

RF360 Europe GmbH

A Qualcomm – TDK Joint Venture

SAW components

SAW duplexer

LTE band 1

Series/type: B8651
Ordering code: B39212B8651P810

Date: May 31, 2016
Version: 2.5

RF360 products mentioned within this document are offered by RF360 Europe GmbH and other subsidiaries of RF360 Holdings Singapore Pte. Ltd. (collectively, the "RF360 Subsidiaries"). RF360 Holdings Singapore Pte. Ltd. is a joint venture of Qualcomm Global Trading Pte. Ltd. and EPCOS AG. References in this documentation to EPCOS AG should properly reference, and shall be read to reference, the RF360 Subsidiaries.

RF360 Europe GmbH, Anzinger Str. 13, München, Germany

© 2016 RF360 Europe GmbH and/or its affiliated companies. All rights reserved.

These materials, including the information contained herein, may be used only for informational purposes by the customer. The RF360 Subsidiaries assume no responsibility for errors or omissions in these materials or the information contained herein. The RF360 Subsidiaries reserve the right to make changes to the product(s) or information contained herein without notice. The materials and information are provided on an AS IS basis, and the RF360 Subsidiaries assume no liability and make no warranty or representation, either expressed or implied, with respect to the materials, or any output or results based on the use, application, or evaluation of such materials, including, without limitation, with respect to the non-infringement of trademarks, patents, copyrights or any other intellectual property rights or other rights of third parties.

No use of this documentation or any information contained herein grants any license, whether express, implied, by estoppel or otherwise, to any intellectual property rights, including, without limitation, to any patents owned by QUALCOMM Incorporated or any of its subsidiaries.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of RF360 Europe GmbH.

Qualcomm and Qualcomm RF360 are trademarks of Qualcomm Incorporated, registered in the United States and other countries. RF360 is a trademark of Qualcomm Incorporated. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

SAW components

SAW duplexer

LTE band 1

Series/type: B8651

Ordering code: B39212B8651P810

Date: May 31, 2016

Version: 2.5

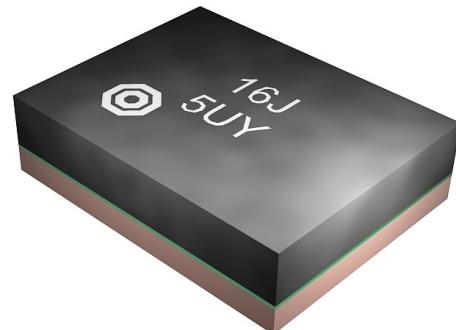
© EPCOS AG 2016. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

Data sheet

Table of contents

1 Application	3
2 Features	3
3 Package	4
4 Pin configuration	4
5 Matching circuit	5
6 Characteristics	6
7 Maximum ratings	11
8 Transmission coefficients	12
9 Reflection coefficients	15
10 EVMs	16
11 Packing material	18
12 Marking	21
13 Soldering profile	23
14 Annotations	24
15 Cautions and warnings	25
Important notes	26


Data sheet

1 Application

- Low-loss SAW duplexer for mobile telephone LTE Band 1 systems, also suitable for CDMA applications
- Usable pass bands 60 MHz
- Low insertion attenuation
- Low amplitude ripple
- Terminating impedances 50 Ω
- External matching only needed at ANT port

2 Features

- Package size $1.8 \pm 0.1 \text{ mm} \times 1.4 \pm 0.1 \text{ mm}$
- Package height 0.475 mm (max.)
- Approximate weight 3 mg
- RoHS compatible
- Package for Surface Mount Technology (SMT)
- Ni/Au-plated terminals
- Electrostatic Sensitive Device (ESD)
- Moisture Sensitivity Level 3 (MSL3)

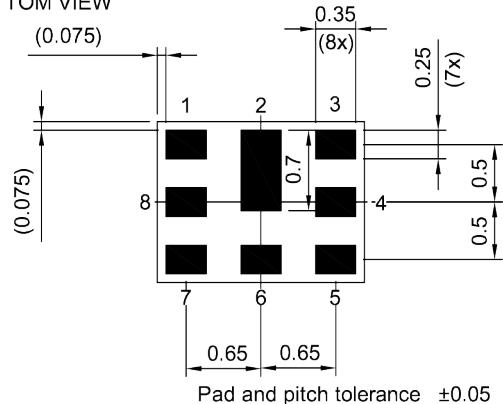
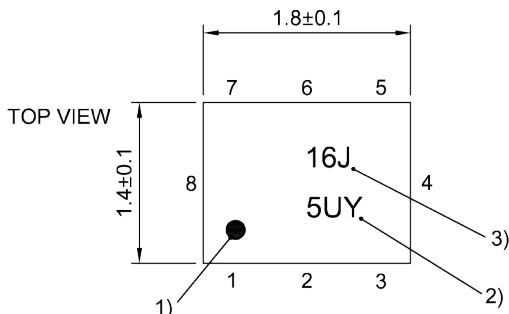
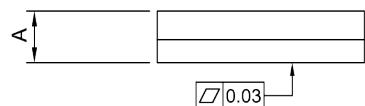
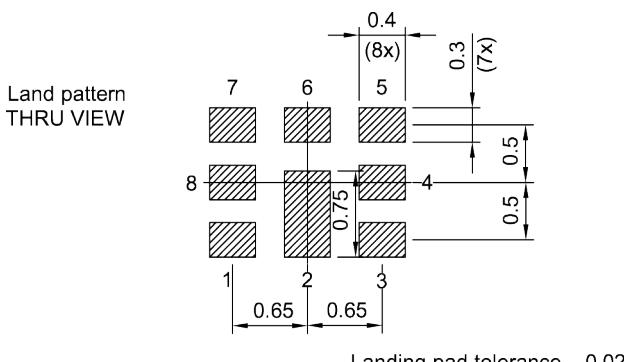


Figure 1: Picture of component with example of product marking.



Data sheet

3 Package


BOTTOM VIEW

SIDE VIEW

- 1) Marking for pad number 1
- 2) Example of encoded lot number
- 3) Example of encoded filter type number

