

Features and Benefits

- Built-in pre-drive IC
- MOSFET or IGBT power element
- Alleviate noise generation by adjusting an internal resistor
- CMOS compatible input (3.3 V and 5 V)
- High-side gate driver using bootstrap circuit or floating power supply
- Built-in protection circuit for controlling power supply voltage drop (UVLO on VBB and VCC)
- Overcurrent protection (OCP), overcurrent limiting (OCL), and thermal shutdown (TSD)
- Output of fault signal during operation of protection circuit
- Output current 2.5 A, 3.0 A, or 5 A
- Small DIP (SIM 40-pin)
- Isolation rating of 1500 Vrms/min.
- UL recognized component, File No.: E118037

Description

The SIM6800M Series inverter power module (IPM) provides a robust, highly-integrated solution for optimally controlling 3-phase motor power inverter systems and variable speed control systems used in energy-conserving designs to drive motors of residential and commercial appliances. This IC takes up to 5 A (continuous) output current. It can withstand voltages of up to 600 V (IGBT breakdown voltage).

The SIM6800M Series series power package includes an IC with all of the necessary power elements (six MOSFETs or IGBTs and six freewheeling diodes), pre-driver ICs (two), and bootstrap diodes (three), needed to configure the main circuit of an inverter. This enables the main circuit of the inverter to be configured with fewer external components than traditional designs.

Applications include residential white goods (home applications) and commercial appliance motor control:

- · Air conditioner fan
- Small ventilation fan
- Dishwasher pump

Functional Block Diagram

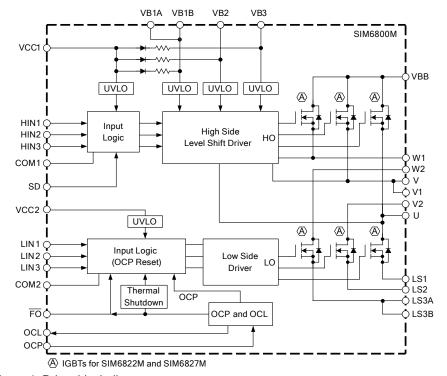


Figure 1. Driver block diagram.

High Voltage 3-Phase Motor Driver ICs

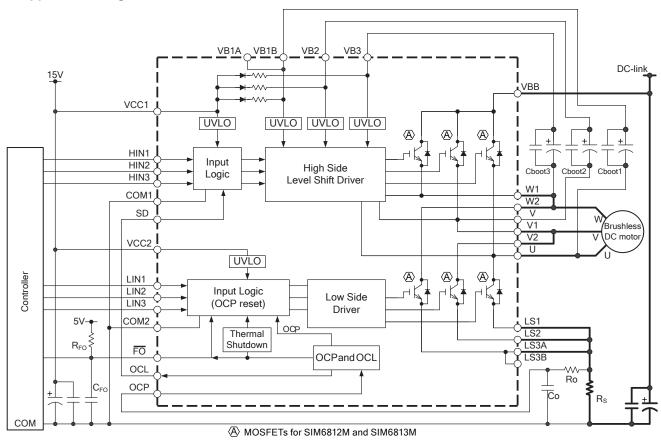
Selection Guide

		Power Dev	ice Rating		Doot	lmmt					
Part		Breakdown	Output V _{CE(sa}		Breakdown Output		_{at)} (V)	Boot Resistance	Input Voltage		
Number	Type	(V)	(A)	(Typ)	(Max)	(Ω)	(VAC)	Note			
SIM6812M	MOSFET	500	2.5	2.0	2.4	60	200				
SIM6813M	MOSFET	500	3.0	1.4	1.7	60	200				
SIM6822M	IGBT	000	600	600	600	5.0	4.75	5	60	200	Low switching loss
SIM6827M	IGBI	600	5.0	1.75	2.2 60		200	Low noise			

