# 4-channel BTL driver for CD players BA6196FP

The BA6196FP is an IC designed CD players and has an internal 4-channel BTL driver, 5V regulator (attached PNP transistor required), standard operational amplifier and a thermal shutdown feature. The driver has gain adjustment input pins for each channel, allowing gain to be set to the desired value. Also, the internal level shift circuit helps reduce the number of attached components.

## Applications

CD players, CD-ROM drives and other optical disc devices

## Features

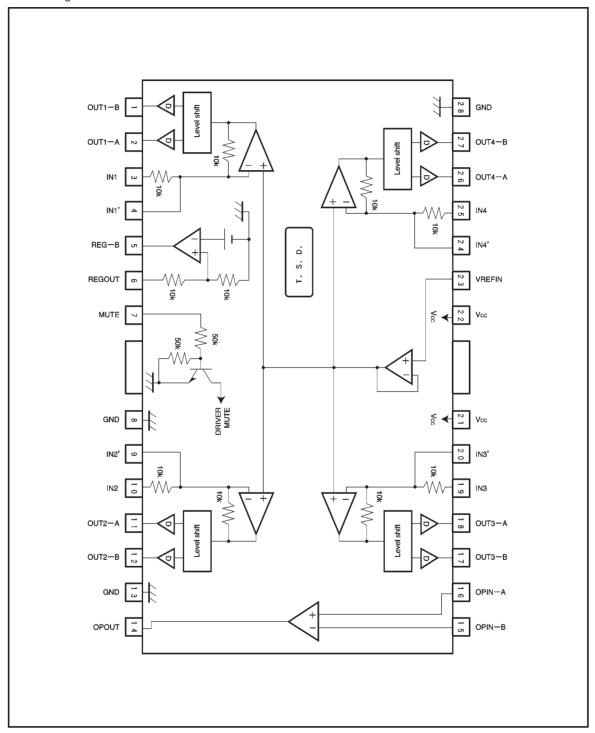
- 4-channel BTL driver in a 28-pin HSOP package, for miniaturization of applications.
- 2) Gain is adjustable with an attached resistor.
- 3) Internal thermal shutdown circuit.
- Internal 5V regulator. (required attached PNP transistor)
- 5) Internal standard operational amplifier.

## ● Absolute maximum ratings (Ta = 25°C)

| Parameter             | Symbol | Limits                   | Unit |
|-----------------------|--------|--------------------------|------|
| Power supply voltage  | Vcc    | 18                       | V    |
| Power dissipation     | Pd     | 1700*1                   | mW   |
| Operating temperature | Topr   | <b>−</b> 35∼ <b>+</b> 85 | °C   |
| Storage temperature   | Tstg   | -55~ <del>+</del> 150    | °C   |
| Maximun current       | Ю Мах. | 1.4*2                    | Α    |

<sup>\*1</sup> When mounted on a 50  $\times$  50  $\times$  1.0 mm paper phenol board Reduced by 13.6 mW for each increase in Ta of 1°C over 25°C.

## ■Recommended operating conditions (Ta = 25°C)

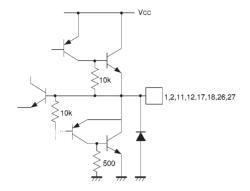

| Parameter            | Symbol | Min. | Тур. | Max. | Unit |  |
|----------------------|--------|------|------|------|------|--|
| Power supply voltage | Vcc    | 6    | _    | 12   | V    |  |
|                      | VCC    | 5.5  | _    | 12   | V*3  |  |

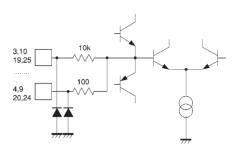
\*3 Without regulator

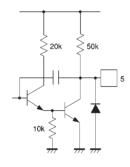


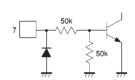
<sup>\*2</sup> Within the range of power dissipation and safe operational area (ASO)

