24	20	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o) \text{ where:}$$

f_i = input frequency in MHz

f_o = output frequency in MHz

$\sum (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "[74HC/HCT/HCU/HCMOS Logic Package Information](#)".

Quad 2-input NAND Schmitt trigger

74HC/HCT132

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 4, 9, 12	1A to 4A	data inputs
2, 5, 10, 13	1B to 4B	data inputs
3, 6, 8, 11	1Y to 4Y	data outputs
7	GND	ground (0 V)
14	V _{CC}	positive supply voltage

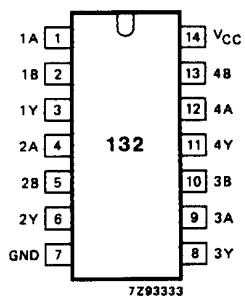


Fig.1 Pin configuration.

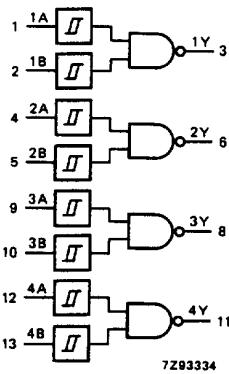


Fig.2 Logic symbol.

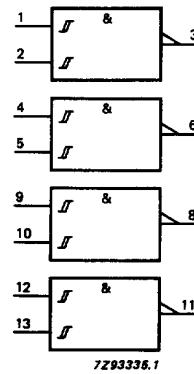


Fig.3 IEC logic symbol.

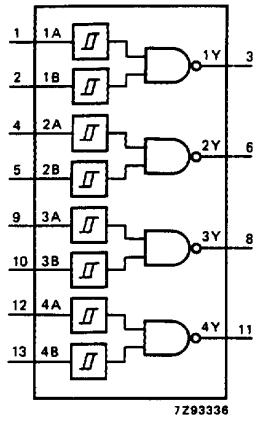


Fig.4 Functional diagram.

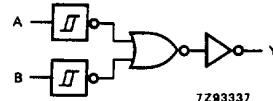


Fig.5 Logic diagram (one Schmitt trigger).

FUNCTION TABLE

INPUTS		OUTPUT
nA	nB	nY
L	L	H
L	H	H
H	L	H
H	H	L

Notes

- 1. H = HIGH voltage level
- L = LOW voltage level

APPLICATIONS

- Wave and pulse shapers
- Astable multivibrators
- Monostable multivibrators

Quad 2-input NAND Schmitt trigger

74HC/HCT132

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "[74HC/HCT/HCU/HCMOS Logic Family Specifications](#)". Transfer characteristics are given below.

Output capability: standard

I_{CC} category: SSI

Transfer characteristics for 74HC

Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	T _{amb} (°C)							UNIT	TEST CONDITIONS				
		74HC								V _{CC} (V)	WAVEFORMS			
		+25			-40 to +85		-40 to +125							
		min.	typ.	max.	min.	max.	min.	max.						
V _{T+}	positive-going threshold	0.7	1.18	1.5	0.7	1.5	0.7	1.5	V	2.0	Figs 6 and 7			
		1.7	2.38	3.15	1.7	3.15	1.7	3.15		4.5				
		2.1	3.14	4.2	2.1	4.2	2.1	4.2		6.0				
V _{T-}	negative-going threshold	0.3	0.63	1.0	0.3	1.0	0.3	1.0	V	2.0	Figs 6 and 7			
		0.9	1.67	2.2	0.9	2.2	0.9	2.2		4.5				
		1.2	2.26	3.0	1.2	3.0	1.2	3.0		6.0				
V _H	hysteresis ($V_{T+} - V_{T-}$)	0.2	0.55	1.0	0.2	1.0	0.2	1.0	V	2.0	Figs 6 and 7			
		0.4	0.71	1.4	0.4	1.4	0.4	1.4		4.5				
		0.6	0.88	1.6	0.6	1.6	0.6	1.6		6.0				

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF

SYMBOL	PARAMETER	T _{amb} (°C)							UNIT	TEST CONDITIONS				
		74HC								V _{CC} (V)	WAVEFORMS			
		+25			-40 TO +85		-40 TO +125							
		min.	typ.	max.	min.	max.	min.	max.						
t _{PHL} / t _{PLH}	propagation delay nA, nB to nY		36	125		155		190	ns	2.0	Fig.13			
			13	25		31		38		4.5				
			10	21		26		32		6.0				
t _{THL} / t _{TLH}	output transition time		19	75		95		110	ns	2.0	Fig.13			
			7	15		19		22		4.5				
			6	13		16		19		6.0				

Quad 2-input NAND Schmitt trigger

74HC/HCT132

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "[74HC/HCT/HCU/HCMOS Logic Family Specifications](#)". Transfer characteristics are given below.