Recommended Operating Conditions

Characteristic	Symbol		Remarks		Тур.	Max.	Units
	V	SIM6812M SIM6813M	Between VBB and LS	-	-	400	V
Main Supply Voltage	V_{BB}	SIM6822M SIM6827M	Between VBB and LS	_	_	400	V
Logic Supply Voltage	V _{CC}		Between VCC and COM	13.5	15	16.5	V
Dead Time	t _{dead}			1.5	_	_	μs
Bootstrap Capacitor	C _{BOOT}			1	-	-	μF
Pull-up Resistor FO Pin	R _{FO}			3.3	-	10	kΩ
Capacitor FO Pin	C _{FO}			0.001	-	0.01	μF
Shunt Resistor LS Pin	R _S	SIM6812M SIM6813M	V _{LS} ≤ 1 V	0.33	-	-	Ω
Switching Frequency	f _{PWM}	SIM6822M SIM6827M		-	-	20	kHz

High Voltage 3-Phase Motor Driver ICs


SIM6812M and SM6813M Absolute Maximum Ratings, valid at $T_A = 25$ °C

Characteristic	Symbol		Remarks	Rating	Unit
MOSFET Breakdown Voltage	V _{DSS}	I _D = 100 μA		500	V
Logic Supply Voltage	V _{CC}	Between VC	CC and COM	20	V
Bootstrap Voltage	V _{BS}	Between VE	and HS (U,V, and W phases)	20	V
Output Current Continuous		SIM6812M	T _C = 25°C	2.5	Α
Output Current, Continuous	I _O	SIM6813M	T _C = 25°C	3.0	А
Output Current Bulgad		SIM6812M	PW ≤ 100 µs, duty cycle = 1%	3.75	Α
Output Current, Pulsed	I _{OP}	SIM6813M	PW ≤ 100 µs, duty cycle = 1%	4.5	Α
Input Voltage	V _{IN}	HINx, LINx,	and OCP pins	-0.5 to 7	V
Thermal Resistance (Junction to Case)	R ₀ JC(IGBT)	All elements	operating	3.6	°C/W
Thermal Resistance (Junction to Ambient)	R _{0JA(IGBT)}	All elements	operating	25	°C/W
Case Operating Temperature	T _{COP}				°C
Storage Temperature	T _{stg}				°C
Isolation Voltage	V _{iso}	Between ma	arked side of device and each pin, 1 minute, AC	1500	V _{rms}

SIM6822M and SIM6827M Absolute Maximum Ratings, valid at T_A = 25°C

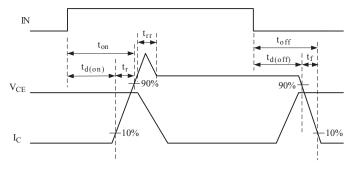
Characteristic	Symbol	Remarks	Rating	Unit
Supply Voltage	V _{DC}	Between VBB and LS1, LS2, and LS3	450	V
Supply Voltage (Surge)	V _{DC(Surge)}	Between VBB and LS1, LS2, and LS3	500	V
IGBT Breakdown Voltage	V _{CES}	I _C = 1 mA	600	V
Logic Supply Voltage	V _{CC}	Between VCC and COM	20	V
Bootstrap Voltage	V _{BS}	Between VB and HS (U,V, and W phases)	20	V
Output Current, Continuous	Io		5.0	Α
Output Current, Pulsed	I _{OP}	PW ≤ 100 µs, duty cycle = 1%	7.5	Α
Input Voltage	V _{IN}	HINx, LINx, and OCP pins	-0.5 to 7	V
Thermal Designation to Cook	R ₀ JC(IGBT)	IGBT, all elements operating	3.6	°C/W
Thermal Resistance (Junction to Case)	R _{0JC(FRG)}	FRG, all elements operating	4.2	°C/W
The area Decister of (lunction to Archivet)	R _{0JA(IGBT)}	IGBT, all elements operating	25	°C/W
Thermal Resistance (Junction to Ambient)	R _{0JA(FRG)}	FRG, all elements operating	29	°C/W
Case Operating Temperature	T _{COP}		-20 to 100	°C
Storage Temperature	T _{stg}		-40 to 150	°C
Isolation Voltage	V _{iso}	Between marked side of device and each pin, 1 minute, AC	1500	V _{rms}