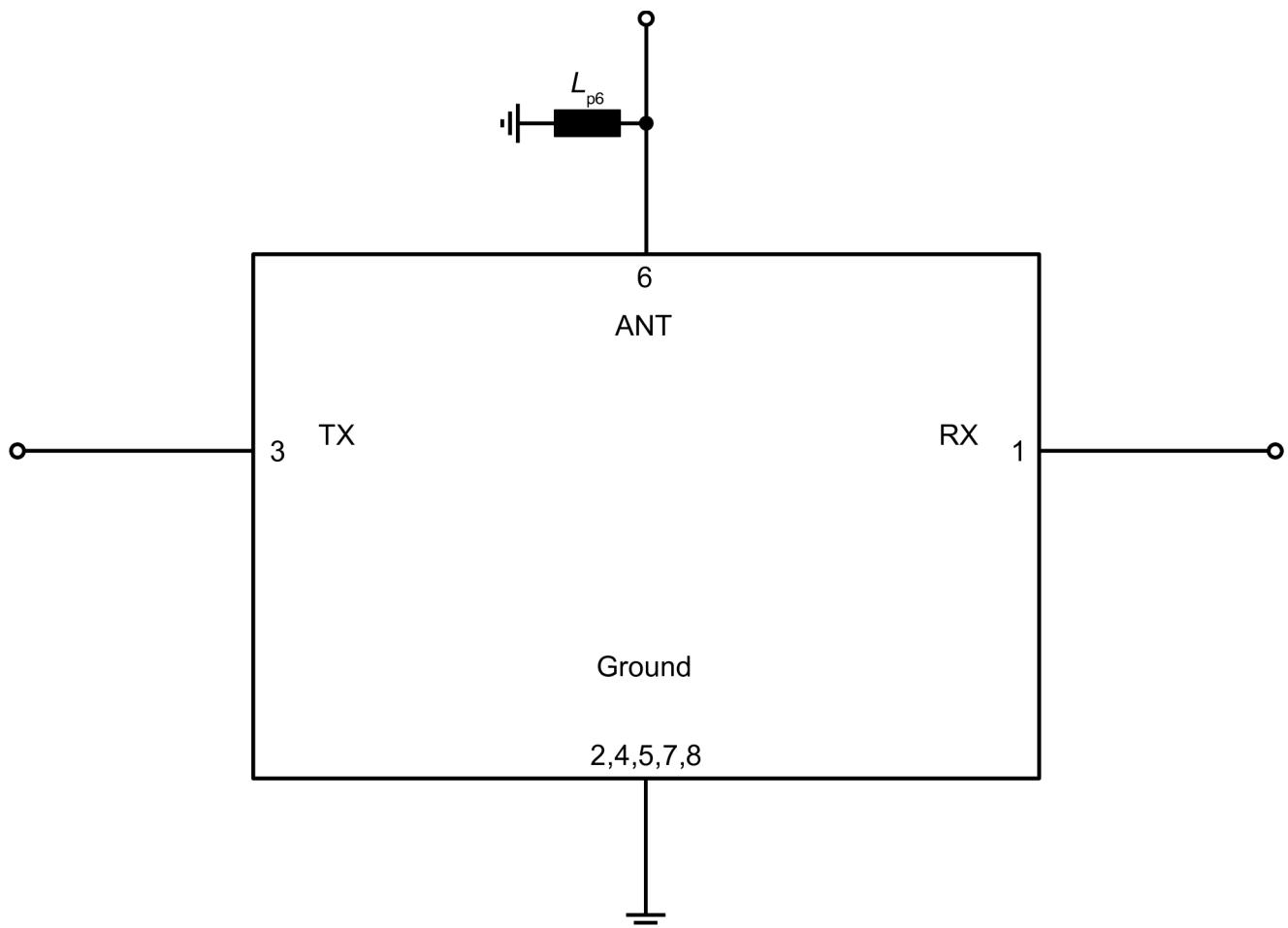


Figure 2: Drawing of package with package height A = 0.475 mm (max.). See Sec. Package information (p. 25).

4 Pin configuration

- 1 RX
- 3 TX
- 6 ANT
- 2, 4, 5, 7, 8 Ground

Data sheet

5 Matching circuit■ $L_{p6} = 3.1 \text{ nH}$ **Figure 3:** Schematic of matching circuit.

Data sheet

6 Characteristics

6.1 TX – ANT

Temperature range for specification	T_{SPEC}	= $-30^{\circ}\text{C} \dots +90^{\circ}\text{C}$
TX terminating impedance	Z_{TX}	= 50Ω
ANT terminating impedance	Z_{ANT}	= 50Ω with par. 3.1 nH^1
RX terminating impedance	Z_{RX}	= 50Ω

Characteristics TX – ANT			min. for T_{SPEC}	typ. @ $+25^{\circ}\text{C}$	max. for T_{SPEC}		
Center frequency		f_c	—	1950	—	MHz	
Maximum insertion attenuation							
	1920.59 ... 1979.41	MHz	α_{max}	—	1.9	2.3	dB
@ f_{carrier}	1922.4 ... 1977.6	MHz	$\alpha_{\text{WCDMA,max}}^2)$	—	1.8	2.3	dB
Amplitude ripple (p-p)							
	1920.59 ... 1979.41	MHz	$\Delta\alpha^3)$	—	0.5	0.8	dB
	1920.59 ... 1979.41	MHz	$\Delta\alpha^4)$	—	1.0	2.0	dB
Maximum VSWR			VSWR_{max}				
@ TX port	1920.59 ... 1979.41	MHz		—	1.5	2.0	
@ ANT port	1920.59 ... 1979.41	MHz		—	1.4	2.0	
Maximum error vector magnitude			$\text{EVM}_{\text{max}}^5)$				
	1922.4 ... 1977.6	MHz		—	1.5	2.5	%
Minimum attenuation			α_{min}				
	10 ... 1574	MHz		30	41	—	dB
	420 ... 494	MHz		44	54	—	dB
	843 ... 894	MHz		38	44	—	dB
	920 ... 960	MHz		39	44	—	dB
	1226 ... 1250	MHz		36	41	—	dB
	1470 ... 1496	MHz		35	41	—	dB
	1496 ... 1511	MHz		35	41	—	dB
	1559 ... 1563	MHz		36	42	—	dB
	1565.42 ... 1573.374	MHz		36	42	—	dB
	1573.374 ... 1577.466	MHz		36	43	—	dB
	1577.466 ... 1585.42	MHz		36	43	—	dB
	1597.551 ... 1605.886	MHz		36	43	—	dB
	1605.886 ... 1805	MHz		30	38	—	dB
	1805 ... 1865	MHz		20	29	—	dB
	1865 ... 1880	MHz		10	23	—	dB
	2010 ... 2025	MHz		13 ⁶⁾	27	—	dB
	2110 ... 2170	MHz		36	44	—	dB
	2400 ... 2500	MHz		27	37	—	dB
	2620 ... 2690	MHz		15	33	—	dB
	3830 ... 3960	MHz		14	22	—	dB

Data sheet

Characteristics TX – ANT	min. for T_{SPEC}	typ. @+25 °C	max. for T_{SPEC}	
4900... 5950 MHz	6	12	—	dB
4905... 5840 MHz	6	12	—	dB

1) See Sec. Matching circuit (p. 5).

2) Attenuation of WCDMA signal ("power transfer function"). Please refer to definition of Power Transfer Function (PTF) of WCDMA signal (p. 24).

3) Over any 5 MHz.

4) Over any 20 MHz.

5) Error Vector Magnitude (EVM) based on definition given in 3GPP TS 25.141.

6) Valid for temperature $T_{\text{SPEC}} = +15 \text{ }^{\circ}\text{C}...+90 \text{ }^{\circ}\text{C}$.

Data sheet

6.2 ANT – RX

Temperature range for specification	T_{SPEC}	= $-30^{\circ}\text{C} \dots +90^{\circ}\text{C}$
TX terminating impedance	Z_{TX}	= 50Ω
ANT terminating impedance	Z_{ANT}	= 50Ω with par. $3.1 \text{ nH}^1)$
RX terminating impedance	Z_{RX}	= 50Ω

Characteristics ANT – RX			min. for T_{SPEC}	typ. @ $+25^{\circ}\text{C}$	max. for T_{SPEC}	
Center frequency	f_c	—	2140	—	—	MHz
Maximum insertion attenuation	α_{max}	—	1.9	2.4	2.4	dB
Amplitude ripple (p-p)	2110.59 ... 2169.41 MHz	$\Delta\alpha^2)$	—	0.4	0.7	dB
	2110.59 ... 2169.41 MHz	$\Delta\alpha^3)$	—	0.5	1.5	dB
Maximum VSWR		VSWR_{max}	—	—	—	
@ ANT port	2110.59 ... 2169.41 MHz		—	1.5	2.0	
@ RX port	2110.59 ... 2169.41 MHz		—	1.7	2.0	
Maximum error vector magnitude		$\text{EVM}_{\text{max}}^4)$	—	1.2	2.5	%
Minimum attenuation		α_{min}	—	—	—	
	90 ... 1920 MHz	32	43	—	—	dB
	190 MHz	50	77	—	—	dB
	718 ... 748 MHz	40	55	—	—	dB
	814 ... 849 MHz	40	53	—	—	dB
	880 ... 910 MHz	40	52	—	—	dB
	1427 ... 1447 MHz	40	46	—	—	dB
	1447 ... 1463 MHz	39	45	—	—	dB
	1710 ... 1780 MHz	32	43	—	—	dB
	1730 ... 1790 MHz	30	43	—	—	dB
	1920 ... 1980 MHz	36	54	—	—	dB
	1980 ... 2010 MHz	25	40	—	—	dB
	2010 ... 2050 MHz	28	34	—	—	dB
	2050 ... 2070 MHz	18	27	—	—	dB
	2400 ... 2500 MHz	25	40	—	—	dB
	2500 ... 2570 MHz	32	42	—	—	dB
	4030 ... 4150 MHz	34	46	—	—	dB
	4220 ... 4340 MHz	29	41	—	—	dB
	4900 ... 5950 MHz	28	38	—	—	dB

¹⁾ See Sec. Matching circuit (p. 5).²⁾ Over any 5 MHz.³⁾ Over any 20 MHz.⁴⁾ Error Vector Magnitude (EVM) based on definition given in 3GPP TS 25.141.

