

MM54C195/MM74C195 4-Bit Registers

General Description

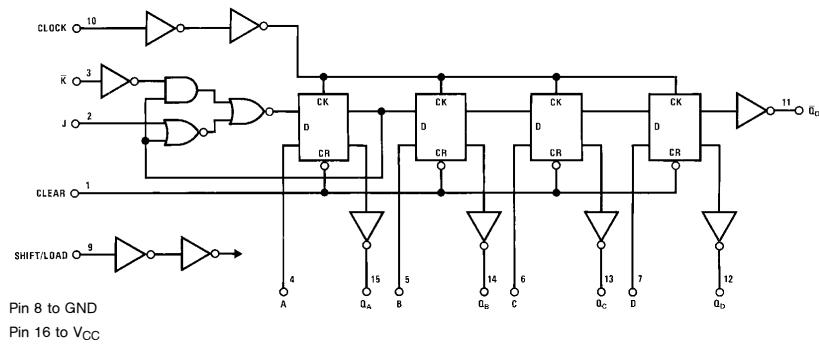
The MM54C195/MM74C195 CMOS 4-bit registers feature parallel inputs, parallel outputs, J-K serial inputs, shift/load control input and a direct overriding clear. The following two modes of operation are possible:

Parallel Load

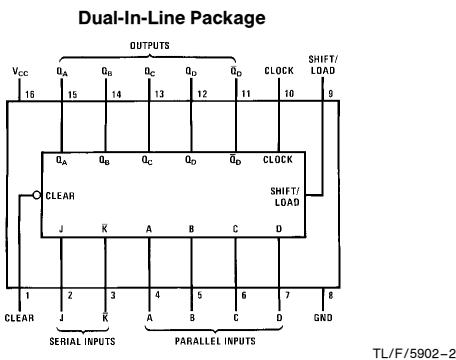
Shift in direction Q_A towards Q_D

Parallel loading is accomplished by applying the four bits of data and taking the shift/load control of input low. The data is loaded into the associated flip-flops and appears at the outputs after the positive transition of the clock input. During parallel loading, serial data flow is inhibited.

Serial shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the J-K inputs. These inputs allow the first stage to perform as a J-K, D, or T-type flip flop as shown in the truth table.


Features

- Medium speed operation 8.5 MHz (typ.) with 10V supply and 50 pF load
- High noise immunity 0.45 V_{CC} (typ.)
- Low power 100 nW (typ.)
- Tenth power TTL compatible Drive 2 LPTTL loads
- Supply voltage range 3V to 15V
- Synchronous parallel load
- Parallel inputs and outputs from each flip-flop
- Direct overriding clear
- J and K inputs to first stage
- Complementary outputs from last stage
- Positive-edge triggered clocking
- Diode clamped inputs to protect against static charge


Applications

- Automotive
- Alarm systems
- Data terminals
- Remote metering
- Instrumentation
- Industrial electronics
- Medical electronics
- Computers

Schematic and Connection Diagrams

TL/F/5902-1

TL/F/5902-2

Top View

Order Number MM54C195 or MM74C195

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Voltage at any Pin $-0.3V$ to $V_{CC} + 0.3V$

Operating Temperature Range

MM54C195

$-55^{\circ}C$ to $+125^{\circ}C$

MM74C195

$-40^{\circ}C$ to $+85^{\circ}C$

Storage Temperature Range $-65^{\circ}C$ to $+150^{\circ}C$

Power Dissipation (P_D)

Dual-In-Line 700 mW

Small Outline 500 mW

Operating V_{CC} Range 3V to 15V

Absolute Maximum V_{CC} 18V

Lead Temperature (Soldering, 10 sec.) 260°C

DC Electrical Characteristics

Min/Max limits apply across temperature range unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
CMOS TO CMOS						
$V_{IN(1)}$	Logical "1" Input Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$	3.5 8.0			V V
$V_{IN(0)}$	Logical "0" Input Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$			1.5 2.0	V V
$V_{OUT(1)}$	Logical "1" Output Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$	4.5 9.0			V V
$V_{OUT(0)}$	Logical "0" Output Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$			0.5 1.0	V V
$I_{IN(1)}$	Logical "1" Input Current	$V_{CC} = 15V$		0.005	1.0	μA
$I_{IN(0)}$	Logical "0" Input Current	$V_{CC} = 15V$	-1.0	-0.005		μA
I_{CC}	Supply Current	$V_{CC} = 15V$		0.05	300	μA
CMOS/LPTTL INTERFACE						
$V_{IN(1)}$	Logical "1" Input Voltage	54C $V_{CC} = 4.5V$ 74C $V_{CC} = 4.75V$	$V_{CC} - 1.5$ $V_{CC} - 1.5$			V V
$V_{IN(0)}$	Logical "0" Input Voltage	54C $V_{CC} = 4.5V$ 74C $V_{CC} = 4.75V$			0.8 0.8	V V
$V_{OUT(1)}$	Logical "1" Output Voltage	54C $V_{CC} = 4.5V, I_O = -360\mu A$ 74C $V_{CC} = 4.75V, I_O = -360\mu A$	2.4 2.4			V V
$V_{OUT(0)}$	Logical "0" Output Voltage	54C $V_{CC} = 4.5V, I_O = 360\mu A$ 74C $V_{CC} = 4.75V, I_O = 360\mu A$			0.4 0.4	V V
OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet) (Short Circuit Current)						
I_{SOURCE}	Output Source Current	$V_{CC} = 5V, V_{IN(0)} = 0V$ $T_A = 25^{\circ}C, V_{OUT} = 0V$	-1.75			mA
I_{SOURCE}	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V$ $T_A = 25^{\circ}C, V_{OUT} = 0V$	-8.0			mA
I_{SINK}	Output Sink Current	$V_{CC} = 5V, V_{IN(1)} = 5V$ $T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	1.75			mA
I_{SINK}	Output Sink Current	$V_{CC} = 10V, V_{IN(1)} = 10V$ $T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	8.0			mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

