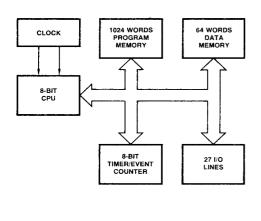
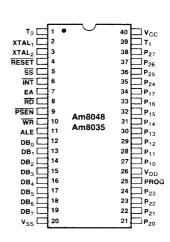
Am8048/8035 Single Chip 8-Bit Microcomputers

DISTINCTIVE CHARACTERISTICS


- 8-bit CPU, ROM, RAM, I/O in single package
- Single +5V supply
- · All instructions 1 or 2 cycles
- Over 90 instructions: 70% single byte
- 1K x 8 ROM
- 64 x 8 RAM
- 27 I/O lines
- Interval timer/event counter
- · Easily expandable memory and I/O
- Single level interrupt
- 100% reliability assurance testing to MIL-STD-883

GENERAL DESCRIPTION


The Am8048 contains a 1k x 8 program memory, a 64 x 8 RAM data memory, 27 I/O lines, and an 8-bit timer/counter in addition to on board oscillator and clock circuits. For systems that require extra capability, the Am8048 can be expanded using standard memories and Am9080A peripherals. The Am8035 is the equivalent of an Am8048 without program memory.

The microprocessor is designed to be an efficient controller. The Am8048 has extensive bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory results from an instruction set consisting mostly of single byte instructions and no instructions over two bytes in length.

BLOCK DIAGRAM

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

MOS-164

ORDERING INFORMATION

MOS-163

Package Type	Ambient Temperature Specification	• ,	
Hermetic DIP*	0°C ≤ T _A ≤ +70°C	AM8048DC AM8048CC	AM8035DC AM8035CC
Molded DIP		AM8048PC	AM8035PC

^{*}Hermetic = Ceramic = DC = CC = D-40-1.

Am8048/8035

MAXIMUM RATINGS (Above which useful life may be impaired)

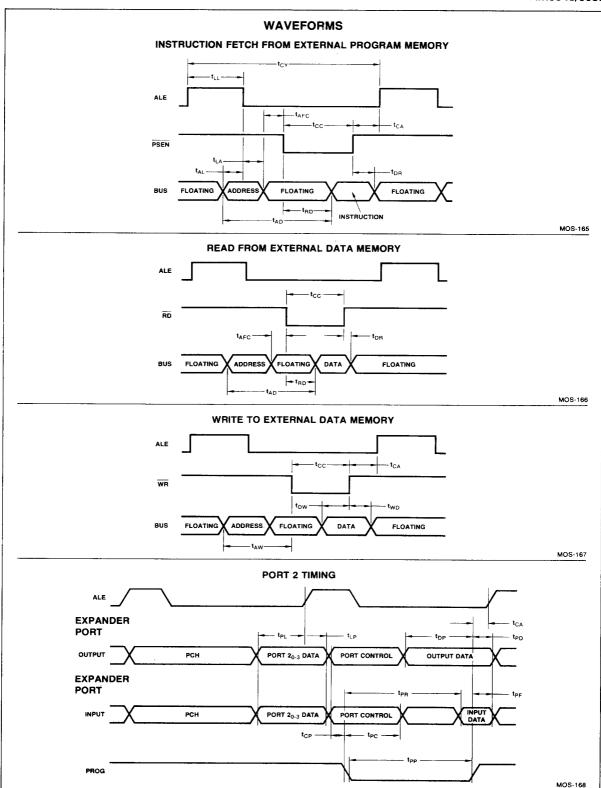
Storage Temperature	65°C to +150°C
Ambient Temperature Under Bias	0°C to +70°C
Voltage on Any Pin with Respect to Ground	-0.5V to +7.0V
Power Dissipation	1.5W

The products described by this specification include internal circuitry designed to protect input devices from damaging accumulations of static charge. It is suggested nevertheless, that conventional precautions be observed during storage, handling and use in order to avoid exposure to excessive voltages.

DC AND OPERATING CHARACTERISTICS

$I_A = 0$ to 70°C, $V_{CC} = V_{DD} = +5.0V \pm 10\%$ (Note 1), $V_{SS} = 0V$			Limits				
Parameters	Description	Test Conditions	Min	Тур	Max	Units	
V _{IL}	Input Low Voltage (All Except RESET, X1, X2)		5		.8	Volts	
V _{IL1}	Input Low Voltage (RESET, X1, X2)		5		.6	Volts	
V _{IH}	Input High Voltage (All Except XTAL1, XTAL2, RESET)		2.0		Vcc	Volts	
V _{IH1}	Input High Voltage (X1, X2, RESET)		3.8		V _{CC}	Volts	
V _{OL}	Output Low Voltage (BUS)	V _{OL} = 2.0mA			.45	Volts	
V _{OL1}	Output Low Voltage (RD, WR, PSEN, ALE)	I _{OL} = 1.8mA			.45	Volts	
V_{OL2}	Output Low Voltage (PROG)	I _{OL} = 1.0mA			.45	Volts	
V _{OL3}	Output Low Voltage (All Other Outputs)	I _{OL} = 1.6mA			.45	Volts	
V _{OH}	Output High Voltage (BUS)	$I_{OH} = -400\mu A$	2.4			Volts	
V _{OH1}	Output High Voltage (RD, WR, PSEN, ALE)	$I_{OH} = -100\mu A$	2.4			Volts	
V _{OH2}	Output High Voltage (All Other Outputs)	I _{OH} = -40μA	2.4			Volts	
ILI	Input Leakage Current (T1, INT)	$V_{SS} \leq V_{IN} \leq V_{CC}$			±10	μΑ	
I _{LI1}	Input Leakage Current (P10-P17, P20-P27, EA, SS)	V _{SS} + .45 ≤ V _{IN} ≤ V _{CC}		1	-500	μΑ	
lro	Output Leakage Current (BUS, TO) (High Impedance State)	V _{SS} + .45 ≤ V _{IN} ≤ V _{CC}			±10	μΑ	
DD	V _{DD} Supply Current			5	15	mA	
I _{DD} + I _{CC}	Total Supply Current			60	135	mA	