Data sheet

6.3 TX – RX

Temperature range for specification	T_{SPEC}	= –30 °C ... +90 °C
TX terminating impedance	Z_{TX}	= 50 Ω
ANT terminating impedance	Z_{ANT}	= 50 Ω with par. 3.1 nH ¹⁾
RX terminating impedance	Z_{RX}	= 50 Ω

Characteristics TX – RX				min. for T_{SPEC}	typ. @+25 °C	max. for T_{SPEC}	
Minimum isolation							
	1574 ... 1577	MHz	α_{min}	40	74	—	dB
	1920.59 ... 1979.41	MHz	α_{min}	55	60	—	dB
$@f_{\text{carrier}}$	2112.4 ... 2167.6	MHz	$\alpha_{\text{WCDMA,min}}^{2)}$	55	61	—	dB
	3830 ... 3970	MHz	α_{min}	20	60	—	dB
	5750 ... 5950	MHz	α_{min}	20	42	—	dB

¹⁾ See Sec. Matching circuit (p. 5).²⁾ Attenuation of WCDMA signal ("power transfer function"). Please refer to definition of Power Transfer Function (PTF) of WCDMA signal (p. 24).

Data sheet

6.4 Linearity

Temperature range for specification

 T_{SPEC} = -30 °C ... +90 °C

TX terminating impedance

 Z_{TX} = 50 Ω

ANT terminating impedance

 Z_{ANT} = 50 Ω with par. 3.1 nH¹⁾

RX terminating impedance

 Z_{RX} = 50 Ω

Characteristics linearity	min. for T_{SPEC}	typ. @+25 °C	max. for T_{SPEC}	
IMD product levels^{2), 3)}				
IMD2				
Blocker 1	190	MHz	—	-117
Blocker 3	4030 ... 4150	MHz	—	-102
IMD3				
SVLTE	1575	MHz	—	-85
Blocker 2	1730 ... 1790	MHz	—	-113
SVLTE	2145	MHz	—	-75
Blocker 4	5950 ... 6130	MHz	—	-118

¹⁾ See Sec. Matching circuit (p. 5).²⁾ @ fTX = 1920...1980 MHz, fRX = Blocker 1...4, IMD product levels for power levels PTX = +21.5 dBm (ANT port output power) and Pblocker = -15 dBm (ANT port input power).³⁾ @ fTX = 1955 MHz, fANT = 1765, IMD product levels for power levels PTX = +24.5 dBm (ANT port output power) and Pblocker = +14 dBm (ANT port input power).

Data sheet

7 Maximum ratings

Storage temperature	$T_{STG}^{1)} = -40 \text{ }^{\circ}\text{C} \dots +90 \text{ }^{\circ}\text{C}$	
DC voltage	$V_{DC}^{2)} = 5.0 \text{ V (max.)}$	
ESD voltage		
	$V_{ESD}^{3)} = 125 \text{ V (max.)}$	Machine model.
	$V_{ESD}^{4)} = 150 \text{ V (max.)}$	Human body model.
	$V_{ESD}^{5)} = 600 \text{ V (max.)}$	Charged device model.
Input power	P_{IN}	
@ TX port: 1920 ... 1980 MHz	29 dBm	Continuous wave for 5000 h @ 50 °C.
@ TX port: other frequency range(s)	10 dBm	Continuous wave for 5000 h @ 50 °C.

¹⁾ Extended upper limit: 168h@125°C acc. to IEC 60 Bb068-2-2.²⁾ 168h Damp Heat Steady State acc. to IEC600682-67 Cy.³⁾ According to JESD22-A115B (MM – Machine Model), 10 negative & 10 positive pulses.⁴⁾ According to JESD22-A114F (HBM – Human Body Model), 1 negative & 1 positive pulse.⁵⁾ According to JESD22-C101C (CDM – Field Induced Charged Device Model), 3 negative & 3 positive pulses.

Data sheet

8 Transmission coefficients

8.1 TX – ANT

Figure 4: Attenuation TX – ANT.

Data sheet

8.2 ANT - RX

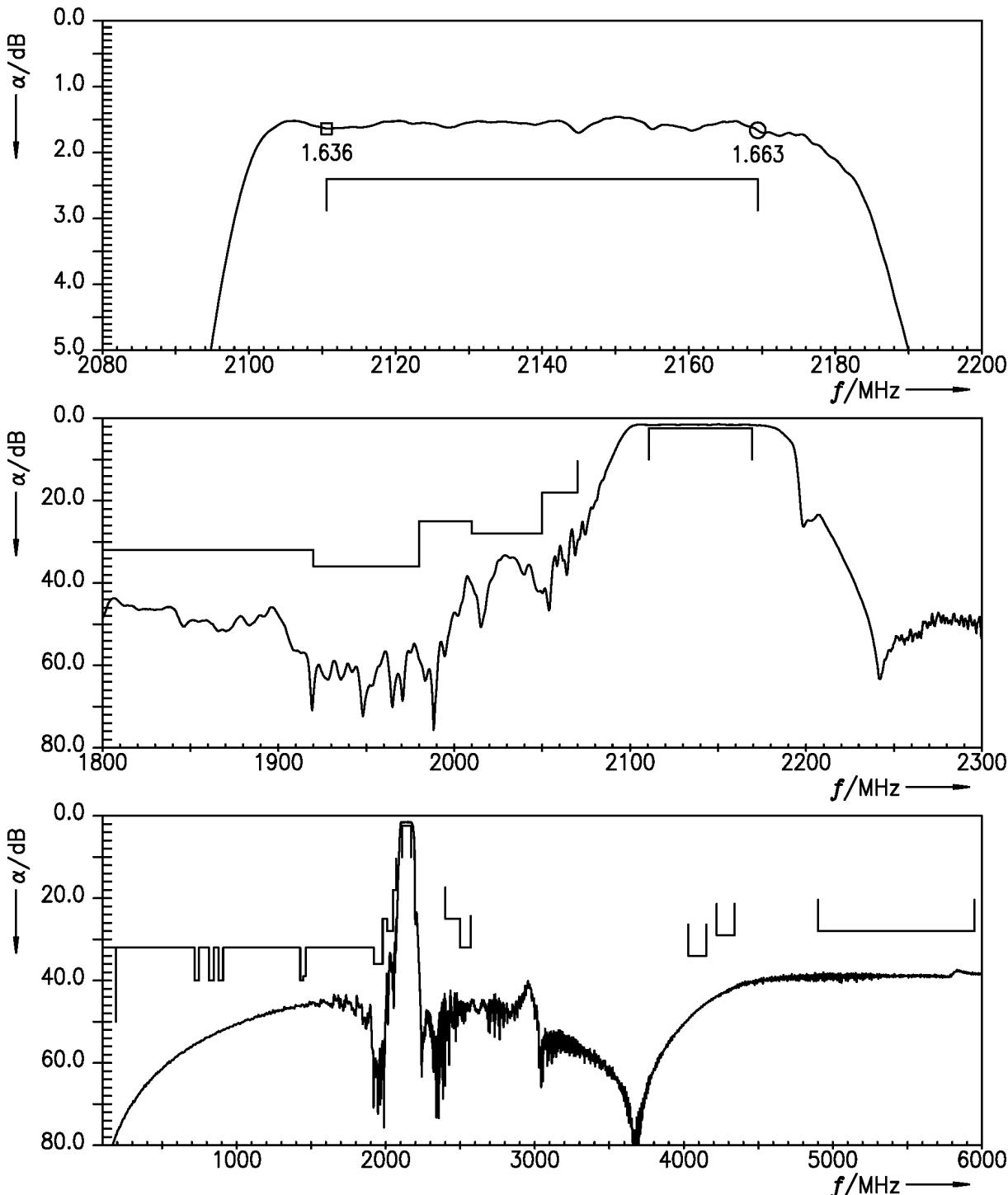


Figure 5: Attenuation ANT - RX.

