

CYPRESS

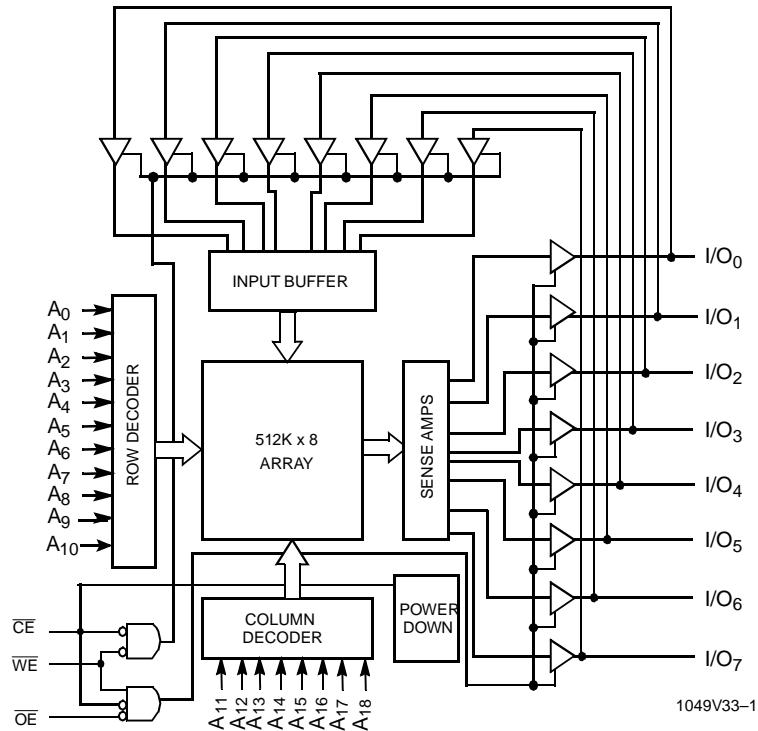
CY7C1049V33

512K x 8 Static RAM

Features

- High speed
 - $t_{AA} = 15$ ns
- Low active power
 - 504 mW (max.)
- Low CMOS standby power (Commercial L version)
 - 1.8 mW (max.)
- 2.0V Data Retention (660 μ W at 2.0V retention)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with \overline{CE} and \overline{OE} features

Functional Description


The CY7C1049V33 is a high-performance CMOS Static RAM organized as 524,288 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable (\overline{CE}), an active LOW Output Enable (\overline{OE}), and three-state drivers. Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. Data on the eight I/O pins (I/O_0 through I/O_7) is then written into the location specified on the address pins (A_0 through A_{18}).

Reading from the device is accomplished by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (\overline{WE}) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O_0 through I/O_7) are placed in a high-impedance state when the device is deselected (\overline{CE} HIGH), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE} LOW, and \overline{WE} LOW).

The CY7C1049V33 is available in a standard 400-mil-wide 36-pin SOJ package with center power and ground (revolutionary) pinout.

Logic Block Diagram

Pin Configuration

SOJ
Top View

A ₀	1	36	NC
A ₁	2	35	A ₁₈
A ₂	3	34	A ₁₇
A ₃	4	33	A ₁₆
A ₄	5	32	A ₁₅
CE	6	31	\overline{OE}
I/O ₀	7	30	I/O ₇
I/O ₁	8	29	I/O ₆
V _{CC}	9	28	GND
GND	10	27	V _{CC}
I/O ₂	11	26	I/O ₅
I/O ₃	12	25	I/O ₄
WE	13	24	A ₁₄
A ₅	14	23	A ₁₃
A ₆	15	22	A ₁₂
A ₇	16	21	A ₁₁
A ₈	17	20	A ₁₀
A ₉	18	19	NC

1049V33-2

Selection Guide

	1049V33-12	1049V33-15	1049V33-17	1049V33-20	1049V33-25
Maximum Access Time (ns)	12	15	17	20	25
Maximum Operating Current (mA)	150	140	130	120	110
Maximum CMOS Standby Current (mA)	Com'l/Ind'l	8	8	8	8
	Com'l	0.5	0.5	0.5	0.5

Shaded areas contain preliminary information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to $+150^{\circ}\text{C}$