Output capability: standard

I_{CC} category: SSI

Notes to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications.

To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nA, nB	0.3

Transfer characteristics for 74HCT

Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER	T_{amb} (°C)							UNIT	TEST CONDITIONS				
		74HCT								V _{CC} (V)	WAVEFORMS			
		+25			−40 to +85		−40 to +125							
		min.	typ.	max.	min.	max.	min.	max.						
V_{T+}	positive-going threshold	1.2 1.4	1.41 1.59	1.9 2.1	1.2 1.4	1.9 2.1	1.2 1.4	1.9 2.1	V	4.5 5.5	Figs 6 and 7			
V_{T-}	negative-going threshold	0.5 0.6	0.85 0.99	1.2 1.4	0.5 0.6	1.2 1.4	0.5 0.6	1.2 1.4	V	4.5 5.5	Figs 6 and 7			
V_H	hysteresis ($V_{T+} - V_{T-}$)	0.4 0.4	0.56 0.60	— —	0.4 0.4	— —	0.4 0.4	— —	V	4.5 5.5	Figs 6 and 7			

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF

SYMBOL	PARAMETER	T_{amb} (°C)							UNIT	TEST CONDITIONS				
		74HCT								V _{CC} (V)	WAVEFORMS			
		+25			−40 to +85		−40 to +125							
		min.	typ.	max.	min.	max.	min.	max.						
t_{PHL}/t_{PLH}	propagation delay nA, nB to nY		20	33		41		50	ns	4.5	Fig.13			
t_{THL}/t_{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.13			

Quad 2-input NAND Schmitt trigger

74HC/HCT132

TRANSFER CHARACTERISTIC WAVEFORMS

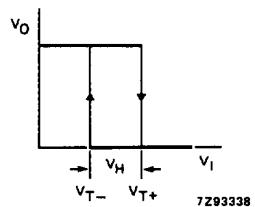
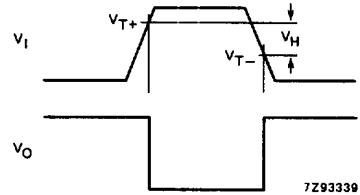
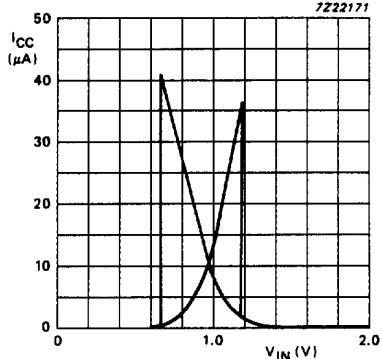
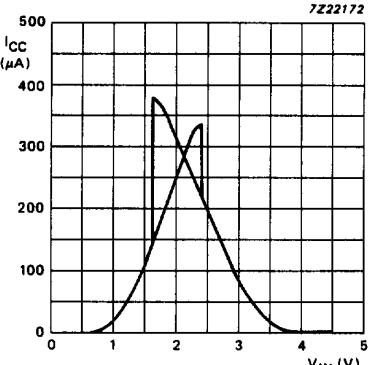
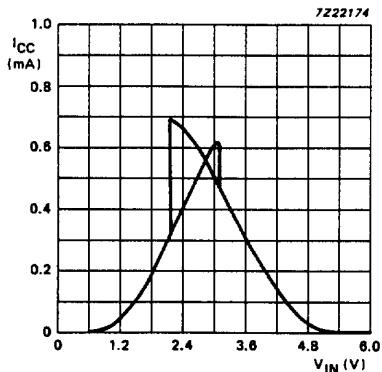
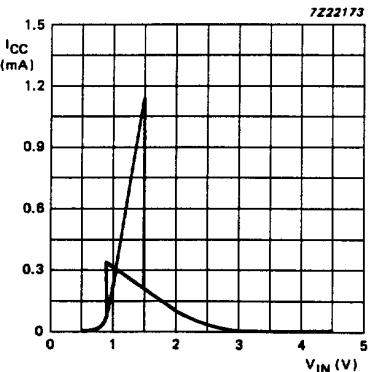
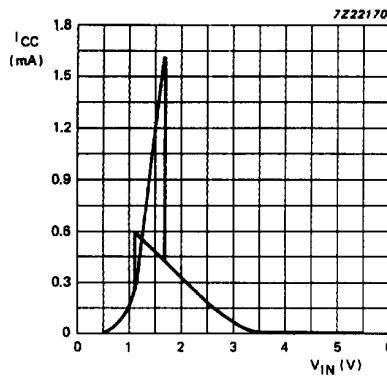
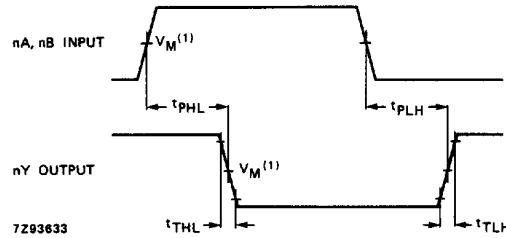