Data sheet

8.3 TX - RX

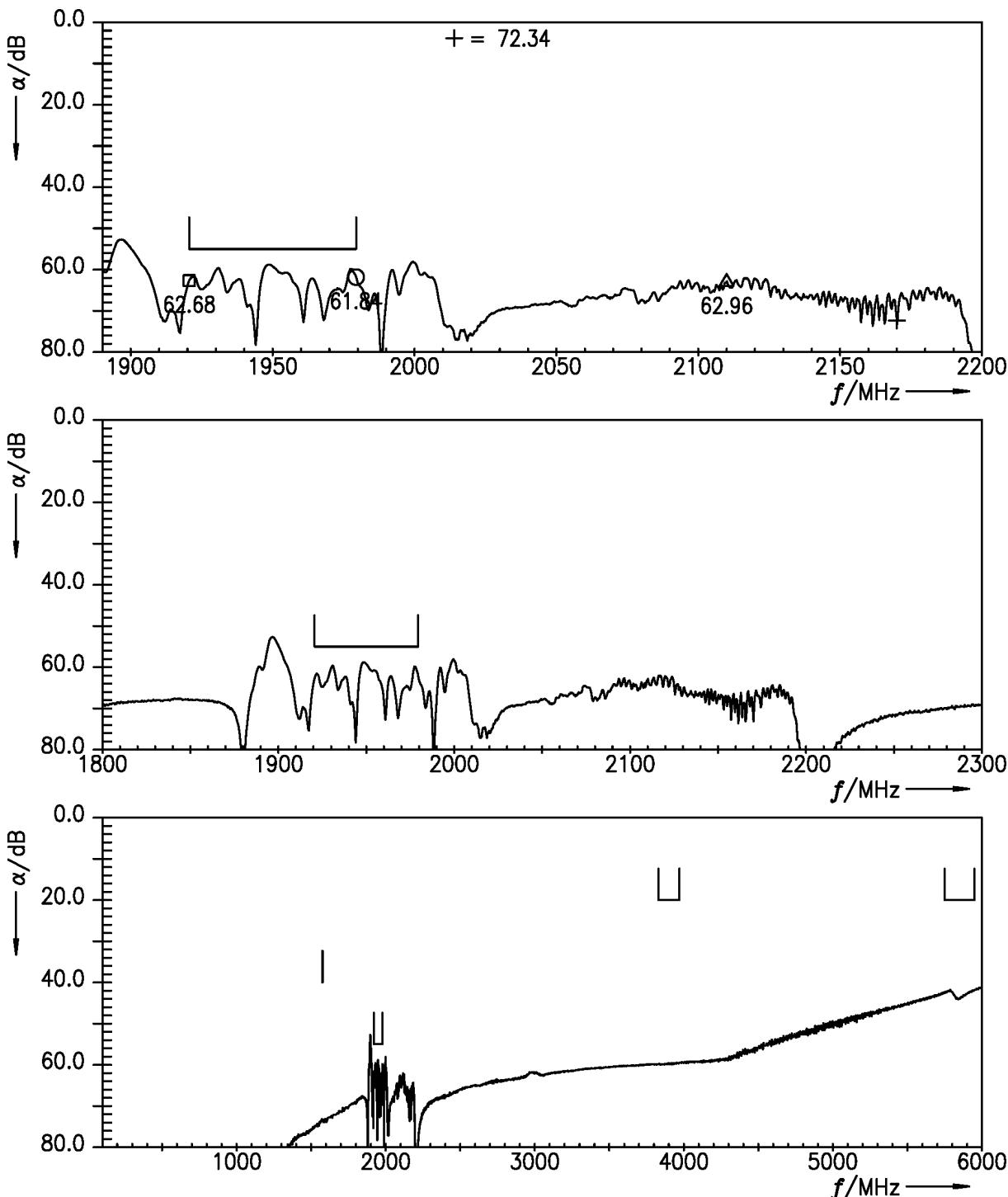


Figure 6: Isolation TX – RX.

Data sheet

9 Reflection coefficients

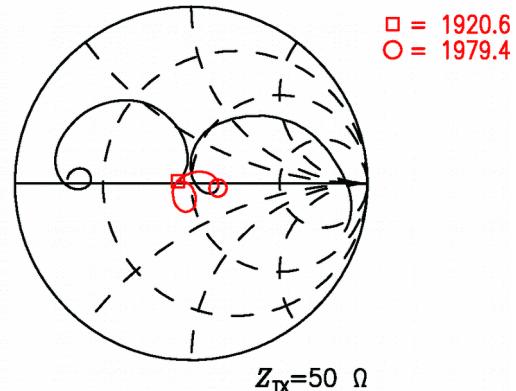
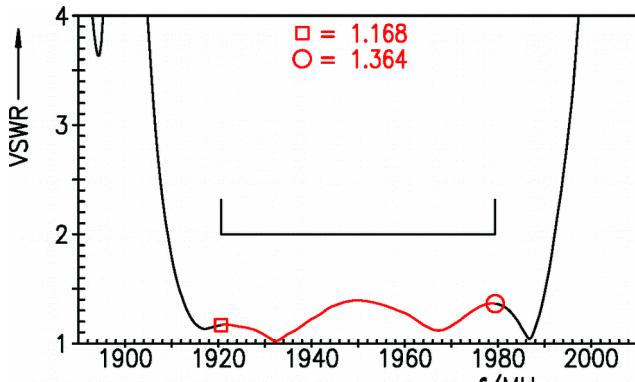



Figure 7: Reflection coefficient at TX port.

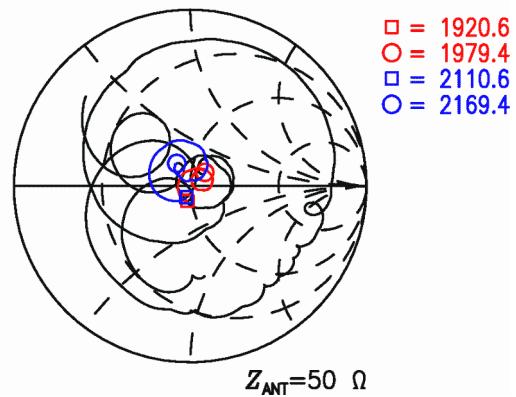
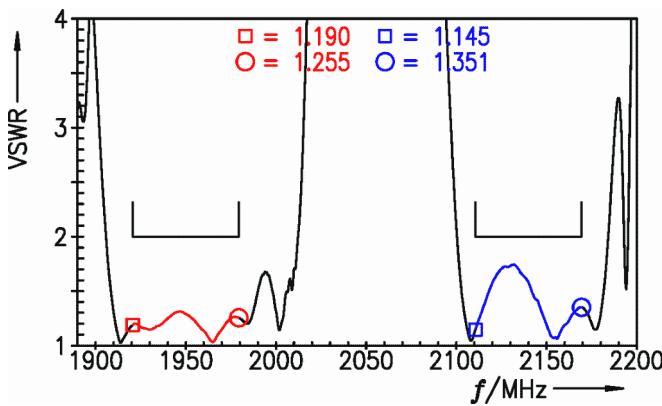



Figure 8: Reflection coefficient at ANT port (TX and RX frequencies).