Typical Application Diagram

NOTE

- W1 and W2, as well as V1 and V2< must be externally connected to each other.
- If not using the Current Limiter (OCL) function, leave the OCL and SD pins open, but the SD pin should be connected to GND if significant external noise is observed.
- Place a pull-up resistor, R_{FO} , between the 3.3 V or 5 V supply and the IC, selected according to anti-noise characteristics, even though a 1 M Ω pull-up resistor is built-in at the \overline{FO} pin. Note that connecting to the 3.3 V or 5 V supply without a pull-up resistor disables the TSD function (however, low-side UVLO protection and OCP function remain active).
- To avoid malfunctions resulting from noise interference, place a 0.001 to 0.01 μF ceramic capacitor (C_{FO}) between the \overline{FO} and COM2 pins.
- To avoid malfunctions resulting from noise interference, the traces must be as short as possible between the IC and the bootstrap capacitors, C_{bootx} (approximately 1 μ F).
- To avoid malfunctions resulting from noise interference, place a 0.01 to 0.1 μF ceramic capacitor between the VCC1 and COM1 pins, as well as between the VCC2 and COM2 pins. Also, the traces between them must be as short as possible.
- To avoid malfunctions resulting from noise interference, the traces between the current sense resistor R_S, which is placed between the LS and COM2 pins, and the IC must be as short and wide as possible.
- To avoid malfunction, the wiring between the LS and COM2 pins should be as short as possible. When wiring cannot be shortened sufficiently, insert a fast diode between LS and COM2.
- When the low pass filter (RC filter, R_O , C_O in the typical application circuit) is connected to the shunt resistor for current detection, the time constant should be set to be 0.2 μ s or shorter. Care should be taken because destruction of the IPM may be caused due to detection delay when the time constant of filter is set to be 0.2 μ s or longer, because a filter (1.5 μ s(min)) is incorporated in the OCP circuit of the IPM.