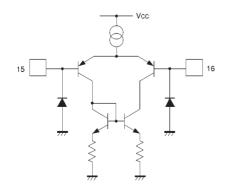
# Block diagram

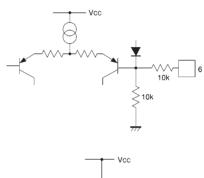


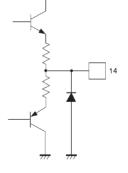


# Pin descriptions

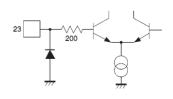

| Pin No. | Pin name | Function                                                  |
|---------|----------|-----------------------------------------------------------|
| 1       | OUT1-B   | Channel 1 negative output                                 |
| 2       | OUT1-A   | Channel 1 positive output                                 |
| 3       | IN1      | Channel 1 input                                           |
| 4       | IN1'     | Input for channel 1 gain adjustment                       |
| 5       | REG-B    | Connect to base of attached regulator transistor          |
| 6       | REGOUT   | Connect to base of attached regulator transistor (output) |
| 7       | MUTE     | Mute control                                              |
| 8       | GND      | Ground                                                    |
| 9       | IN2'     | Input for channel 2 gain adjustment                       |
| 10      | IN2      | Channel 2 input                                           |
| 11      | OUT2-A   | Channel 2 positive output                                 |
| 12      | OUT2-B   | Channel 2 negative output                                 |
| 13      | GND      | Substrate ground                                          |
| 14      | OPOUT    | Operational amplifier output                              |
| 15      | OPIN-B   | Operational amplifier (negative) input                    |
| 16      | OPIN-A   | Operational amplifier (positive) input                    |
| 17      | OUT3-B   | Channel 3 negative output                                 |
| 18      | OUT3-A   | Channel 3 positive output                                 |
| 19      | IN3      | Channel 3 input                                           |
| 20      | IN3'     | Input for channel 3 gain adjustment                       |
| 21      | Vcc      | Power supply                                              |
| 22      | Vcc      | Power supply                                              |
| 23      | VREFIN   | Reference amplifier input (bias)                          |
| 24      | IN4'     | Input for channel 4 gain adjustment                       |
| 25      | IN4      | Channel 4 input                                           |
| 26      | OUT4-A   | Channel 4 positive output                                 |
| 27      | OUT4-B   | Channel 4 negative output                                 |
| 28      | GND      | Substrate ground                                          |


Note : Positive and negative output is relative to the polarity of the input pins. HIGH input → positive output (HIGH), negative output (LOW).


# ●Input / output circuits














●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 8V, f = 1kHz, RL = 8Ω)

| Parameter                     | Symbol | Min. | Тур. | Max. | Unit | Conditions                                   |
|-------------------------------|--------|------|------|------|------|----------------------------------------------|
| Quiescent current dissipation | lcc    | 5.5  | 9.5  | 13.5 | mA   | No load                                      |
| Output offset voltage         | Voo    | -30  | _    | 30   | mV   |                                              |
| Maximun output amplitude      | Vом    | 2.5  | 3.0  | _    | Vrms | V <sub>IN</sub> =2V <sub>rms</sub> , 1kHz    |
| Maximun output 1              | loso   | 0.5  | 0.8  | _    | Α    | Output = GND when $R_L = 4 \Omega$           |
| Maximun output 2              | losi   | 0.5  | 0.8  | _    | Α    | Output = Vcc when RL = 4 $\Omega$            |
| Closed loop voltage gain      | Gvc    | 3.5  | 5.5  | 6.5  | dB   | V <sub>IN</sub> =0.1V <sub>rms</sub> , 1kHz  |
| Ripple rejection              | RR     | _    | 60   | _    | dB   | V <sub>IN</sub> =0.1V <sub>rms</sub> , 100Hz |
| Slew rate                     | SR     | _    | 2.0  | _    | V/μs | 100 Hz square wave, 3 Vp-p output            |
| Mute-off voltage              | VMOFF  | 2.0  | _    | -    | ٧    |                                              |
| ⟨5 V regulator⟩               |        |      |      |      |      |                                              |
| Output voltage                | Vreg   | 4.75 | 5.00 | 5.25 | ٧    | IL=100mA                                     |
| Output load variation         | ΔVRL   | -50  | 0    | 10   | mV   | IL=0~200mA                                   |
| Supply voltage variation      | ΔVVCC  | -10  | 0    | 25   | mV   | (100 (100 (100 (100 (100 (100 (100 (100      |
| (Operational amplifier)       |        |      |      |      |      |                                              |
| Offset voltage                | Vofop  | -5   | 0    | 5    | mV   |                                              |
| Input bias current            | IBIAS  | _    | -    | 300  | nA   |                                              |
| Output high level voltage     | Vонор  | 6.0  | _    | _    | ٧    |                                              |
| Output low level voltage      | Volop  | _    | _    | 1.1  | ٧    |                                              |
| Output drive current (source) | Isou   | 10   | 40   | _    | mA   | 50 Ω at GND                                  |
| Output drive current (sink)   | Isin   | 10   | 50   | -    | mA   | 50 Ω at <b>b</b> ¢                           |
| Closed loop voltage gain      | Gvo    | _    | 78   | _    | dB   | VIN=-75dBV, 1kHz                             |
| Slew rate                     | SRop   | _    | 1    | _    | V/μs | 100 Hz square wave, 4 Vp-p output            |
| Ripple rejection              | RRop   | 50   | 65   | _    | dB   | VIN=0.1Vrms, 100Hz                           |
| Common mode rejection ratio   | CMRR   | 70   | 84   | _    | dB   | VIN=0.1Vrms, 1kHz                            |