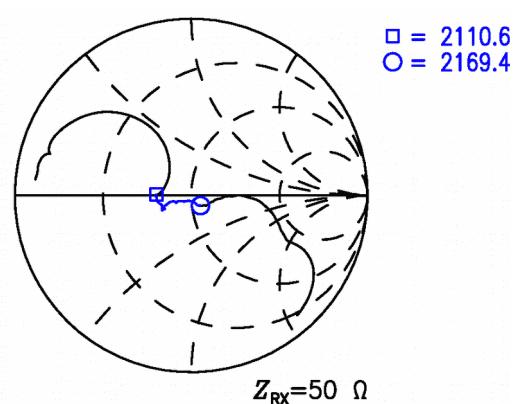
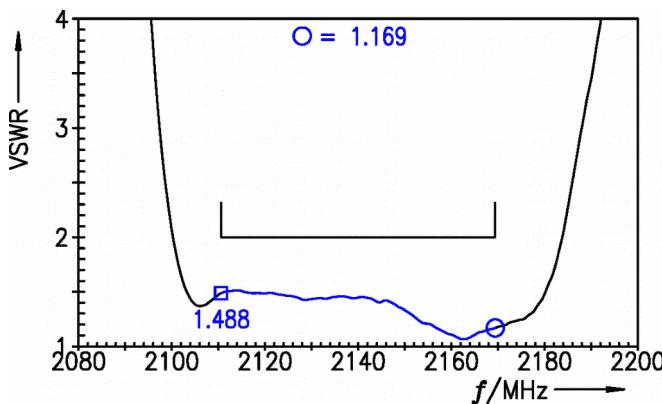
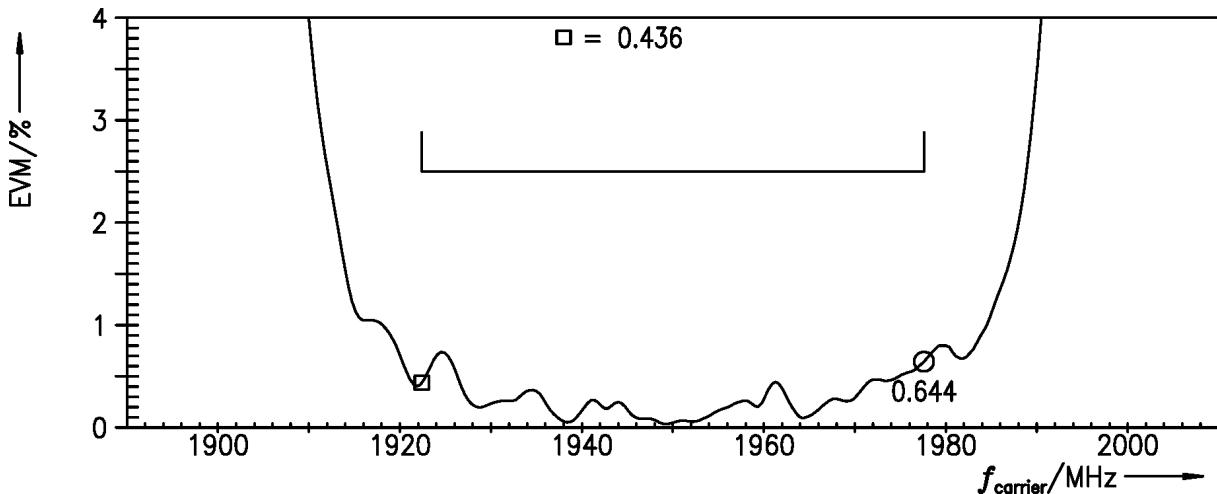




Figure 9: Reflection coefficient at RX port.

Data sheet

10 EVMs

10.1 TX – ANT

Figure 10: Error vector magnitude TX – ANT.

Data sheet

10.2 ANT - RX

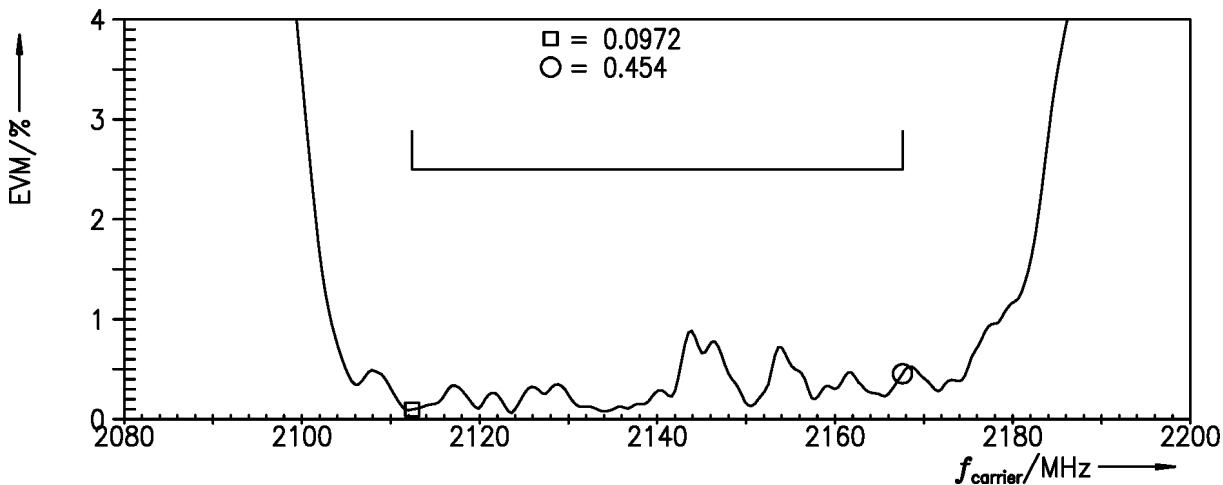
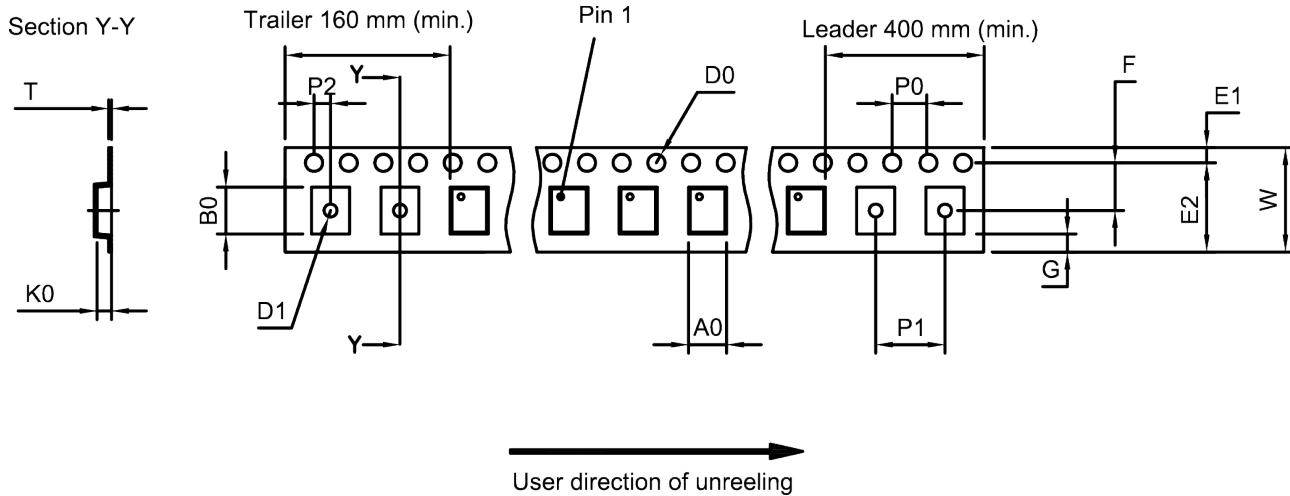



Figure 11: Error vector magnitude ANT - RX.