ELECTRICAL CHARACTERISTICS, valid at T_A=25°C, unless otherwise noted


Characteristics	Symbol	Conditions	Min	Тур	Max	Units
Logic Supply Current	I _{CC}	V _{CC} = 15 V	_	3.2	4.5	mA
Bootstrap Supply Current	I _{BX}	V _{BX} = 15 V, V _{HIN} = 5 V per phase		140	400	μA
Innut Valtage	V _{IH}	V _{CC} = 15 V, output on	_	2	2.5	V
Input Voltage	V _{IL}	V _{CC} = 15 V, output off	1	1.5	_	V
FO Die Janua Threehold Voltage	V _{FOIH}	V _{CC} = 15 V, output on	_	2	2.5	V
FO Pin Input Threshold Voltage	V _{FOIL}	V _{CC} = 15 V, output off	1	1.5	_	V
In most Command	I _{IH}	V _{CC} = 15 V, V _{IN} = 5 V	_	230	500	μA
Input Current	I _{IL}	V _{IN} = 0 V	_	-	2	μA
	V _{UVHL}	High side hetures MPV and H M an M	9.0	10.0	11.0	V
Lindon altere Leak Out	V _{UVHH}	High side, between VBx and U, V, or W	9.5	10.5	11.5	V
Undervoltage Lock Out	V _{UVLL}	Law side between VOO and COM	10.0	11.0	12.0	V
	V _{UVLH}	Low side, between VCC and COM	10.5	11.5	12.5	V
<u> </u>	V _{FO(L)}	V 45VV 5VB 4010	0	-	0.5	V
FO Pin Output Voltage	V _{FO(H)}	V_{CC} = 15 V, V_{FO} = 5 V, R_{FO} = 10 k Ω	4.8	-	-	V
001 8: 0 4 434 8	V _{OCL(L)}		0	-	0.5	V
OCL Pin Output Voltage	V _{OCL(H)}	V _{CC} = 15 V	4.5	_	5.5	V
Overcurrent Limit Reference Voltage	V _{LIM}	V _{CC} = 15 V	0.6175	0.65	0.6825	V
Overcurrent Protection Trip Voltage	V _{TRIP}	V _{CC} = 15 V	0.9	1.0	1.1	V
Overcurrent Protection Hold Time	t _p	V _{CC} = 15 V	20	25	_	μs
OCP Blanking Time	t _{bk(OCP)}	V _{CC} = 15 V	_	2	_	μs
OCL Blanking Time	t _{bk(OCL)}	V _{CC} = 15 V	_	2	_	μs
Overtemperature Detection Threshold	T _{DH}			150	165	°C
Temperature (Activation and Deactivation)	T _{DL}	V _{CC} = 15 V, no heatsink	105	120	135	°C
Bootstrap Diode Leakage Current	I _{LBD}	V _R = 500 V	_	-	10	μA
Bootstrap Diode Forward Voltage	V_{FBD}	I _F = 0.15 A	_	1.0	1.3	V
Bootstrap Diode Series Resistor	R _{BD}		45	60	75	Ω
SIM6812M and SIM6813M Switching	Characteris	tics				
MOSFET Leakage Current	I _{DSS}	V _{DS} = 500 V	_	_	100	μA
MOSFET On-State Resistance	В	SIM6812M V _{CC} = 15 V, I _D = 1.25 A, V _{IN} = 5 V	_	2	2.4	Ω
MOSFET OII-State Resistance	R _{DS(ON)}	SIM6813M V _{CC} = 15 V, I _D = 1.5 A, V _{IN} = 5 V	_	1.4	1.7	Ω
Diada Farriard Valtage	.,	SIM6812M V _{CC} = 15 V, I _D = 1.25 A, V _{IN} = 0 V	_	1.0	1.5	V
Diode Forward Voltage	V _{SD}	SIM6813M V _{CC} = 15 V, I _D = 1.5 A, V _{IN} = 0 V	_	1.0	1.5	V
SIM6822M and SIM6827M Switching	Characteris	tics				
IGBT Leakage Current	I _{CES}	V _{CC} = 15 V, V _{CE} = 600 V, V _{IN} = 0 V	_	_	1	mA
IGBT Saturation Voltage	V _{CE(sat)}	V _{CC} = 15 V, I _C = 5 A, V _{IN} = 5 V		1.75	2.2	V
Diode Forward Voltage	V _F	V _{CC} = 15 V, I _{SD} = 5 A, V _{IN} = 0 V	_	2.0	2.4	V
					-	

SIM6812M SWITCHING CHARACTERISTICS, valid at T_A=25°C, unless otherwise noted

Characteristics	Symbol	Conditions		Тур	Max	Units
	t _{dH(on)}		_	910	_	ns
	t _{rH}		_	100	_	ns
Switching Time, High Side	t _{rrH}	V_{BB} = 300 V, V_{CC} = 15 V, I_{D} = 1.25 A, 0 V \leq V_{HIN} \leq 5 V	_	140	_	ns
	t _{dH(off)}		-	700	-	ns
	t _{fH}		1	40	ı	ns
	t _{dL(on)}	V _{BB} = 300 V, V _{CC} = 15 V, I _D = 1.25 A, 0 V ≤ V _{LIN} ≤ 5 V	-	875	1	ns
	t _{rL}		ı	110	ı	ns
Switching Time, Low Side	t _{rrL}		ı	155	ı	ns
	t _{dL(off)}		ı	775	ı	ns
	t _{fL}		_	35	_	ns