INPUT AND OUTPUT WAVEFORMS FOR AC TESTS



AC CHARACTERISTICS

	$C, V_{CC} = V_{DD} = +5.0V \pm 10\%$ (Note 1),	V _{SS} - 0V Test Conditions	Am Am		
arameters	Description	(Note 2)	Min	Max	Units
t _{LL}	ALE Pulse Width		400		ns
t _{AL}	Address Set-up to ALE		120		ns
t _{LA}	Address Hold from ALE		80		ns
t _{CC}	Control Pulse Width (PSEN, RD, WR)		700		ns
t _{DW}	Data Set-up Before WR		500		ns
t _{WD}	Data Hold After WR	C _L = 20pF	120		ns
t _{CY}	Cycle Time	6MHz XTAL (3.6MHz XTAL for -8)	(2.5)	15.0	μS
t _{DR}	Data Hold		0	200	ns
t _{RD}	PSEN, RD to Data In			500	ns
t _{AW}	Address Set-up to WR		230		ns
t _{AD}	Address Set-up to Data In			950	ns
tAFC	Address Float to RD, PSEN		0		ns
t _{CA}	Control Pulse to ALE		10		ns

Notes: 1. V_{CC} and V_{DD} for Am8035-8 are $\pm 5\%$.

2. Control Outputs: $C_L = 80 pF$. Bus Outputs: $C_L = 150 pF$, $t_{CY} = 2.5 \mu s$.

AC CHARACTERISTICS (Port 2 Timing)

 $T_A = 0$ to 70°C, $V_{CC} = 5V \pm 10\%$ (Note 1), $V_{SS} = 0V$

Am8048

		Allibuss			
Parameters	Description	Test Conditions	Min.	Max.	Units
t _{CP}	Port Control Set-up before Falling Edge of PROG		110		ns
t _{PC}	Port Control Hold after Falling Edge of PROG		100		ns
t _{PR}	PROG to Time P2 Input Must be Valid	•		810	ns
t _{DP}	Output Data Set-up Time	7.34.4	250		ns
t _{PD}	Output Data Hold Time		65		ns
tpF	Input Data Hold Time		0	150	ns
tpp	PROG Pulse Width		1200		ns
tpŁ	Port 2 I/O Data Set-up		350		ns
t _{LP}	Port 2 I/O Data Hold		150		ns

PIN DESCRIPTION

VSS

Circuit GND potential.

 \mathbf{v}_{DD}

Power supply; +5V during operation. Low power standby pin for Am8048 ROM.

 \mathbf{v}_{cc}

Main power supply; +5V.

PROG

Output strobe for Am8243 I/O expander.

P₁₀-P₁₇ Port 1

8-bit quasi-bidirectional port.

P₂₀-P₂₇ Port 2

8-bit quasi-bidirectional port.

P₂₀-P₂₃ contain the four high order program counter bits during an exteral program memory fetch and serve as a 4-bit I/O expander bus for Am8243.

Do-D7 BUS

True bidirectional port which can be written or read synchronously using the $\overline{\text{RD}}$, $\overline{\text{WR}}$ strobes. The port can also be statically latched.

Contains the 8 low order program counter bits during an external program memory fetch, and receives the addressed instruction under the control of PSEN. Also contains the address and data during an external RAM data store instruction, under control of ALE, RD and WR.

 T_0

Input pin testable using the conditional transfer instructions JT_0 and JNT_0 . T_0 can be designated as a clock output using ENT0 CLK instruction. T_0 is also used during programming.

 T_1

Input pin testable using the JT_1 , and JNT_1 instructions. Can be designated the timer/counter input using the STRT CNT instruction.

ĪNŦ

Interrupt input. Initiates an interrupt if interrupt is enabled. Interrupt is disabled after a reset. Also testable with conditional jump instruction (Active low).

RD

Output strobe activated during a BUS read. Can be used to enable data onto the BUS from an external device.

Used as a Read Strobe to External Data Memory (Active low).

RESET

Input which is used to initialize the processor. Also used during power down (Active low).

WR

Output strobe during a BUS write (Active low) (Non-TTL V_{IH}). Used as write strobe to External Data Memory.

ALE

Address Latch Enable. This signal occurs once during each cycle and is useful as a clock output.

The negative edge of ALE strobes address into external data and program memory.

PSEN

Program Store Enable. This output occurs only during a fetch to external program memory (Active low).

\overline{ss}

Single step input can be used in conjunction with ALE to "single step" the processor through each instruction (Active low).

EA

External Access input which forces all program memory fetches to reference external memory. Useful for emulation and debug, and essential for testing and program verification (Active high).

XTAL₁

One side of crystal input for internal oscillator. Also input for external source (Not TTL compatible).

XTAL₂

Other side of crystal input.