Data sheet

11 Packing material

11.1 Tape

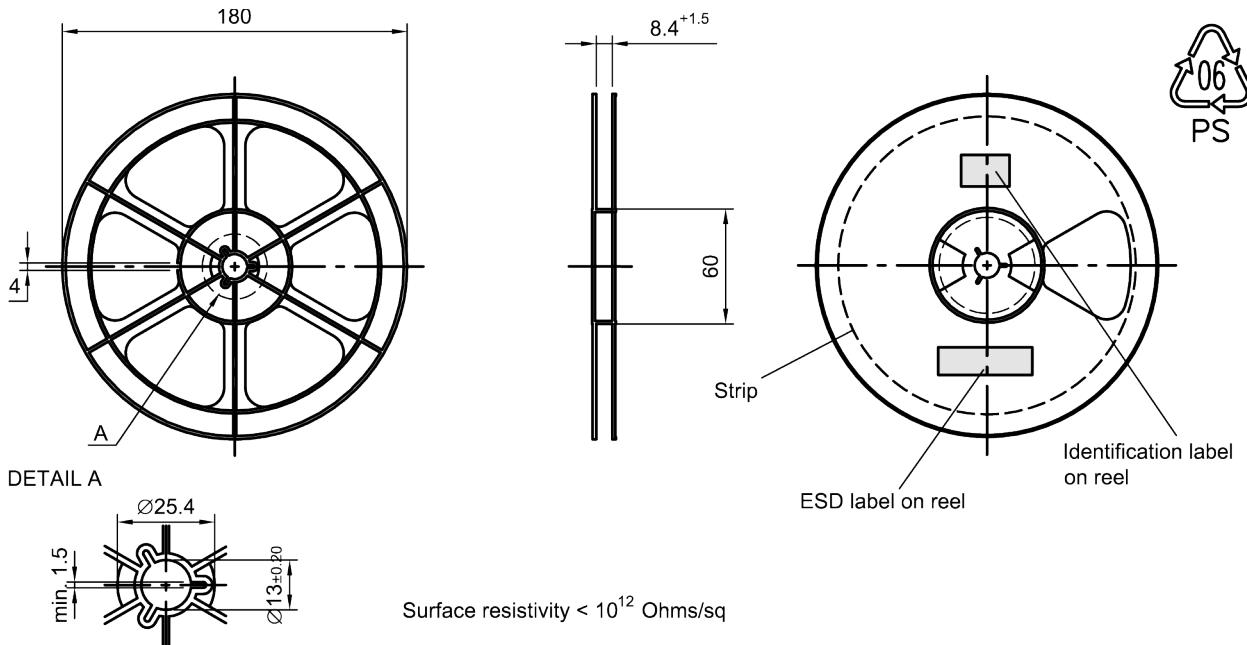


Figure 12: Drawing of tape (first-angle projection) with tape dimensions according to Table 1.

A ₀	1.62±0.05 mm
B ₀	2.04±0.05 mm
D ₀	1.5±0.05 mm
D ₁	0.8±0.05 mm
E ₁	1.75±0.1 mm
E ₂	6.25 mm (min.)
F	3.5±0.05 mm
G	0.75 mm (min.)
K ₀	0.62±0.05 mm
P ₀	4.0±0.1 mm
P ₁	4.0±0.1 mm
T	0.25±0.02 mm
W	8.0±0.1 mm

Table 1: Tape dimensions.

11.2 Reel with diameter of 180 mm

Figure 13: Drawing of reel (first-angle projection) with diameter of 180 mm.

Data sheet

Dimensions [mm]

X = 220±5

Y = 235±5

Sealing area 10±3 Printing on vacumbag

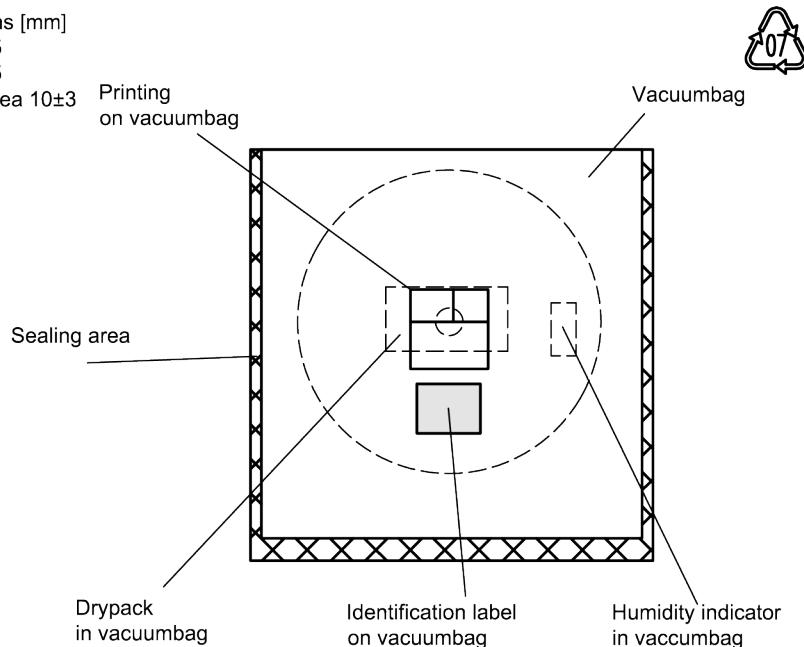


Figure 14: Drawing of moisture barrier bag (MBB) for reel with diameter of 180 mm.

Dimensions [mm]

L = 188

B = 188

H = 30

Tolerance ±5

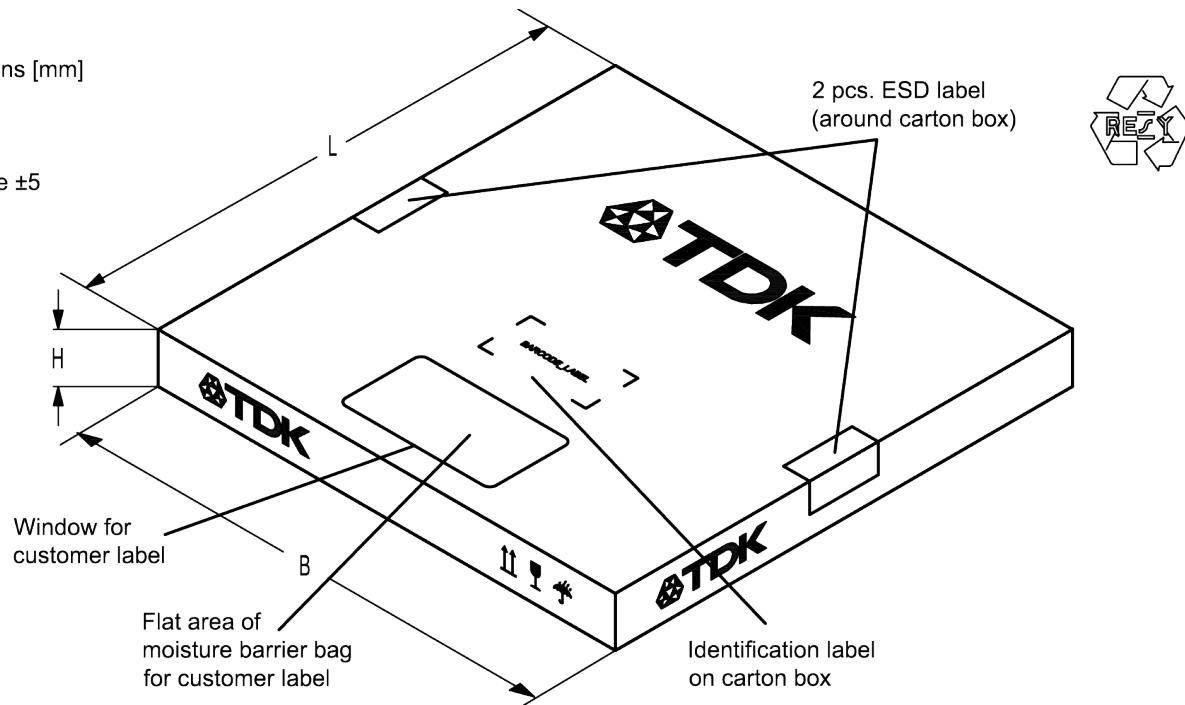


Figure 15: Drawing of folding box for reel with diameter of 180 mm.