O Not designed for radiation resistance.

## Measurement circuit

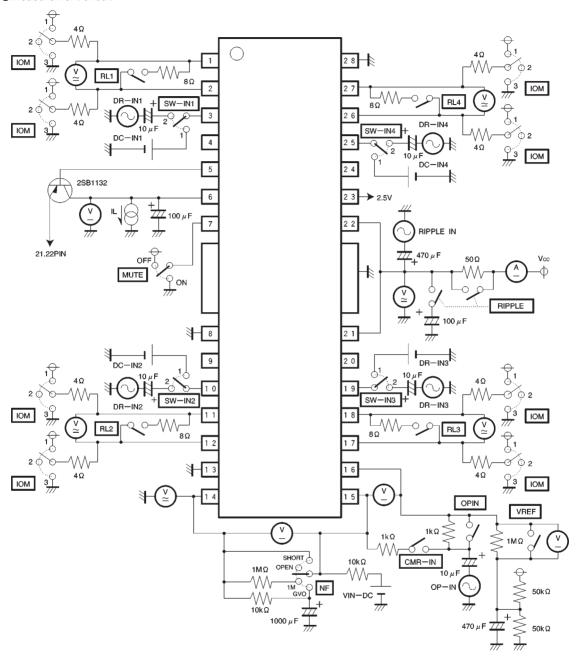



Fig. 1

Optical disc ICs

#### Measurement circuit switch table

| D                              | Switch |          |          |     |          |      |        |          |       |          | Input   |          |           |         |          | 0 1121       |
|--------------------------------|--------|----------|----------|-----|----------|------|--------|----------|-------|----------|---------|----------|-----------|---------|----------|--------------|
| Parameter                      | RIPPLE | MUTE     | RL       | IOM | OPIN     | VREF | CMR-IN | NF       | OPOUT | SW-IN    | DR-IN   | DC-IN    | RIPPLE IN | VOP IN  | VIN DC   | Conditions   |
| Quiescent current dissipation  | ON     | OFF      | OFF      | 2   | ON       | ON   | OFF    | SHORT    | 2     | 2        | 0       | 0        | 0         | 0       | OFF      |              |
| Output offset voltage          | ţ      | ↓        | ON       | ţ   | <b>↓</b> | ţ    | ţ      | ţ        | ţ     | 1        | 1       | 2.5V     | Ţ         | ţ       | <b>↓</b> |              |
| Maximun output amplitude       | ţ      | 1        | +        | ţ   | ţ        | ţ    | ţ      | ţ        | ţ     | 2        | 2Vrms   | 0        | <b>↓</b>  | ļ       | ţ        | Only one     |
| Maximun output 1               | ţ      | <b>†</b> | OFF      | 3   | ţ        | ļ    | ţ      | ţ        | ţ     | 1        | 0       | 2.5V     | <b>+</b>  | ţ       | ţ        | channel      |
| Maximun output 2               | 1      | ţ        | +        | 1   | ļ        | ţ    | ţ      | ţ        | ţ     | <b>+</b> | 1       | ţ        | ↓         | 1       | ↓        | on at a time |
| Closed loop voltage gain       | 1      | ţ        | ON       | 2   | ţ        | ţ    | ţ      | ţ        | ţ     | 2        | 0.1Vrms | 0        | ţ         | ļ       | ļ        |              |
| Ripple rejection               | OFF    | ļ        | <b>+</b> | ţ   | ļ        | ļ    | ţ      | ļ        | ţ     | 1        | 0       | 2.5V     | 0.1Vrms   | ţ       | ļ        |              |
| Slew rate                      | ON     | ļ        | <b>+</b> | ļ   | ļ        | 1    | ţ      | ļ        | ţ     | 2        | Л       | 0        | 0         | ţ       | ļ        |              |
| ⟨Regulator⟩                    |        |          |          |     |          |      |        |          |       |          |         |          |           |         |          |              |
| Output voltage                 | 1      | ļ        | OFF      | 1   | ļ        | ļ    | ļ      | ļ        | ţ     | ļ        | 0       | 0        | <b>↓</b>  | ļ       | ţ        |              |
| Output load variation          | ţ      | ţ        | Ţ        | 1   | ļ        | ţ    | ļ      | ļ        | ţ     | ļ        | ļ       | <b></b>  | <b>↓</b>  | ļ       | ţ        |              |