AC Electrical Characteristics* $T_A = 25^\circ\text{C}$, $C_L = 50 \text{ pF}$, unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
t_{pd}	Propagation Delay Time to a Logical "0" or Logical "1" from Clock to Q or \bar{Q}	$V_{CC} = 5\text{V}$ $V_{CC} = 10\text{V}$		150 75	300 130	ns ns
t_{pd}	Propagation Delay Time to a Logical "0" or Logical "1" from Clear to Q or \bar{Q}	$V_{CC} = 5\text{V}$ $V_{CC} = 10\text{V}$		150 50	300 130	ns ns
t_S	Time Prior to Clock Pulse that Data must be Present	$V_{CC} = 5\text{V}$ $V_{CC} = 10\text{V}$		80 35	200 70	ns ns
t_S	Time Prior to Clock Pulse that Shift/Load must be Present	$V_{CC} = 5\text{V}$ $V_{CC} = 10\text{V}$		110 60	150 90	ns ns
t_H	Time After Clock Pulse that Data must be Held	$V_{CC} = 5\text{V}$ $V_{CC} = 10\text{V}$		-10 -5.0	0 0	ns ns
t_W	Minimum Clear Pulse Width ($t_{WL} = t_{WH}$)	$V_{CC} = 5\text{V}$ $V_{CC} = 10\text{V}$		100 50	200 100	ns ns
t_W	Minimum Clear Pulse Width	$V_{CC} = 5\text{V}$ $V_{CC} = 10\text{V}$		90 40	130 60	ns ns
t_r, t_f	Maximum Clock Rise and Fall Time	$V_{CC} = 5\text{V}$ $V_{CC} = 10\text{V}$	5.0 2.0			μs μs
f_{MAX}	Maximum Input Clock Frequency	$V_{CC} = 5\text{V}$ $V_{CC} = 10\text{V}$	2.0 5.5	3.0 8.5		MHz MHz
C_{IN}	Input Capacitance	(Note 2)		5.0		pF
C_{PD}	Power Dissipation Capacitance	(Note 3)		100		pF

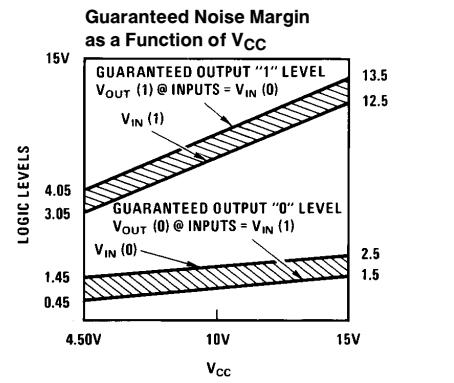
*AC Parameters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note AN-90.

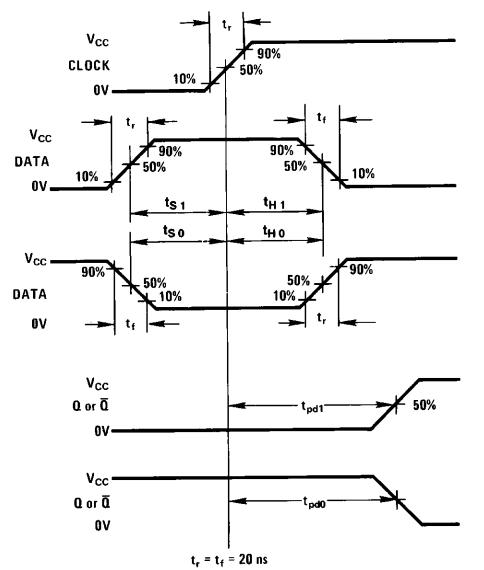
Truth Table


Inputs AT t_n		Outputs AT t_{n+1}				
J	\bar{K}	Q_A	Q_B	Q_C	Q_D	\bar{Q}_D
L	H	Q_{An}	Q_{An}	Q_{Bn}	Q_{Cn}	\bar{Q}_{Cn}
L	L	L	Q_{An}	Q_{Bn}	Q_{Cn}	\bar{Q}_{Cn}
H	H	H	Q_{An}	Q_{Bn}	Q_{Cn}	\bar{Q}_{Cn}
H	L	\bar{Q}_{An}	Q_{An}	Q_{Bn}	Q_{Cn}	\bar{Q}_{Cn}