Data sheet

11.3 Reel with diameter of 330 mm

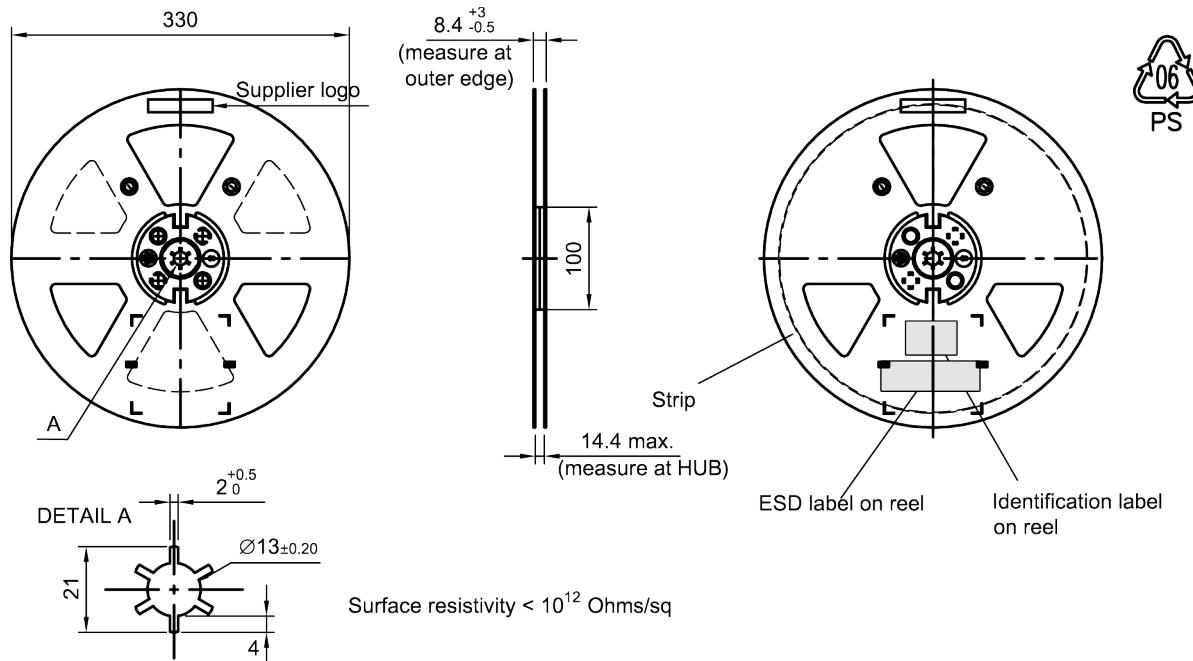


Figure 16: Drawing of reel (first-angle projection) with diameter of 330 mm.

Dimensions [mm]

X = 400±5

Y = 418±5

Sealing area 10±3

Printing on vacuumbag

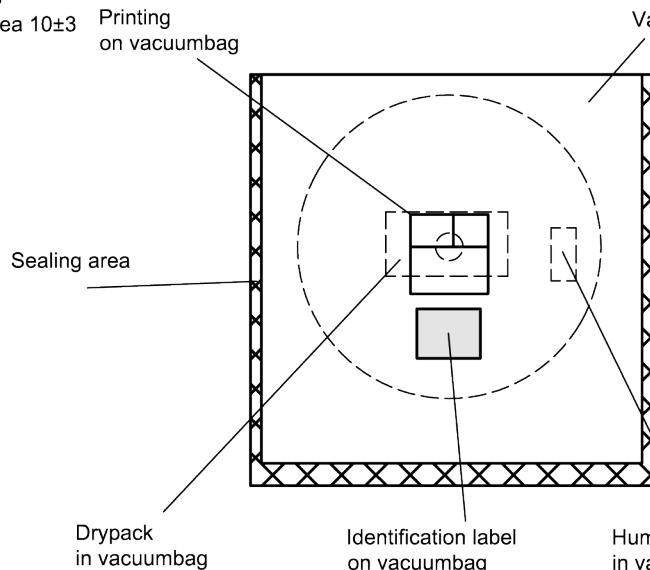


Figure 17: Drawing of moisture barrier bag (MBB) for reel with diameter of 330 mm.

Data sheet

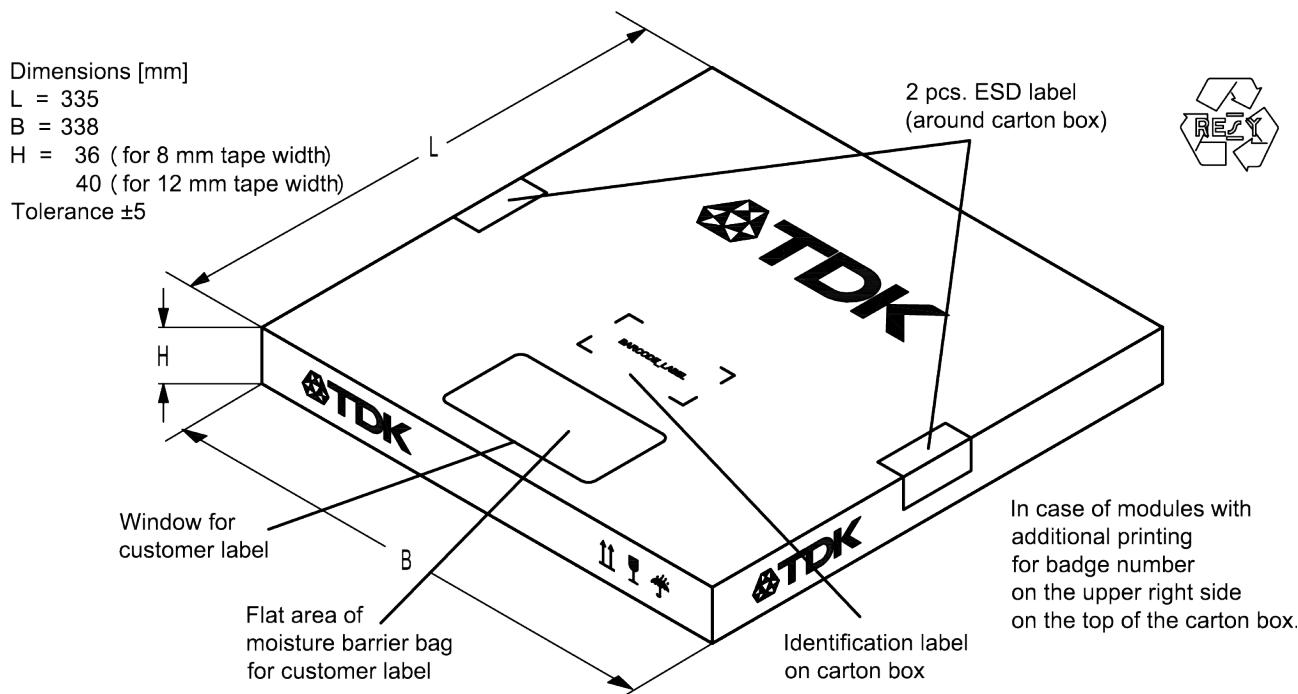


Figure 18: Drawing of folding box for reel with diameter of 330 mm.

12 Marking

Products are marked with product type number and lot number encoded according to Table 2:

■ Type number:

The 4 digit type number of the ordering code, is encoded by a special BASE32 code into a 3 digit marking.

e.g., B3xxxxB1234xxxx,

Example of decoding type number marking on device

in decimal code.

$$\begin{array}{rcl} 16J & \Rightarrow & 1234 \\ 1 \times 32^2 + 6 \times 32^1 + 18 (=J) \times 32^0 & = & 1234 \end{array}$$

The BASE32 code for product type B8651 is 8EB.