Ambient Temperature with

Power Applied -55°C to $+125^{\circ}\text{C}$

Supply Voltage on V_{CC} to Relative GND^[1] -0.5V to $+4.6\text{V}$

DC Voltage Applied to Outputs
in High Z State^[1] -0.5V to $V_{\text{CC}} + 0.5\text{V}$

DC Input Voltage^[1] -0.5V to $V_{\text{CC}} + 0.5\text{V}$

Current into Outputs (LOW) 20 mA

Operating Range

Range	Ambient Temperature ^[2]	V_{CC}
Commercial	0°C to $+70^{\circ}\text{C}$	$3.3\text{V} \pm 0.3\text{V}$
Industrial	-40°C to $+85^{\circ}\text{C}$	

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	7C1049V33-12		7C1049V33-15		7C1049V33-17		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$V_{\text{CC}} = \text{Min.}$, $I_{\text{OH}} = -4.0\text{ mA}$	2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$V_{\text{CC}} = \text{Min.}$, $I_{\text{OL}} = 8.0\text{ mA}$		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$V_{\text{CC}} + 0.5$	2.2	$V_{\text{CC}} + 0.5$	2.2	$V_{\text{CC}} + 0.5$	V
V_{IL}	Input LOW Voltage ^[1]		-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$\text{GND} \leq V_{\text{I}} \leq V_{\text{CC}}$	-1	+1	-1	+1	-1	+1	μA
I_{OZ}	Output Leakage Current	$\text{GND} \leq V_{\text{OUT}} \leq V_{\text{CC}}$, Output Disabled	-1	+1	-1	+1	-1	+1	μA
I_{CC}	V_{CC} Operating Supply Current	$V_{\text{CC}} = \text{Max.}$, $f = f_{\text{MAX}} = 1/t_{\text{RC}}$		150		140		130	mA
I_{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\text{Max. } V_{\text{CC}}, \bar{C}\bar{E} \geq V_{\text{IH}}$ $V_{\text{IN}} \geq V_{\text{IH}}$ or $V_{\text{IN}} \leq V_{\text{IL}}, f = f_{\text{MAX}}$		30		30		30	mA
I_{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\text{Max. } V_{\text{CC}},$ $\bar{C}\bar{E} \geq V_{\text{CC}} - 0.3\text{V}$, $V_{\text{IN}} \geq V_{\text{CC}} - 0.3\text{V}$, or $V_{\text{IN}} \leq 0.3\text{V}, f=0$	Com'l/Ind'l		8		8		mA
			Com'l	L		0.5		0.5	

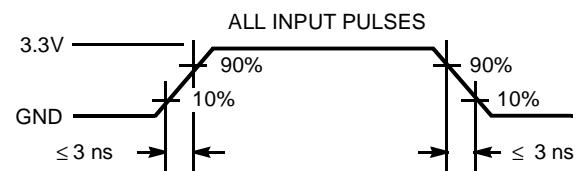
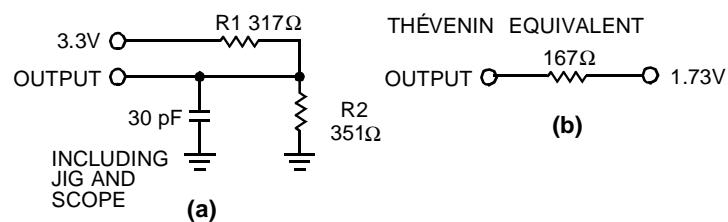
Shaded areas contain preliminary information.

Notes:

1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.

2. T_A is the "Instant On" case temperature.

Electrical Characteristics Over the Operating Range (continued)



Parameter	Description	Test Conditions	7C1049V33-20		7C1049V33-25		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$V_{CC} = \text{Min.}$, $I_{OH} = -4.0 \text{ mA}$	2.4		2.4		V
V_{OL}	Output LOW Voltage	$V_{CC} = \text{Min.}$, $I_{OL} = 8.0 \text{ mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$V_{CC} + 0.5$	2.2	$V_{CC} + 0.5$	V
V_{IL}	Input LOW Voltage ^[1]		-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$	-1	+1	-1	+1	μA
I_{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC}$, Output Disabled	-1	+1	-1	+1	μA
I_{CC}	V_{CC} Operating Supply Current	$V_{CC} = \text{Max.}$, $f = f_{MAX} = 1/t_{RC}$		120		110	mA
I_{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\text{Max. } V_{CC}, \overline{CE} \geq V_{IH}$ $V_{IN} \geq V_{IH}$ or $V_{IN} \leq V_{IL}, f = f_{MAX}$		30		30	mA
I_{SB2}	Automatic CE Power-Down Current —CMOS Inputs	Max. V_{CC} , $\overline{CE} \geq V_{CC} - 0.3V$, $V_{IN} \geq V_{CC} - 0.3V$, or $V_{IN} \leq 0.3V, f=0$	Com'l/Ind'l		8		mA
			Com'l L		0.5		0.5 mA

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^\circ C, f = 1 \text{ MHz}$, $V_{CC} = 3.3V$	8	pF
C_{OUT}	I/O Capacitance		8	pF

Note:

3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

1049V33-3

1049V33-4

Switching Characteristics^[5] Over the Operating Range

Parameter	Description	7C1049V33-12		7C1049V33-15		7C1049V33-17		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	12		15		17		ns
t_{AA}	Address to Data Valid		12		15		17	ns
t_{OHA}	Data Hold from Address Change	3		3		3		ns
t_{ACE}	\overline{CE} LOW to Data Valid		12		15		17	ns
t_{DOE}	\overline{OE} LOW to Data Valid		6		7		8	ns
t_{LZOE}	\overline{OE} LOW to Low Z	0		0		0		ns
t_{HZOE}	\overline{OE} HIGH to High Z ^[5, 6]		6		7		8	ns
t_{LZCE}	\overline{CE} LOW to Low Z ^[6]	3		3		3		ns
t_{HZCE}	\overline{CE} HIGH to High Z ^[5, 6]		6		7		8	ns
t_{PU}	\overline{CE} LOW to Power-Up	0		0		0		ns
t_{PD}	\overline{CE} HIGH to Power-Down		12		15		17	ns
WRITE CYCLE^[7, 8]								
t_{WC}	Write Cycle Time	12		15		17		ns
t_{SCE}	\overline{CE} LOW to Write End	10		12		13		ns
t_{AW}	Address Set-Up to Write End	10		12		13		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		ns
t_{PWE}	\overline{WE} Pulse Width	10		12		13		ns
t_{SD}	Data Set-Up to Write End	7		8		9		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
t_{LZWE}	\overline{WE} HIGH to Low Z ^[6]	3		3		3		ns
t_{HZWE}	\overline{WE} LOW to High Z ^[5, 6]		6		7		8	ns

Shaded areas contain preliminary information.

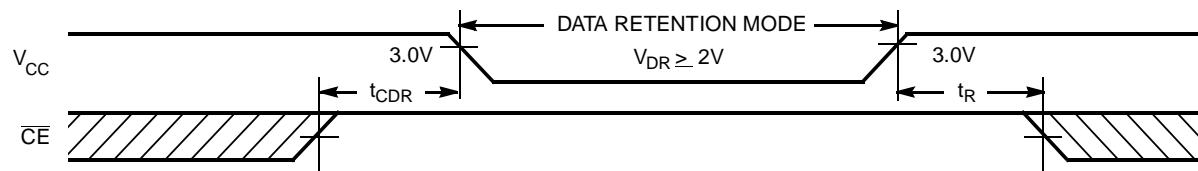
Notes:

4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
5. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.
6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device.
7. The internal write time of the memory is defined by the overlap of \overline{CE} LOW, and \overline{WE} LOW. \overline{CE} and \overline{WE} must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
8. The minimum write cycle time for Write Cycle no. 3 (\overline{WE} controlled, \overline{OE} LOW) is the sum of t_{HZWE} and t_{SD} .

Switching Characteristics^[5] Over the Operating Range (continued)

Parameter	Description	7C1049V33-20		7C1049V33-25		Unit
		Min.	Max.	Min.	Max.	
READ CYCLE						
t_{RC}	Read Cycle Time	20		25		ns
t_{AA}	Address to Data Valid		20		25	ns
t_{OHA}	Data Hold from Address Change	3		5		ns
t_{ACE}	\overline{CE} LOW to Data Valid		20		25	ns
t_{DOE}	\overline{OE} LOW to Data Valid		8		10	ns
t_{LZOE}	\overline{OE} LOW to Low Z	0		0		ns
t_{HZOE}	\overline{OE} HIGH to High Z ^[5, 6]		8		10	ns
t_{LZCE}	\overline{CE} LOW to Low Z ^[6]	3		5		ns
t_{HZCE}	\overline{CE} HIGH to High Z ^[5, 6]		8		10	ns
t_{PU}	\overline{CE} LOW to Power-Up	0		0		ns
t_{PD}	\overline{CE} HIGH to Power-Down		20		25	ns
WRITE CYCLE^[7]						
t_{WC}	Write Cycle Time	20		25		ns
t_{SCE}	\overline{CE} LOW to Write End	13		15		ns
t_{AW}	Address Set-Up to Write End	13		15		ns
t_{HA}	Address Hold from Write End	0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		ns
t_{PWE}	\overline{WE} Pulse Width	13		15		ns
t_{SD}	Data Set-Up to Write End	9		10		ns
t_{HD}	Data Hold from Write End	0		0		ns
t_{LZWE}	\overline{WE} HIGH to Low Z ^[6]	3		5		ns
t_{HZWE}	\overline{WE} LOW to High Z ^[5, 6]		8		10	ns

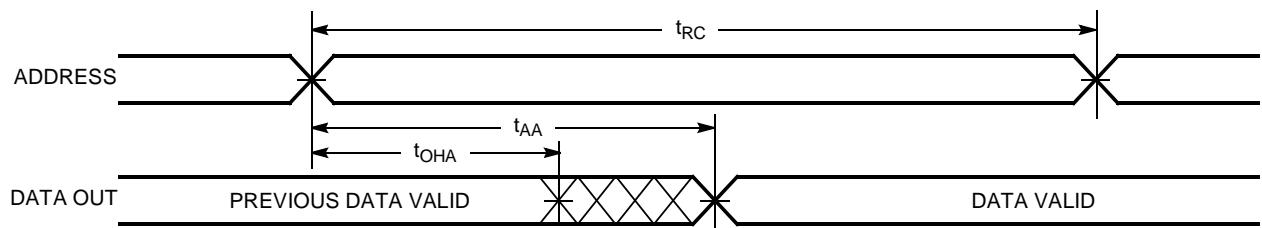
Data Retention Characteristics Over the Operating Range (For L version only)


Parameter	Description	Conditions ^[10]	Min.	Max	Unit
V_{DR}	V_{CC} for Data Retention		2.0		V
I_{CCDR}	Data Retention Current	$V_{CC} = V_{DR} = 2.0V$, $\overline{CE} \geq V_{CC} - 0.3V$ $V_{IN} \geq V_{CC} - 0.3V$ or $V_{IN} \leq 0.3V$		330	μA
$t_{CDR}^{[3]}$	Chip Deselect to Data Retention Time		0		ns
$t_R^{[9]}$	Operation Recovery Time		t_{RC}		ns

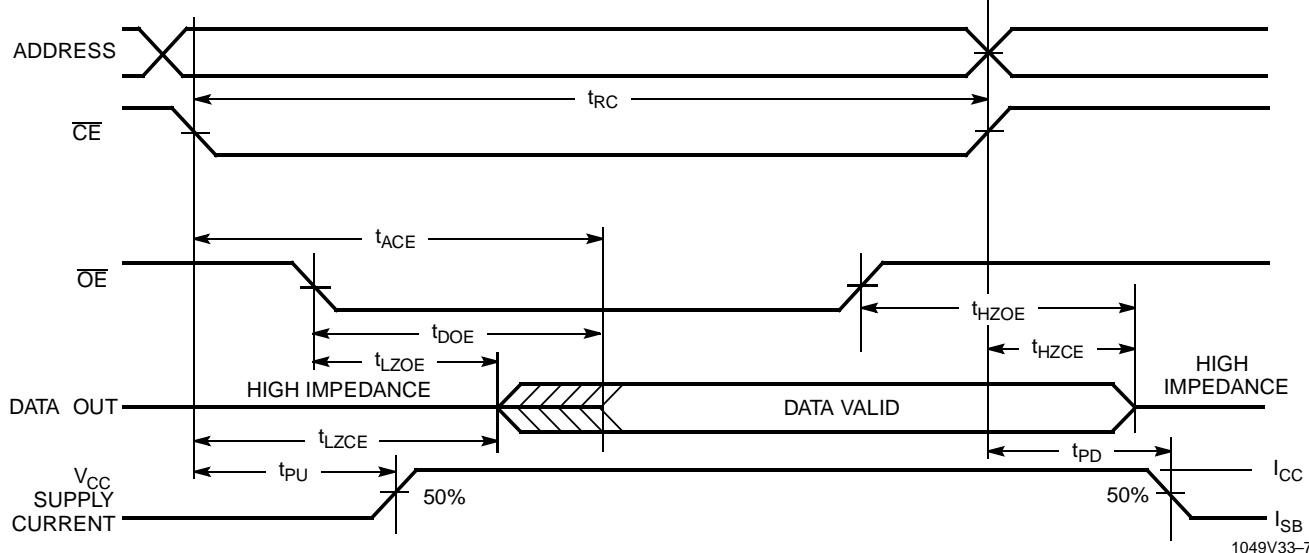
Notes:

9. $t_r \leq 3$ ns for the -12 and -15 speeds. $t_r \leq 5$ ns for the -20 ns and slower speeds.

10. No input may exceed $V_{CC} + 0.5V$.


Data Retention Waveform

1049V33-5


Switching Waveforms

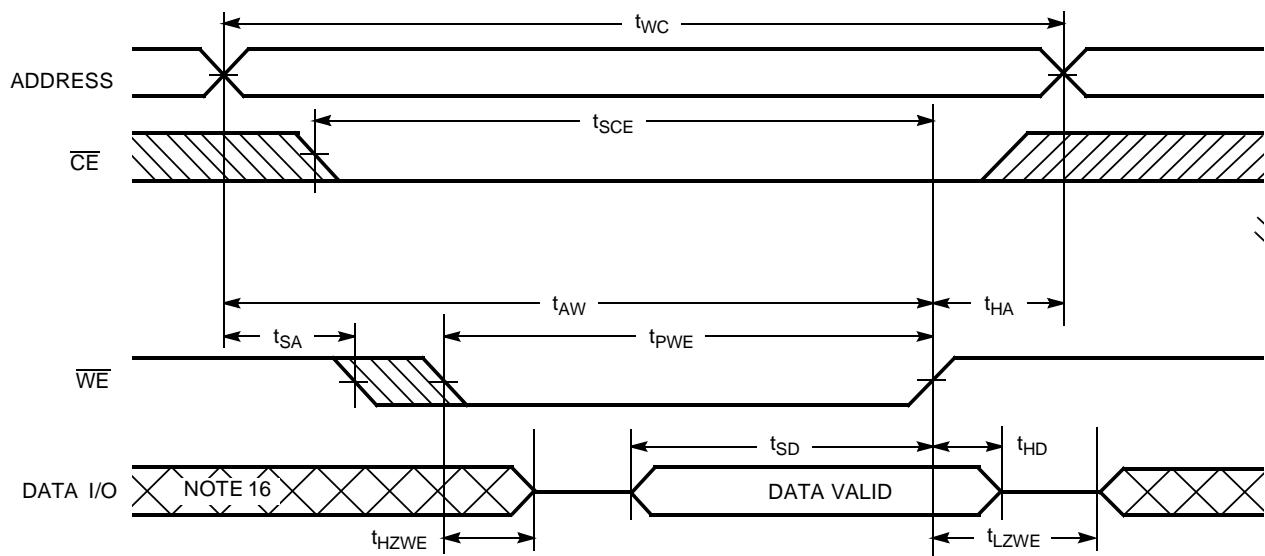
Read Cycle No. 1^[11, 12]

1049V33-6

Read Cycle No. 2 (\overline{OE} Controlled)^[12, 13]

Notes:

11. Device is continuously selected. $\overline{OE}, \overline{CE} = V_{IL}$.
12. \overline{WE} is HIGH for read cycle.
13. Address valid prior to or coincident with \overline{CE} transition LOW.


Switching Waveforms (continued)

Write Cycle No. 1 (\overline{WE} Controlled, \overline{OE} HIGH During Write)^[14, 15]

1049V33-8

Write Cycle No. 2 (\overline{WE} Controlled, \overline{OE} LOW)

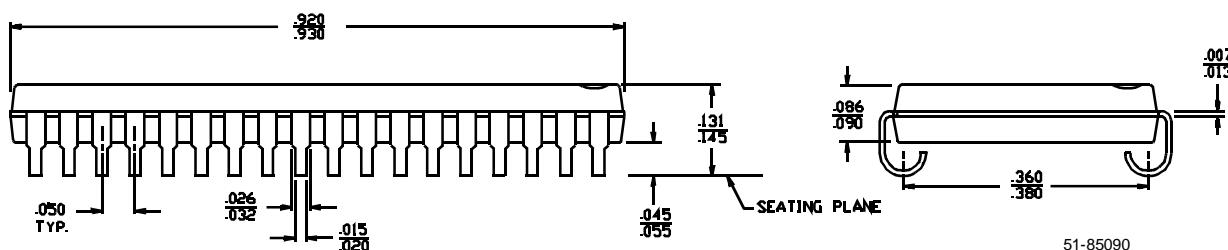
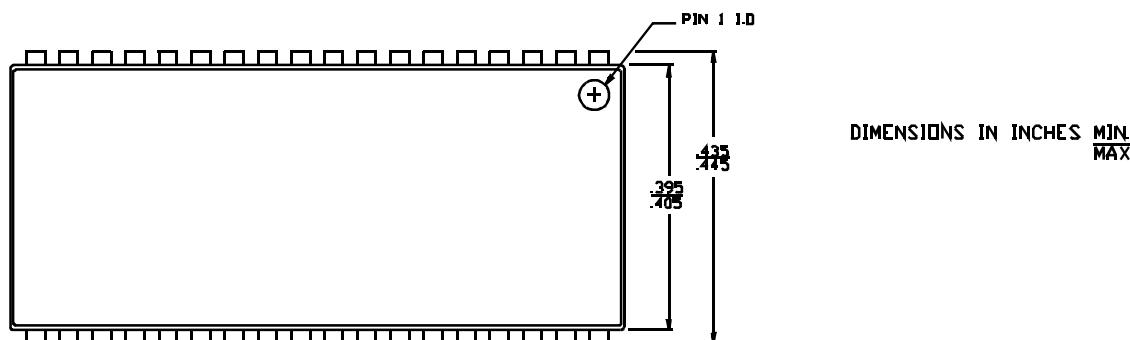
1049V33-9

Notes:

14. Data I/O is high impedance if $\overline{OE} = V_{IH}$.
15. If \overline{CE} goes HIGH simultaneously with \overline{WE} going HIGH, the output remains in a high-impedance state.
16. During this period the I/Os are in the output state and input signals should not be applied.

Truth Table

\overline{CE}	\overline{OE}	\overline{WE}	$I/O_0 - I/O_7$	Mode	Power
H	X	X	High Z	Power-Down	Standby (I_{SB})
L	L	H	Data Out	Read	Active (I_{CC})
L	X	L	Data In	Write	Active (I_{CC})
L	H	H	High Z	Selected, Outputs Disabled	Active (I_{CC})



Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1049V33-12VC	V36	36-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1049V33L-12VC	V36	36-Lead (400-Mil) Molded SOJ	
15	CY7C1049V33-15VC	V36	36-Lead (400-Mil) Molded SOJ	
	CY7C1049V33L-15VC	V36	36-Lead (400-Mil) Molded SOJ	
17	CY7C1049V33-17VC	V36	36-Lead (400-Mil) Molded SOJ	
	CY7C1049V33L-17VC	V36	36-Lead (400-Mil) Molded SOJ	
20	CY7C1049V33-20VC	V36	36-Lead (400-Mil) Molded SOJ	
	CY7C1049V33L-20VC	V36	36-Lead (400-Mil) Molded SOJ	
	CY7C1049V33-20VI	V36	36-Lead (400-Mil) Molded SOJ	
25	CY7C1049V33-25VC	V36	36-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1049V33-25VI	V36	36-Lead (400-Mil) Molded SOJ	Industrial

Document #: 38-00643-B

Package Diagram

36-Lead (400-Mil) Molded SOJ V36