SIM6813M SWITCHING CHARACTERISTICS, valid at T_A=25°C, unless otherwise noted

Characteristics	Symbol	Conditions		Тур	Max	Units
	t _{dH(on)}		-	820	_	ns
	t _{rH}		-	100	_	ns
Switching Time, High Side	t _{rrH}	V_{BB} = 300 V, V_{CC} = 15 V, I_{D} = 1.5 A, 0 V \leq V_{HIN} \leq 5 V	-	170	-	ns
	t _{dH(off)}		-	810	-	ns
	t _{fH}		_	50	_	ns
	t _{dL(on)}	V _{BB} = 300 V, V _{CC} = 15 V, I _D = 1.5 A, 0 V ≤ V _{LIN} ≤ 5 V	_	760	_	ns
	t _{rL}		-	130	-	ns
Switching Time, Low Side	t _{rrL}		_	180	-	ns
	t _{dL(off)}			750	_	ns
	t _{fL}		_	50	_	ns

Switching Time Definition

High Voltage 3-Phase Motor Driver ICs

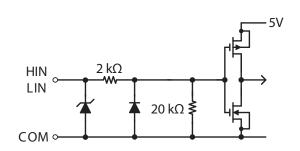
SIM6822M SWITCHING CHARACTERISTICS, valid at T_A=25°C, unless otherwise noted

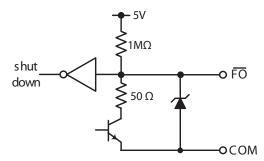
Characteristics	Symbol	Conditions	Min	Тур	Max	Units
	t _{dH(on)}		_	735	-	ns
	t _{rH}		_	70	_	ns
Switching Time, High Side	t _{rrH}	V_{BB} = 300 V, V_{CC} = 15 V, I_{C} = 5 A, 0 V \leq V _{HIN} \leq 5 V, inductive load	_	80	_	ns
	t _{dH(off)}	- 1084	_	570	_	ns
	t _{fH}		-	95	_	ns
	t _{dL(on)}	$V_{BB} = 300 \text{ V}, V_{CC} = 15 \text{ V}, I_{C} = 5 \text{ A}, 0 \text{ V} \le V_{LIN} \le 5 \text{ V}, inductive}$	_	685	-	ns
	t _{rL}		-	95	-	ns
Switching Time, Low Side	t _{rrL}		_	80	-	ns
	t _{dL(off)}		_	540	-	ns
	t _{fL}		_	95	_	ns

SIM6827M SWITCHING CHARACTERISTICS, valid at T_A=25°C, unless otherwise noted

Characteristics	Symbol	Conditions		Тур	Max	Units
	t _{dH(on)}		-	1030	-	ns
	t _{rH}		-	180	-	ns
Switching Time, High Side	t _{rrH}	V_{BB} = 300 V, V_{CC} = 15 V, I_{C} = 5 A, 0 V \leq V_{HIN} \leq 5 V, inductive load	-	100	-	ns
	t _{dH(off)}		-	590	-	ns
	t _{fH}		-	150	-	ns
	t _{dL(on)}	$V_{BB} = 300 \text{ V}, V_{CC} = 15 \text{ V}, I_{C} = 5 \text{ A}, 0 \text{ V} \le V_{LIN} \le 5 \text{ V}, inductive load}$	-	1030	-	ns
	t _{rL}		-	240	-	ns
Switching Time, Low Side	t _{rrL}		-	100	-	ns
	t _{dL(off)}			540	-	ns
	t _{fL}		_	150	_	ns