■ Lot number:

The last 5 digits of the lot number, are encoded based on a special BASE47 code into a 3 digit marking.

e.g., **12345**,

Example of decoding lot number marking on device

in decimal code.

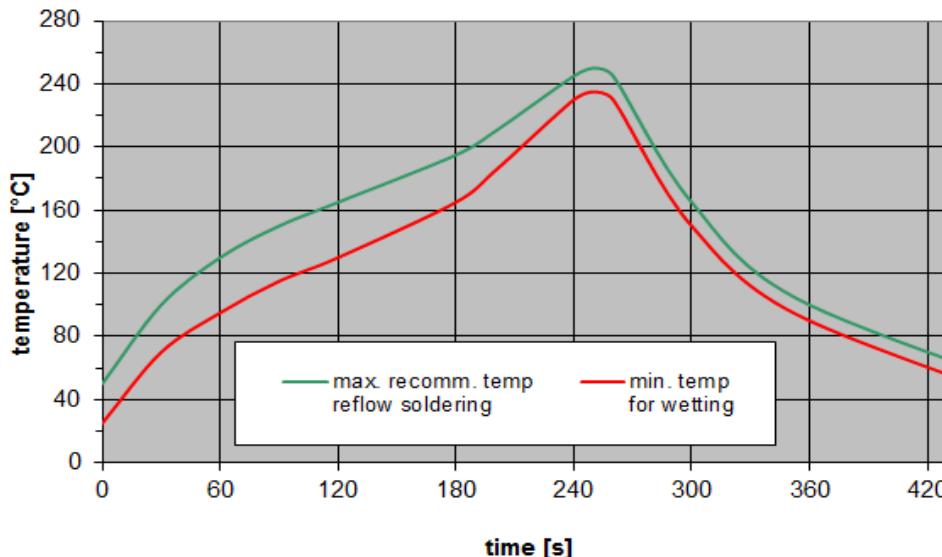
$$\begin{array}{rcl} 5UY & \Rightarrow & 12345 \\ 5 \times 47^2 + 27 (=U) \times 47^1 + 31 (=Y) \times 47^0 & = & 12345 \end{array}$$

Data sheet

Adopted BASE32 code for type number			
Decimal value	Base32 code	Decimal value	Base32 code
0	0	16	G
1	1	17	H
2	2	18	J
3	3	19	K
4	4	20	M
5	5	21	N
6	6	22	P
7	7	23	Q
8	8	24	R
9	9	25	S
10	A	26	T
11	B	27	V
12	C	28	W
13	D	29	X
14	E	30	Y
15	F	31	Z

Adopted BASE47 code for lot number			
Decimal value	Base47 code	Decimal value	Base47 code
0	0	24	R
1	1	25	S
2	2	26	T
3	3	27	U
4	4	28	V
5	5	29	W
6	6	30	X
7	7	31	Y
8	8	32	Z
9	9	33	b
10	A	34	d
11	B	35	f
12	C	36	h
13	D	37	n
14	E	38	r
15	F	39	t
16	G	40	v
17	H	41	\
18	J	42	?
19	K	43	{
20	L	44	}
21	M	45	<
22	N	46	>
23	P		

Table 2: Lists for encoding and decoding of marking.


Data sheet

13 Soldering profile

The recommended soldering process is in accordance with IEC 60068-2-58 – 3rd edit and IPC/JEDEC J-STD-020B.

ramp rate	$\leq 3 \text{ K/s}$
preheat	125 °C to 220 °C, 150 s to 210 s, 0.4 K/s to 1.0 K/s
$T > 220 \text{ }^{\circ}\text{C}$	30 s to 70 s
$T > 230 \text{ }^{\circ}\text{C}$	min. 10 s
$T > 245 \text{ }^{\circ}\text{C}$	max. 20 s
$T \geq 255 \text{ }^{\circ}\text{C}$	–
peak temperature T_{peak}	250 °C +0/-5 °C
wetting temperature T_{min}	230 °C +5/-0 °C for 10 s ± 1 s
cooling rate	$\leq 3 \text{ K/s}$
soldering temperature T	measured at solder pads

Table 3: Characteristics of recommended soldering profile for lead-free solder (Sn95.5Ag3.8Cu0.7).

Figure 19: Recommended reflow profile for convection and infrared soldering – lead-free solder.

Data sheet

14 Annotations

14.1 Matching coils

See TDK inductor pdf-catalog <http://www.tdk.co.jp/tefe02/coil.htm#aname1> and Data Library for circuit simulation <http://www.tdk.co.jp/etvcl/index.htm>.

14.2 Power Transfer Function (PTF) of WCDMA signal

Attenuation of WCDMA signal, α_{WCDMA} , is defined by

$$\alpha_{\text{WCDMA}}(f_{\text{carrier}}) = 10 \log_{10} \left| \frac{1}{\text{PTF}(f_{\text{carrier}})} \right| \text{dB}$$

and

$$\text{PTF}(f_{\text{carrier}}) = \int_{-\infty}^{+\infty} |S_{21}(f) H_{\text{RRC}}(f - f_{\text{carrier}})|^2 \text{d}f$$

with f_{carrier} according to 3GPP TS 25.101 (e.g., for the WCDMA B8 pass band, f_{carrier} ranges from 882.4 MHz to 912.6 MHz which correspond to the lowest and highest TX channels, respectively). $H_{\text{RRC}}(f)$ is the transfer function of the root-raised cosine transmit pulse shaping filter according to 3GPP TS 25.101 using the normalization

$$\int_{-\infty}^{+\infty} |H_{\text{RRC}}(f)|^2 \text{d}f = 1 \quad .$$

14.3 RoHS compatibility

ROHS-compatible means that products are compatible with the requirements according to Art. 4 (substance restrictions) of Directive 2011/65/EU of the European Parliament and of the Council of June 8th, 2011, on the restriction of the use of certain hazardous substances in electrical and electronic equipment ("Directive") with due regard to the application of exemptions as per Annex III of the Directive in certain cases.

14.4 Scattering parameters (S-parameters)

The pin/port assignment is available in the headers of the S-parameter files. Please contact your local EPCOS sales office.

14.5 Ordering codes and packing units

Ordering code	Packing unit
B39212B8651P810	15000 pcs
B39212B8651P810S 5	5000 pcs

Table 4: Ordering codes and packing units.

Data sheet

15 Cautions and warnings

15.1 Display of ordering codes for EPCOS products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.epcos.com/orderingcodes.

15.2 Material information

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

15.3 Moldability

Before using in overmolding environment, please contact your local EPCOS sales office.

15.4 Package information

Landing area

The printed circuit board (PCB) land pattern (landing area) shown is based on EPCOS internal development and empirical data and illustrated for example purposes, only. As customers' SMD assembly processes may have a plenty of variants and influence factors which are not under control or knowledge of EPCOS, additional careful process development on customer side is necessary and strongly recommended in order to achieve best soldering results tailored to the particular customer needs.

Dimensions

Unless otherwise specified all dimensions are understood using unit millimeter (mm).

Projection method

Unless otherwise specified first-angle projection is applied.

Important notes

The following applies to all products named in this publication:

1. Some parts of this publication contain **statements about the suitability of our products for certain areas of application**. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that **such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application**. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
2. We also point out that **in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified**. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
3. **The warnings, cautions and product-specific notes must be observed.**
4. In order to satisfy certain technical requirements, **some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous)**. Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
5. We constantly strive to improve our products. Consequently, **the products described in this publication may change from time to time**. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot guarantee that all products named in this publication will always be available.
The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
6. Unless otherwise agreed in individual contracts, **all orders are subject to the current version of the “General Terms of Delivery for Products and Services in the Electrical Industry” published by the German Electrical and Electronics Industry Association (ZVEI)**.
7. The trade names EPCOS, Alu-X, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are **trademarks registered or pending** in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.