

MOSFET – Power, N-Channel, **Logic Level, SOT-223**

3.0 A, 60 V

NTF3055L108, NVF3055L108

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

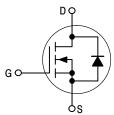
Features

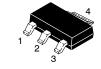
- NVF Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS (T_C = 25 °C unless otherwise noted)


Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	60	Vdc
Drain-to-Gate Voltage (R_{GS} = 1.0 M Ω)	V_{DGR}	60	Vdc
Gate-to-Source Voltage - Continuous - Non-repetitive (t _p ≤ 10 ms)	V _{GS}	± 15 ± 20	Vdc Vpk
Drain Current - Continuous @ T_A = 25 °C (Note 1) - Continuous @ T_A = 100 °C (Note 2) - Single Pulse ($t_p \le 10 \mu s$)	I _D I _D	3.0 1.4 9.0	Adc Apk
Total Power Dissipation @ T_A = 25 °C (Note 1) Total Power Dissipation @ T_A = 25 °C (Note 2) Derate above 25 °C	P _D	2.1 1.3 0.014	Watts Watts W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 175	°C
Single Pulse Drain-to-Source Avalanche Energy - Starting $T_J = 25$ °C ($V_{DD} = 25$ Vdc, $V_{GS} = 5.0$ Vdc, $I_{L(pk)} = 7.0$ Apk, $L = 3.0$ mH, $V_{DS} = 60$ Vdc)	E _{AS}	74	mJ
Thermal Resistance -Junction-to-Ambient (Note 1) -Junction-to-Ambient (Note 2)	R _{θJA} R _{θJA}	72.3 114	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

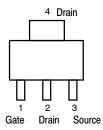
- When surface mounted to an FR4 board using 1" pad size, 1 oz. (Cu. Area 1 in²).
- 2. When surface mounted to an FR4 board using minimum recommended pad size, 2 oz. (Cu. Area 0.272 in²).

3.0 A, 60 V $R_{DS(on)} = 120 \text{ m}\Omega$

N-Channel

SOT-223 CASE 318E STYLE 3

MARKING DIAGRAM


3055L = Device Code

= Year = Work Week W

(Note: Microdot may be in either location)

AYW 3055L= = Assembly Location = Pb-Free Package

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (Note 3) (V _{GS} = 0 Vdc, I _D = 250 μAdc) Temperature Coefficient (Positive)			60 -	68 68	- -	Vdc mV/°C
Zero Gate Voltage Drain Current $ (V_{DS} = 60 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}) $ $ (V_{DS} = 60 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 150 \text{ °C}) $			- -	- -	1.0 10	μAdc
Gate-Body Leakage Current (V _G	_S = ± 15 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	-	-	± 100	nAdc
ON CHARACTERISTICS (Note 3)						
Gate Threshold Voltage (Note 3) $(V_{DS} = V_{GS}, I_D = 250 \mu Adc)$ Threshold Temperature Coefficient (N	legative)	V _{GS(th)}	1.0	1.68 4.6	2.0 -	Vdc mV/°C
Static Drain-to-Source On-Resistance (Note 3) (V _{GS} = 5.0 Vdc, I _D = 1.5 Adc)			-	92	120	mΩ
Static Drain-to-Source On-Resistance (Note 3) $ (V_{GS} = 5.0 \text{ Vdc}, I_D = 3.0 \text{ Adc}) \\ (V_{GS} = 5.0 \text{ Vdc}, I_D = 1.5 \text{ Adc}, T_J = 150 \text{ °C}) $			-	0.290 0.250	0.43	Vdc
Forward Transconductance (Note 3)	9 _{fs}	-	5.7	-	Mhos	
DYNAMIC CHARACTERISTICS			-		•	
Input Capacitance		C _{iss}	-	313	440	pF
Output Capacitance	$(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ V}, \\ f = 1.0 \text{ MHz})$	C _{oss}	-	112	160	
Transfer Capacitance		C _{rss}	-	40	60	
SWITCHING CHARACTERISTICS (N	ote 4)					
Turn-On Delay Time		t _{d(on)}	-	11	25	ns
Rise Time	$(V_{DD} = 30 \text{ Vdc}, I_D = 3.0 \text{ Adc}, V_{GS} = 5.0 \text{ Vdc},$	t _r	-	35	70	1
Turn-Off Delay Time	$R_{G} = 9.1 \Omega$ (Note 3)	t _{d(off)}	-	22	45	1
Fall Time		t _f	-	27	60	1
Gate Charge		Q _T	-	7.6	15	nC
	$(V_{DS} = 48 \text{ Vdc}, I_D = 3.0 \text{ Adc}, V_{GS} = 5.0 \text{ Vdc}) \text{ (Note 3)}$	Q ₁	-	1.4	-	
	VGS = 3.0 Vdc) (Note 0)		-	4.0	-	
SOURCE-DRAIN DIODE CHARACTE	RISTICS					
Forward On-Voltage	$(I_S = 3.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 3.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$ $T_J = 150 ^{\circ}\text{C}) \text{ (Note 3)}$	V_{SD}		0.87 0.72	1.0	Vdc
Reverse Recovery Time		t _{rr}	-	35	-	ns
	(I _S = 3.0 Adc, V _{GS} = 0 Vdc,	t _a	_	21	-	1
	$dl_S/dt = 100 A/\mu s)$ (Note 3)	t _b	_	14	-	1
Reverse Recovery Stored Charge		Q _{RR}	_	0.044	_	μС
			•	-		•