Truth Table

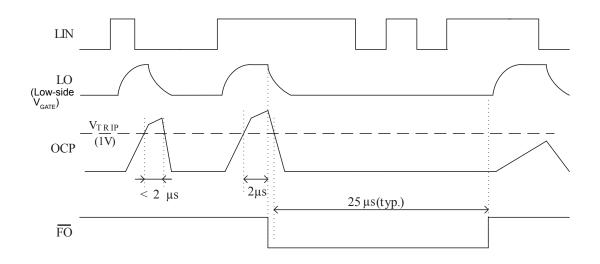

Mode	Hin	Lin	H-side MOSFET	L-side MOSFET
	L	L	Off	Off
Normal	Н	L	On	Off
Normal	L	Н	Off	On
	Н	Н	On	On
	L	L	Off	Off
TSD	Н	L	On	Off
120	L	Н	Off	Off
	Н	Н	On	Off
	L	L	Off	Off
OCP	Н	L	On	Off
OCP _	L	Н	Off	Off
	Н	Н	On	Off
OCL1 -	L (H)	L (H)	Off	Off
Shown = L for	H (L)	L (H)	Off	Off
SIM682xM	L (H)	H (L)	Off	On
(= H for SIM681xM)	H (L)	H (L)	Off	On
	L	L	Off	Off
11/4 0 (1/00)3	Н	L	Off	Off
UVLO (VCC) ²	L	Н	Off	Off
	Н	Н	Off	Off
	L	L	Off	Off
11)/1 O ()/D)3	Н	L	Off	Off
UVLO (VB) ³	L	Н	Off	On
	Н	Н	Off	On
	L	L	Off	Off
FO (= L)	Н	L	On	Off
FU (= L)	L	Н	Off	Off
	Н	Н	On	Off

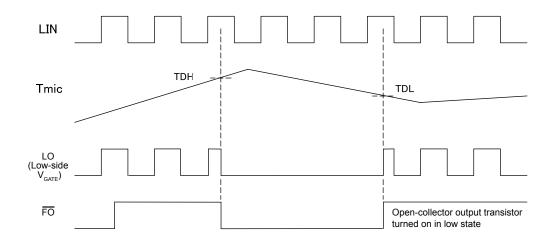

¹The OCL feature is enabled when the OCL and SD pins are tied together externally. If these pins are not tied when an OCL condition occurs, device operation continues in Normal mode.

Note: To prevent a shoot-through condition, the external microcontroller should not drive HINx = LINx = H at the same time.

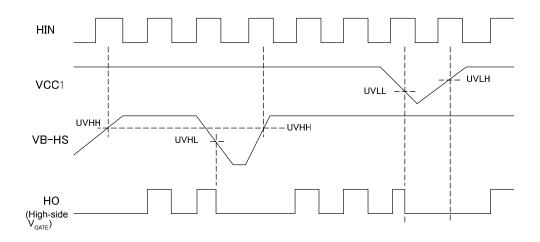
 $^{^2}$ Returning to the Normal mode of operation from a V_{CC} UVLO condition, a high-side MOSFET resumes switching on the rising edge of an HINx input. On the other hand, a low-side MOSFET resumes switching on the first logic high of a LINx input after release of the UVLO condition.

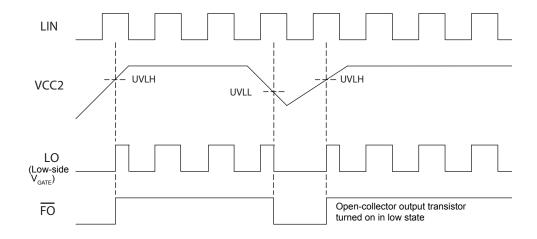
 $^{^3}$ Returning to the Normal mode of operation from a V_B UVLO condition, a high-side MOSFET resumes switching on the rising edge of an HINx input.



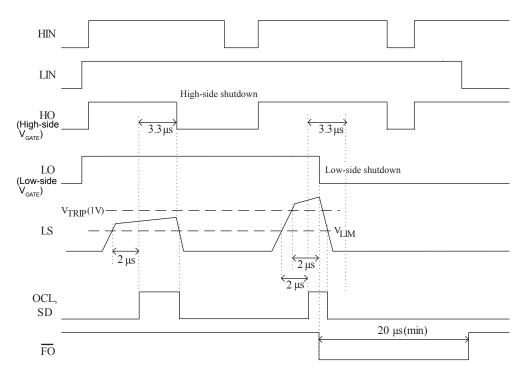

Internal equivalent circuit diagram (HIN, LIN)