| Power supply voltage variation | ţ      | ļ        | 1        | 1   | ļ        | ļ    | ļ      | ļ        | ļ     | ļ        | ļ       | <b>↓</b> | ļ         | ţ       | ļ        |              |
| 〈Operational amplifier〉        |        |          |          |     |          |      |        |          |       |          |         |          |           |         |          |              |
| Offset voltage                 | 1      | ļ        | <b>↓</b> | ļ   | ļ        | ļ    | ļ      | <b>↓</b> | ļ     | <b>↓</b> | 1       | ļ        | <b>↓</b>  | ţ       | ↓        |              |
| Input bias current             | 1      | ļ        | <b>↓</b> | ţ   | ļ        | OFF  | ļ      | 1M       | 1     | <b>↓</b> | 1       | ļ        | <b>↓</b>  | ļ       | ↓        |              |
| Output high level voltage      | 1      | ļ        | <b>↓</b> | ţ   | <b>↓</b> | ON   | ļ      | OPEN     | 1     | <b>↓</b> | 1       | ţ        | <b>↓</b>  | ţ       | 2V       |              |
| Output low level voltage       | ļ      | ţ        | <b>↓</b> | ţ   | ↓        | ţ    | ţ      | ţ        | ţ     | <b>↓</b> | 1       | ţ        | ↓         | ţ       | 6V       |              |
| Out. driver current (sink)     | ţ      | ţ        | Ţ        | ļ   | ţ        | ţ    | ţ      | SHORT    | 1     | ļ        | ļ       | ţ        | <b>↓</b>  | ļ       | OFF      |              |
| Out. driver current (source)   | 1      | ļ        | 1        | ţ   | ţ        | ļ    | ţ      | ļ        | 3     | ļ        | ļ       | <b>+</b> | <b>↓</b>  | ţ       | ļ        |              |
| Open loop voltage gain         | 1      | ļ        | 1        | ţ   | ļ        | 1    | ļ      | GVO      | 2     | ļ        | ļ       | <b>→</b> | <b>↓</b>  | −75dBV  | ļ        |              |
| Slew rate                      | 1      | ļ        | <b>1</b> | 1   | ļ        | 1    | ţ      | SHORT    | ţ     | <b>↓</b> | 1       | ţ        | <b>↓</b>  | Л       | <b>↓</b> |              |
| Ripple rejection               | OFF    | <b>1</b> | 1        | 1   | <b></b>  | ţ    | ţ      | Ţ        | ţ     | 1        | 1       | Ţ        | 0.1Vrms   | 0       | 1        |              |
| Common mode rejection ratio    | ΟN     | <b>↓</b> | <b>↓</b> | ļ   | OFF      | ON   | ON     | 1M       | 1     | <b>↓</b> | ļ       | ļ        | 0         | 0.1Vrms | <b>†</b> |              |

### Operation notes

- (1) The BA6196FP has an internal shutdown circuit. The output current is muted when the chip temperature exceeds 175°C (typically).
- (2) If the mute pin (pin 7) voltage is opened or lowered below 0.5V, the output current will be muted. The mute pin should be pulled up above 2.0V during normal use.
- (3) The bias pin (pin 23) is muted when lowered below 1.4V (typically). Make sure it stays above 1.6V during normal use.
- (4) Muting occurs during thermal shutdown, mute-on operations or a drop in the bias pin voltage. In each case, only the drivers are muted. During muting, the output pins remain at the internal bias voltage, roughly (Vcc–VF) / 2.