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{3.} Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%.

^{4.} Switching characteristics are independent of operating junction temperatures.

TYPICAL ELECTRICAL CHARACTERISTICS

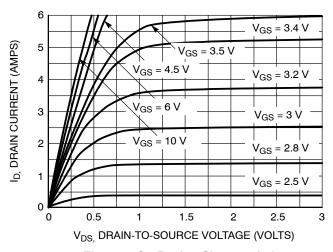


Figure 1. On-Region Characteristics

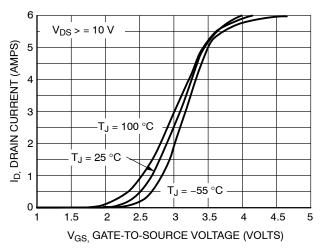


Figure 2. Transfer Characteristics

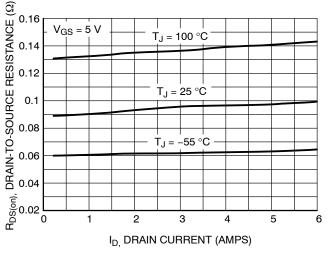


Figure 3. On-Resistance vs. Gate-to-Source Voltage

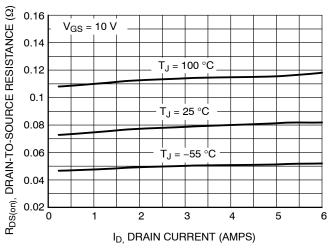


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

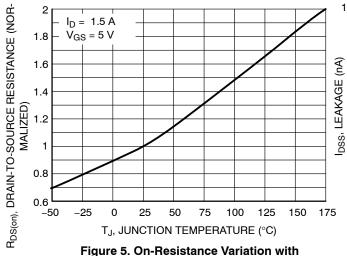


Figure 5. On-Resistance Variation with Temperature

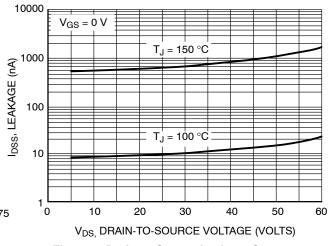


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL ELECTRICAL CHARACTERISTICS