Internal equivalent circuit diagram (\overline{FO})

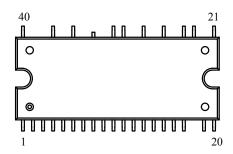

OCP Timing Diagram


Low-Side TSD Timing Diagram

High-Side UVLO Timing Diagram

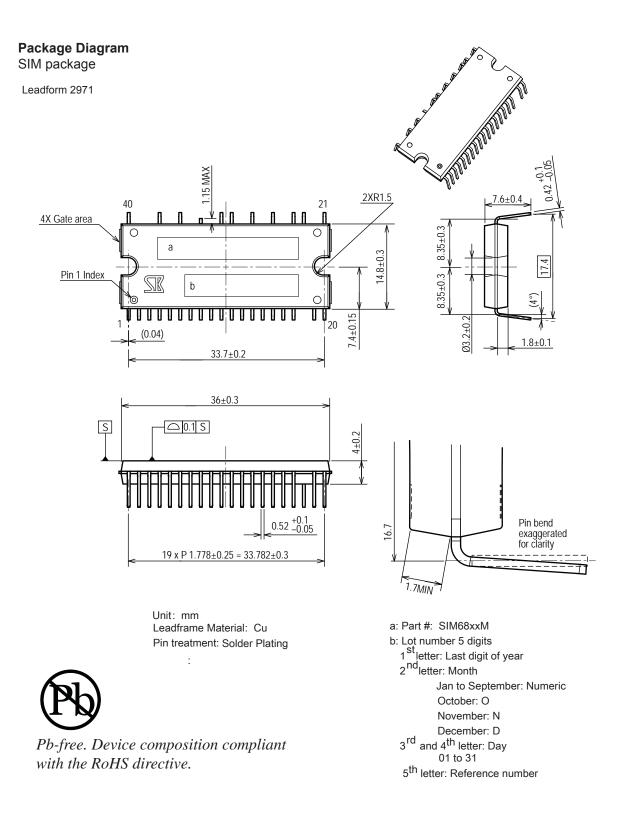


Low-Side UVLO Timing Diagram



OCL Timing Diagram

(OCL and SD pins connected externally)


Pin-out Diagram

Pin List Table

Number	Name	Function
1	LS3A	Source pin (W phase)
2	LS2	Source pin (V phase) (optionally use pin 33)
3	OCP	Input for Overcurrent Protection
4	FO	Error signal output pin
5	VCC2	Low-side logic supply voltage
6	COM2	Low-side logic GND pin
7	LIN1	Low side input pin (U phase)
8	LIN2	Low side input pin (V phase)
9	LIN3	Low side input pin (W phase)
10	OCL	Current limiter output signal pin
11	LS1	Source pin (U phase)
12	SD	Hide-side shutdown pin
13	HIN1	High-side input pin (U phase)
14	HIN2	High-side input pin (V phase)
15	HIN3	High-side input pin (W phase)
16	COM1	High-side logic GND pin
17	VCC1	High-side logic supply voltage

Number	Name	Function
18,22,25, 27,29,32, 34,36, 38,39	NC	No connection (pin deleted)
19	V	High side boot-strap negative pin (V phase)
20	VB2	High side boot-strap positive pin (V phase)
21	VB1A	High side boot-strap positive pin (U phase)
22	VB3	High side boot-strap positive pin (W phase)
24	W1	Output of W phase; connect to W2 externally
26	V1	Output of V phase; connect to V2 externally
28	VBB	Main supply voltage
30	VB1B	High side boot-strap positive pin (U phase)
31	U	Output of U phase
33	LS2	Source pin (V phase); pin trimmed
35	V2	Output of V-phase; connect to V1 externally
37	W2	Output of W-phase; connect to W1 externally
40	LS3B	Source pin (W phase)

High Voltage 3-Phase Motor Driver ICs

Because reliability can be affected adversely by improper storage environments and handling methods, please observe the following cautions

Cautions for Storage

- Ensure that storage conditions comply with the standard temperature (5°C to 35°C) and the standard relative humidity (around 40% to 75%); avoid storage locations that experience extreme changes in temperature or humidity.
- Avoid locations where dust or harmful gases are present and avoid direct sunlight.
- Reinspect for rust on leads and solderability of products that have been stored for a long time.