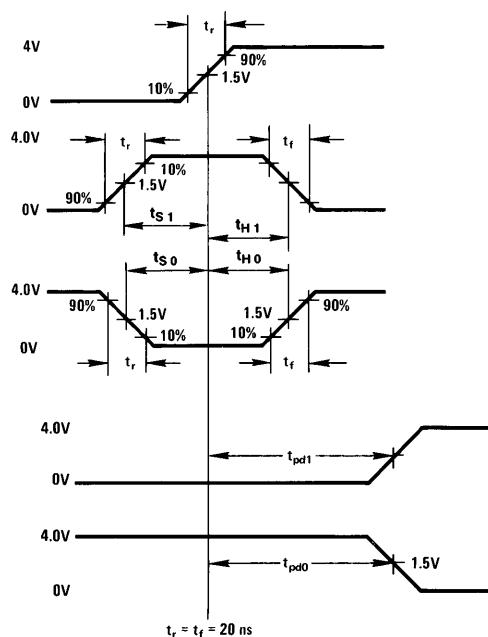
Note: H = High Level, L = Low Level

t_n = bit time before clock pulse

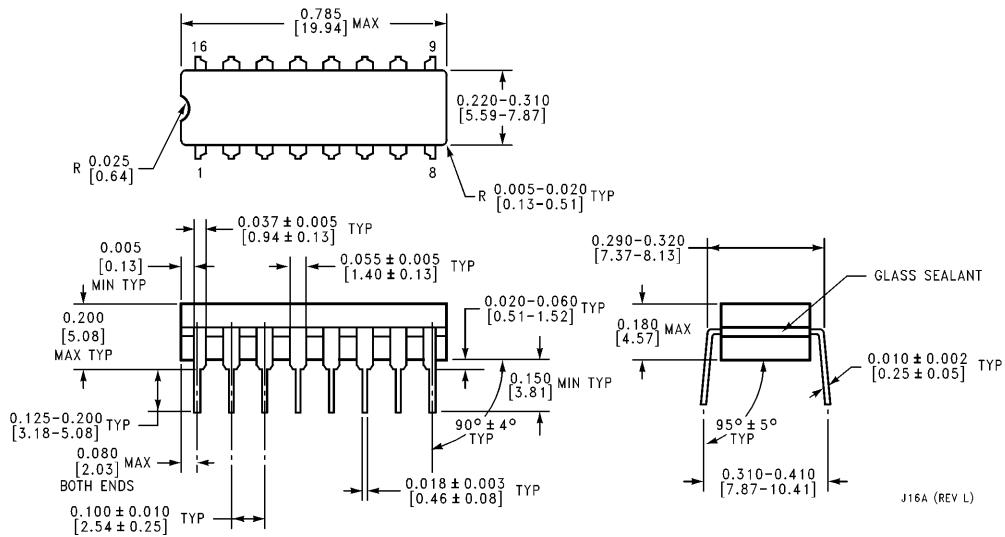
t_{n+1} = bit time after clock pulse


Q_{An} = State of Q_A at t_n

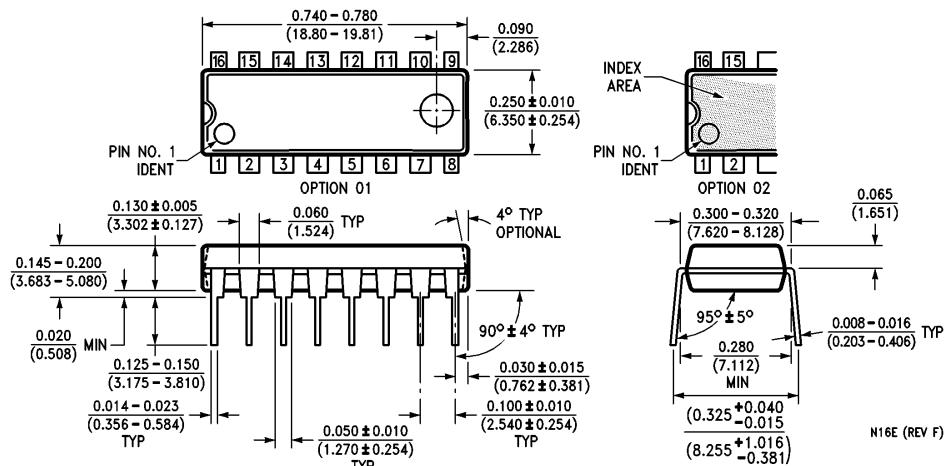
TL/F/5902-3


Switching Time Waveforms

CMOS to CMOS


TL/F/5902-4

TTL to CMOS


TL/F/5902-5

Physical Dimensions inches (millimeters)

Ceramic Dual-In-Line Package (J)
Order Number MM54C195J or MM74C195J
NS Package Number J16A

Physical Dimensions inches (millimeters) (Continued)

Molded Dual-In-Line Package (N)
Order Number MM54C195N or MM74C195N
NS Package Number N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsu, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408
---	---	---	--