- (5) The internal circuits turn off when the supply voltage drops below 4.5V (typically), and turn on again when it rises above 4.7V (typically).
- (6) Be sure to connect the IC to a  $0.1\mu F$  bypass capacitor to the power supply, at the base of the IC.
- (7) The radiating fin is connected to the package's internal GND, but should also be connected to an external ground.
- (8) The capacitor between regulator output (pin 6) and GND also serves to prevent oscillation of the IC, so select one with good temperature characteristics.

## Application example

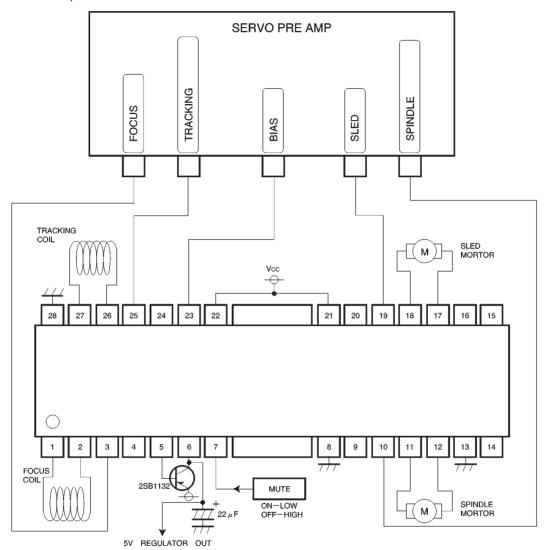



Fig. 2

## Electrical characteristic curves

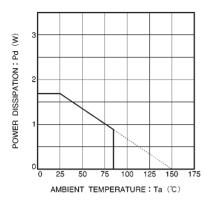
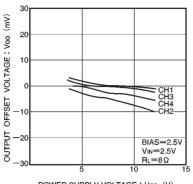




Fig. 3 Thermal derating curve



POWER SUPPLY VOLTAGE: Vcc (V)

Fig. 4 Power Supply voltage vs. driver output offset voltage

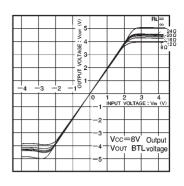



Fig. 5 I / O characteristics (variable load, Vcc = 8 V)

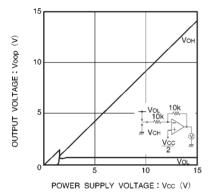



Fig. 6 Power supply voltage vs. operational amplifier output voltage (high and low levels)

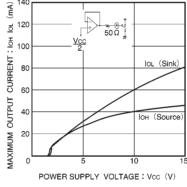



Fig. 7 Power supply voltage vs. operational amplifier

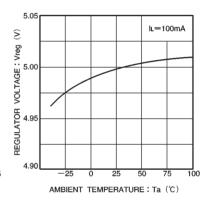



Fig. 8 Regulator voltage vs. temperature characteristics

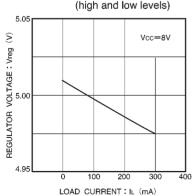



Fig. 9 Load current vs. regulator voltage

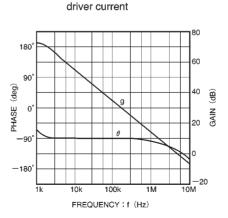
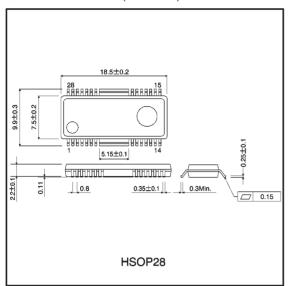




Fig. 10 Operational amplifier vs. open loop

●External dimensions (Units: mm)