Cautions for Testing and Handling

When tests are carried out during inspection testing and other standard test periods, protect the products from power surges from the testing device, shorts between the product pins, and wrong connections.

Remarks About Using Silicone Grease with a Heatsink

- The screw torque for mounting a heatsink must be 58.8 to 78.4 N•cm (6.0 to 8.0 Kgf•cm). When mounting, there must be no foreign substance between the product and the heatsink, except for silicone grease.
- When silicone grease is used in mounting this product on a heatsink, it shall be applied evenly and thinly. If more silicone grease than required is applied, it may produce excess stress.
- Volatile-type silicone greases may crack after long periods of time, resulting in reduced heat radiation effect. Silicone grease with low consistency (hard grease) may cause cracks in the mold resin when screwing the product to a heatsink.

 Our recommended silicone greases for heat radiation purposes, which will not cause any adverse effect on the product life, are indicated below:

Type	Suppliers
G746	Shin-Etsu Chemical Co., Ltd.
YG6260	MOMENTIVE Performance Materials, Inc
SC102	Dow Corning Toray Co., Ltd.

Soldering

 When soldering the products, please be sure to minimize the working time, within the following limits:

260±5°C 10±1 s (Flow, 2 times) 380±10°C 3.5±0.5 s (Solder iron, 1 time)

 Soldering iron should be at a distance of at least 1.5 mm from the body of the products

Electrostatic Discharge

- When handling the products, the operator must be grounded. Grounded wrist straps worn should have at least 1 M Ω of resistance from the operator to ground to prevent shock hazard, and it should be placed near the operator.
- Workbenches where the products are handled should be grounded and be provided with conductive table and floor mats.
- When using measuring equipment such as a curve tracer, the equipment should be grounded.
- When soldering the products, the head of soldering irons or the solder bath must be grounded in order to prevent leak voltages generated by them from being applied to the products.
- The products should always be stored and transported in Sanken shipping containers or conductive containers, or be wrapped in aluminum foil.

High Voltage 3-Phase Motor Driver ICs

Sanken reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Therefore, the user is cautioned to verify that the information in this publication is current before placing any order.

When using the products described herein, the applicability and suitability of such products for the intended purpose shall be reviewed at the users responsibility.

Although Sanken undertakes to enhance the quality and reliability of its products, the occurrence of failure and defect of semiconductor products at a certain rate is inevitable.

Users of Sanken products are requested to take, at their own risk, preventative measures including safety design of the equipment or systems against any possible injury, death, fires or damages to society due to device failure or malfunction.

Sanken products listed in this publication are designed and intended for use as components in general-purpose electronic equipment or apparatus (home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Their use in any application requiring radiation hardness assurance (e.g., aerospace equipment) is not supported.

When considering the use of Sanken products in applications where higher reliability is required (transportation equipment and its control systems or equipment, fire- or burglar-alarm systems, various safety devices, etc.), contact a company sales representative to discuss and obtain written confirmation of your specifications.

The use of Sanken products without the written consent of Sanken in applications where extremely high reliability is required (aerospace equipment, nuclear power-control stations, life-support systems, etc.) is strictly prohibited.

The information included herein is believed to be accurate and reliable. Application and operation examples described in this publication are given for reference only and Sanken assumes no responsibility for any infringement of industrial property rights, intellectual property rights, or any other rights of Sanken or any third party that may result from its use. The contents in this document must not be transcribed or copied without Sanken's written consent.