Fig.6 Transfer characteristic.


Fig.7 Waveforms showing the definition of V_{T+} , V_{T-} and V_H ; where V_{T+} and V_{T-} are between limits of 20% and 70%.Fig.8 Typical HC transfer characteristics; $V_{CC} = 2$ V.Fig.9 Typical HC transfer characteristics; $V_{CC} = 4.5$ V.Fig.10 Typical HC transfer characteristics; $V_{CC} = 6$ V.Fig.11 Typical HCT transfer characteristics; $V_{CC} = 4.5$ V.

Quad 2-input NAND Schmitt trigger

74HC/HCT132

Fig.12 Typical HCT transfer characteristics; $V_{CC} = 5.5$ V.

AC WAVEFORMS

(1) HC : $V_M = 50\%$; $V_I = \text{GND to } V_{CC}$.
HCT: $V_M = 1.3$ V; $V_I = \text{GND to } 3$ V.

Fig.13 Waveforms showing the input (nA, nB) to output (nY) propagation delays and the output transition times.

Quad 2-input NAND Schmitt trigger

74HC/HCT132

Application information

The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula:

$$P_{ad} = f_i \times (t_r \times I_{CCa} + t_f \times I_{CCa}) \times V_{CC}$$

Where:

P_{ad} = additional power dissipation (μW)
 f_i = input frequency (MHz)
 t_r = input rise time (ns); 10% – 90%
 t_f = input fall time (ns); 10% – 90%
 I_{CCa} = average additional supply current (μA)

Average I_{CCa} differs with positive or negative input transitions, as shown in Figs 14 and 15.

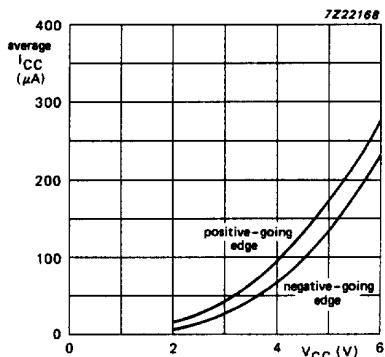


Fig.14 Average I_{CC} for HC Schmitt trigger devices; linear change of V_i between 0.1 V_{CC} to 0.9 V_{CC} .

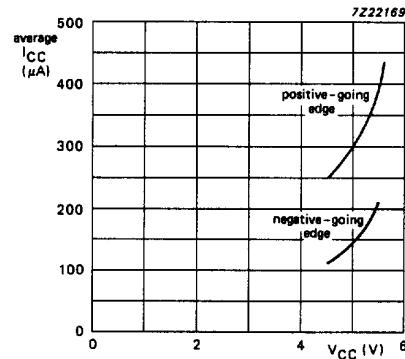


Fig.15 Average I_{CC} for HCT Schmitt trigger devices; linear change of V_i between 0.1 V_{CC} to 0.9 V_{CC} .

HC/HCT132 used in a relaxation oscillator circuit, see Fig.16.

$$\text{HC: } f = \frac{1}{T} \approx \frac{1}{0.8RC}$$

$$\text{HCT: } f = \frac{1}{T} \approx \frac{1}{0.67RC}$$

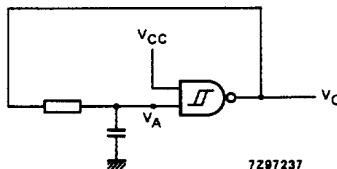


Fig.16 Relaxation oscillator using HC/HCT132.

Note to Application information

All values given are typical unless otherwise specified.

PACKAGE OUTLINES

See ["74HC/HCT/HCU/HCMOS Logic Package Outlines"](#).