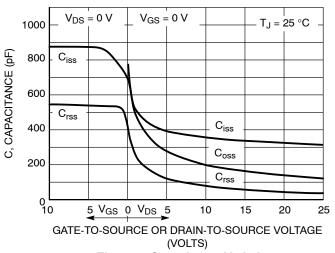


Figure 7. Capacitance Variation

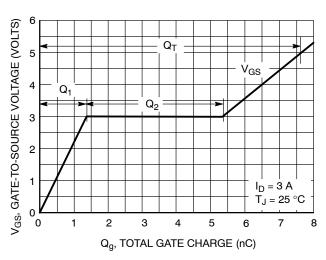


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

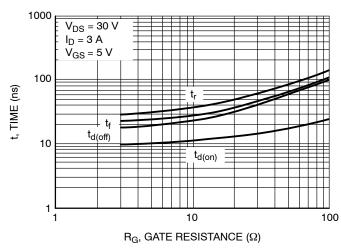


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

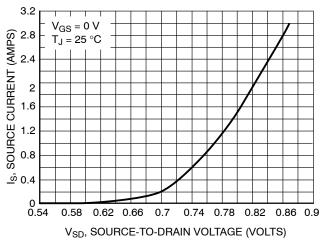


Figure 10. Diode Forward Voltage vs. Current

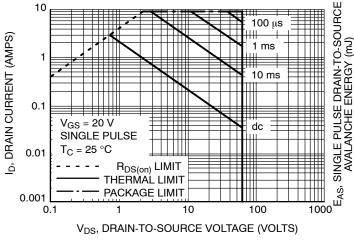


Figure 11. Maximum Rated Forward Biased Safe Operating Area

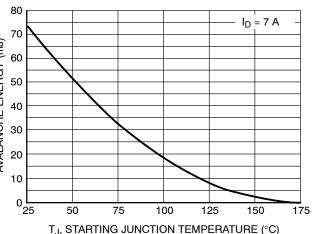


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

TYPICAL ELECTRICAL CHARACTERISTICS

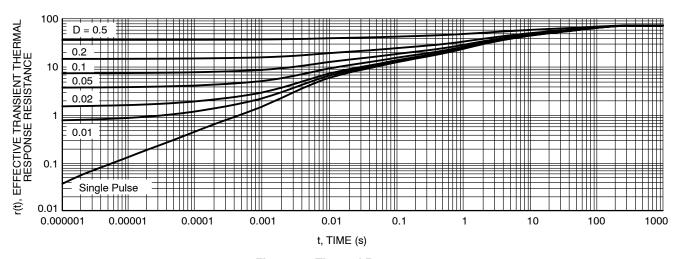


Figure 13. Thermal Response

ORDERING INFORMATION

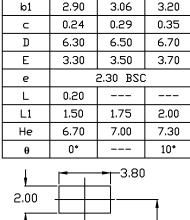
Device	Package	Shipping [†]
NTF3055L108T1G	SOT-223 (TO-261) (Pb-Free)	1000 / Tape & Reel
NVF3055L108T1G	SOT-223 (TO-261) (Pb-Free)	1000 / Tape & Reel

[†] For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

REVISION HISTORY

10	Rebranded the document to onsemi format.	10/16/2025
		1 ' '

This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.


SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

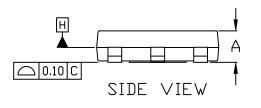
NOTES:

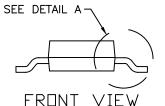
- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- POSITIONAL TOLERANCE APPLIES TO DIMENSIONS b AND b1.

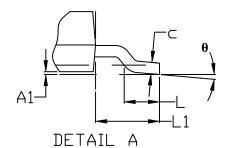
	MILLIMETERS		
DIM	MIN.	N□M.	MAX.
Α	1.50	1.63	1.75
A1	0.02	0.06	0.10
b	0.60	0.75	0.89
b1	2.90	3.06	3.20
С	0.24	0.29	0.35
D	6.30	6.50	6.70
E	3.30	3.50	3.70
е	2.30 BSC		
L	0.20		
L1	1.50	1.75	2.00
He	6.70	7.00	7.30
θ	0°		10°

6.30

 3×1.50


RECOMMENDED MOUNTING **FOOTPRINT**

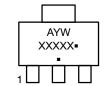

 $3\overline{\times}$ 2.00


2.30

PITCH

-b1**-**В He e b ⊕ 0.10 M C A B TOP VIEW

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2	


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	4. DHAIN STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

Y = Year W = Work Week

XXXXX = Specific Device Code • Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot "•", may
or may not be present. Some products may
not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales