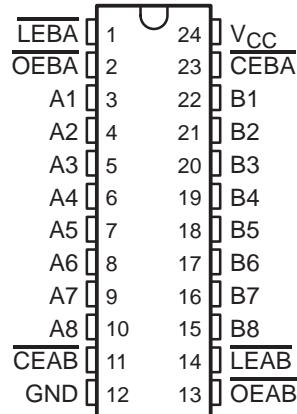


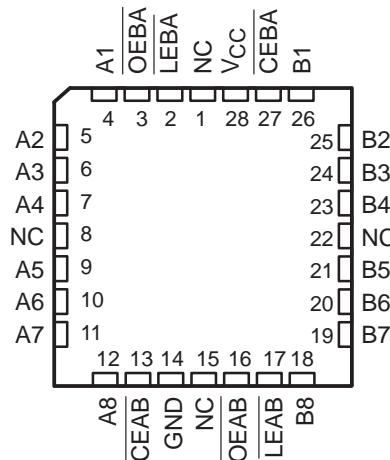
SN54BCT544, SN74BCT544 OCTAL REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS039B – NOVEMBER 1988 – REVISED NOVEMBER 1993

- State-of-the-Art BiCMOS Design Significantly Reduces I_{CCZ}
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015
- Power-Up High-Impedance State
- 3-State Inverting Outputs
- Back-to-Back Registers for Storage
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK) and Flatpacks (W), and Plastic and Ceramic 300-mil DIPs (JT, NT)


description

The 'BCT544 octal registered transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate latch-enable (\overline{LEAB} or \overline{LEBA}) and output-enable (\overline{OEAB} or \overline{OEBA}) inputs are provided for each register to permit independent control in either direction of data flow.


The A-to-B enable (\overline{CEAB}) input must be low in order to enter data from A or to output data from B. If \overline{CEAB} is low and \overline{LEAB} is low, the A-to-B latches are transparent; a subsequent low-to-high transition of \overline{LEAB} puts the A latches in the storage mode. With \overline{CEAB} and \overline{OEAB} both low, the 3-state B outputs are active and reflect the inverted data present at the output of the A latches. Data flow from B to A is similar, but requires using the \overline{CEBA} , \overline{LEBA} , and \overline{OEBA} inputs.

The SN54BCT544 is characterized for operation over the full military temperature range of -55°C to 125°C . The SN74BCT544 is characterized for operation from 0°C to 70°C .

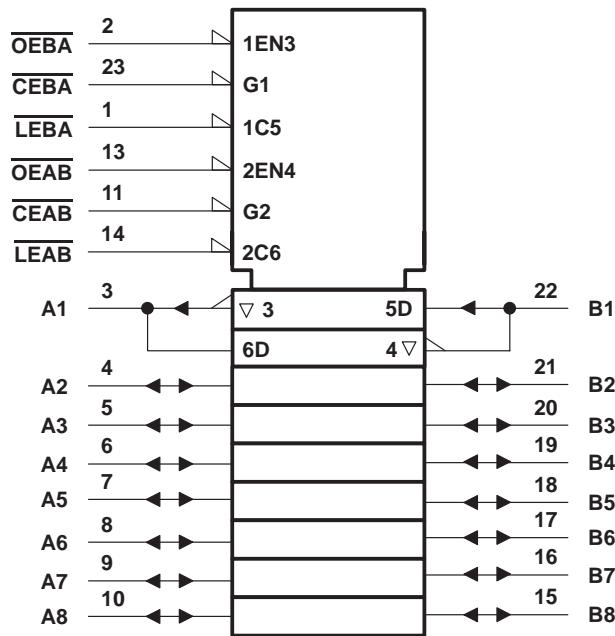
SN54BCT544 . . . JT OR W PACKAGE
SN74BCT544 . . . DW OR NT PACKAGE
(TOP VIEW)

SN54BCT544 . . . FK PACKAGE
(TOP VIEW)

NC – No internal connection

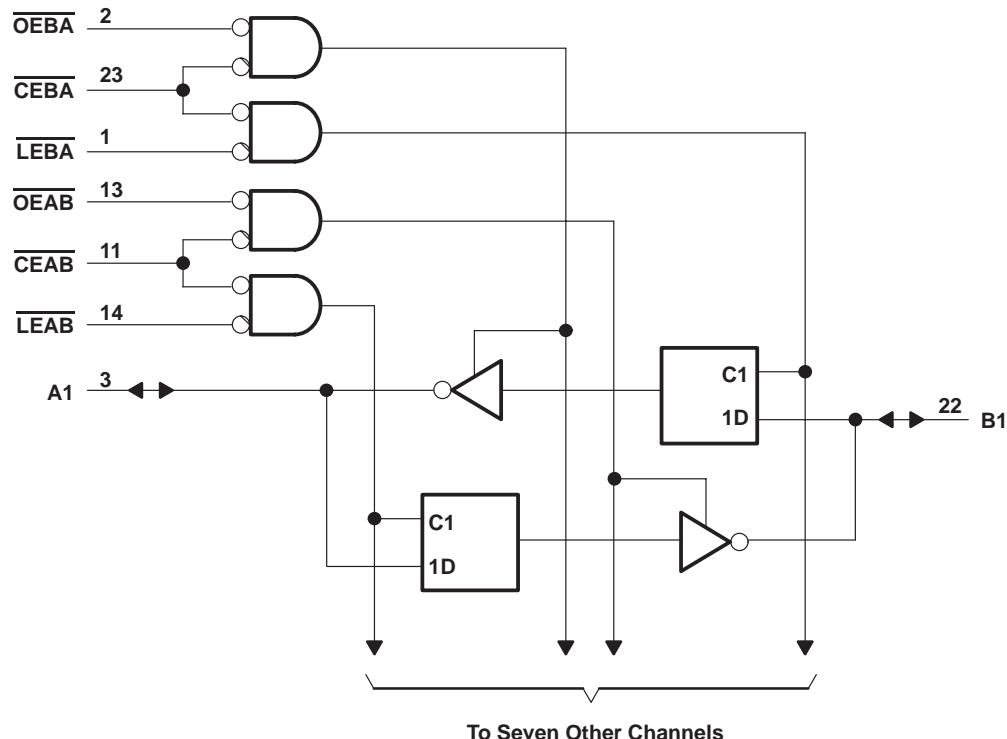
FUNCTION TABLE[†]

INPUTS				OUTPUT B
CEAB	LEAB	OEAB	A	
H	X	X	X	Z
L	X	H	X	Z
L	H	L	X	B_0^{\ddagger}
L	L	L	L	H
L	L	L	H	L


[†] A-to-B data flow is shown; B-to-A flow control is the same except that it uses \overline{CEBA} , \overline{LEBA} , and \overline{OEBA} .

[‡] Output level before the indicated steady-state input conditions were established.

**SN54BCT544, SN74BCT544
OCTAL REGISTERED TRANSCEIVERS
WITH 3-STATE OUTPUTS**


SCBS039B – NOVEMBER 1988 – REVISED NOVEMBER 1993

logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

Pin numbers shown are for the DW, JT, NT, and W packages.

SN54BCT544, SN74BCT544
OCTAL REGISTERED TRANSCEIVERS
WITH 3-STATE OUTPUTS

SCBS039B – NOVEMBER 1988 – REVISED NOVEMBER 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V_{CC}	–0.5 V to 7 V		
Input voltage range: Control inputs (see Note 1)	–0.5 V to 7 V		
I/O ports (see Note 1)	–0.5 V to 5.5 V		
Voltage range applied to any output in the disabled or power-off state, V_O	–0.5 V to 7 V		
Voltage range applied to any output in the high state, V_O	–0.5 V to V_{CC}		
Input clamp current	–30 mA		
Current into any output in the low state: SN54BCT544	96 mA		
SN74BCT544	128 mA		
Operating free-air temperature range: SN54BCT544	–55°C to 125°C		
SN74BCT544	0°C to 70°C		
Storage temperature range	–65°C to 150°C		

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input negative voltage rating may be exceeded if the input clamp-current rating is observed.

recommended operating conditions

		SN54BCT544			SN74BCT544			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage	2			2			V
V_{IL}	Low-level input voltage			0.8			0.8	V
I_{IK}	Input clamp current			–18			–18	mA
I_{OH}	High-level output current			–12			–15	mA
I_{OL}	Low-level output current			48			64	mA
T_A	Operating free-air temperature	–55		125	0		70	°C

**SN54BCT544, SN74BCT544
OCTAL REGISTERED TRANSCEIVERS
WITH 3-STATE OUTPUTS**

SCBS039B – NOVEMBER 1988 – REVISED NOVEMBER 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54BCT544			SN74BCT544			UNIT
		MIN	TYPT [†]	MAX	MIN	TYPT [†]	MAX	
V _{IK}	V _{CC} = 4.5 V, I _I = -18 mA			-1.2			-1.2	V
V _{OH}	V _{CC} = 4.5 V	I _{OH} = -3 mA	2.4	3.3	2.4	3.3		V
		I _{OH} = -12 mA	2	3.2				
		I _{OH} = -15 mA			2	3.1		
V _{OL}	V _{CC} = 4.5 V	I _{OL} = -3 mA				2.7		V
		I _{OL} = 48 mA	0.38	0.55				
I _I	V _{CC} = 5.5 V, V _I = 5.5 V		0.4			0.4	mA	mA
					20		20	
I _{IH} [‡]	V _{CC} = 5.5 V, V _I = 2.7 V							μA
					-0.6		-0.6	
I _{IL} [‡]	V _{CC} = 5.5 V, V _I = 0.5 V							mA
					-100	-225	-100	
I _{OS} [§]	V _{CC} = 5.5 V, V _O = 0						-225	mA
					7	11	7	
I _{CCH}	V _{CC} = 5.5 V							mA
					43	68	43	
I _{CCL}	V _{CC} = 5.5 V							mA
					9	15	9	
I _{CCZ}	V _{CC} = 5.5 V							mA
C _i	V _{CC} = 5 V, V _I = 2.5 V or 0.5 V		6			6		pF
					16		16	
C _{io}	V _{CC} = 5 V, V _O = 2.5 V or 0.5 V							pF

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[‡] For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.

[§] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

		V _{CC} = 5 V, T _A = 25°C	SN54BCT544		SN74BCT544		UNIT	
			MIN	MAX	MIN	MAX		
t _w	Pulse duration, LEAB or LEBA low		7		8		7	ns
t _{su}	Setup time, data before LEAB or LEBA [†]	High or low	5		5.5		5	ns
t _h	Hold time, data after LEAB or LEBA [†]	High or low	1		1		1	ns

SN54BCT544, SN74BCT544
OCTAL REGISTERED TRANSCEIVERS
WITH 3-STATE OUTPUTS

SCBS039B – NOVEMBER 1988 – REVISED NOVEMBER 1993

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$, $R_L = 500 \Omega$ (unless otherwise noted) (see Note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$		SN54BCT544		SN74BCT544		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
t_{PLH}	A or B	B or A	2.4	7.6	2.4	10.3	2.4	9.7	ns
t_{PHL}			3	7.6	3	8.9	3	8.5	
t_{PLH}	\overline{LEBA}	A	3.5	10.3	3.5	14.2	3.5	13.3	ns
t_{PHL}			4.8	10.2	4.8	12.7	4.8	12.3	
t_{PLH}	\overline{LEAB}	B	3.5	10.3	3.5	14.4	3.5	13.4	ns
t_{PHL}			4.8	10.3	4.8	12.8	4.8	12.4	
t_{PZH}	\overline{OE} or \overline{CE}	A or B	3	10.1	3	13.1	3	12.7	ns
t_{PZL}			5.1	11.8	5.1	14.2	5.1	13.9	
t_{PHZ}	\overline{OE} or \overline{CE}	A or B	2.8	7.5	2	8.9	2.8	8.5	ns
t_{PLZ}			2.3	7.2	2.3	9	2.3	8.2	

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN74BCT544DW	OBsolete	SOIC	DW	24		TBD	Call TI	Call TI
SN74BCT544DWR	OBsolete	SOIC	DW	24		TBD	Call TI	Call TI
SN74BCT544NT	OBsolete	PDIP	NT	24		TBD	Call TI	Call TI
SNJ54BCT544FK	OBsolete	LCCC	FK	28		TBD	Call TI	Call TI
SNJ54BCT544JT	OBsolete	CDIP	JT	24		TBD	Call TI	Call TI
SNJ54BCT544W	OBsolete	CFP	W	24		TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBsolete: TI has discontinued the production of the device.

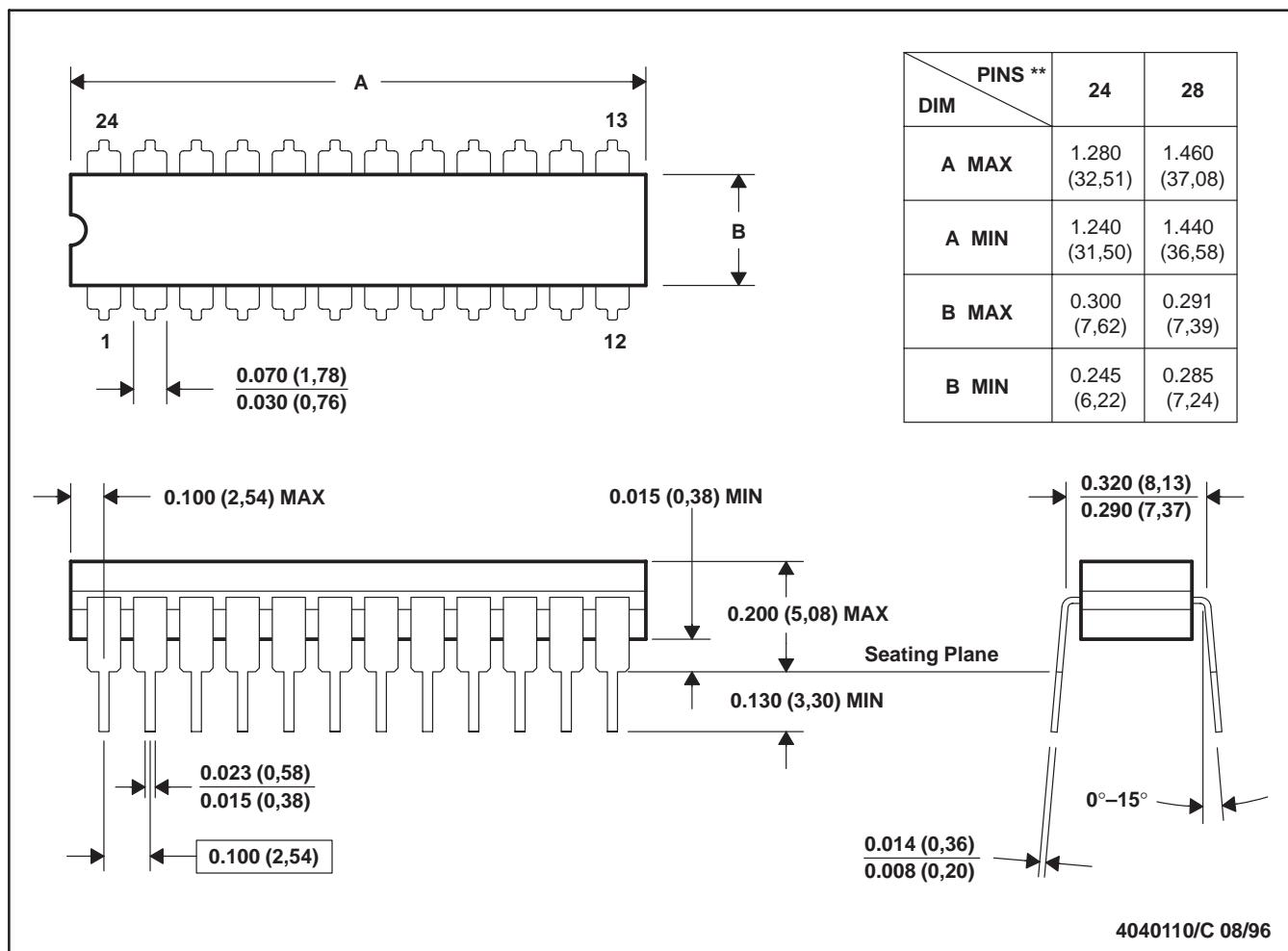
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

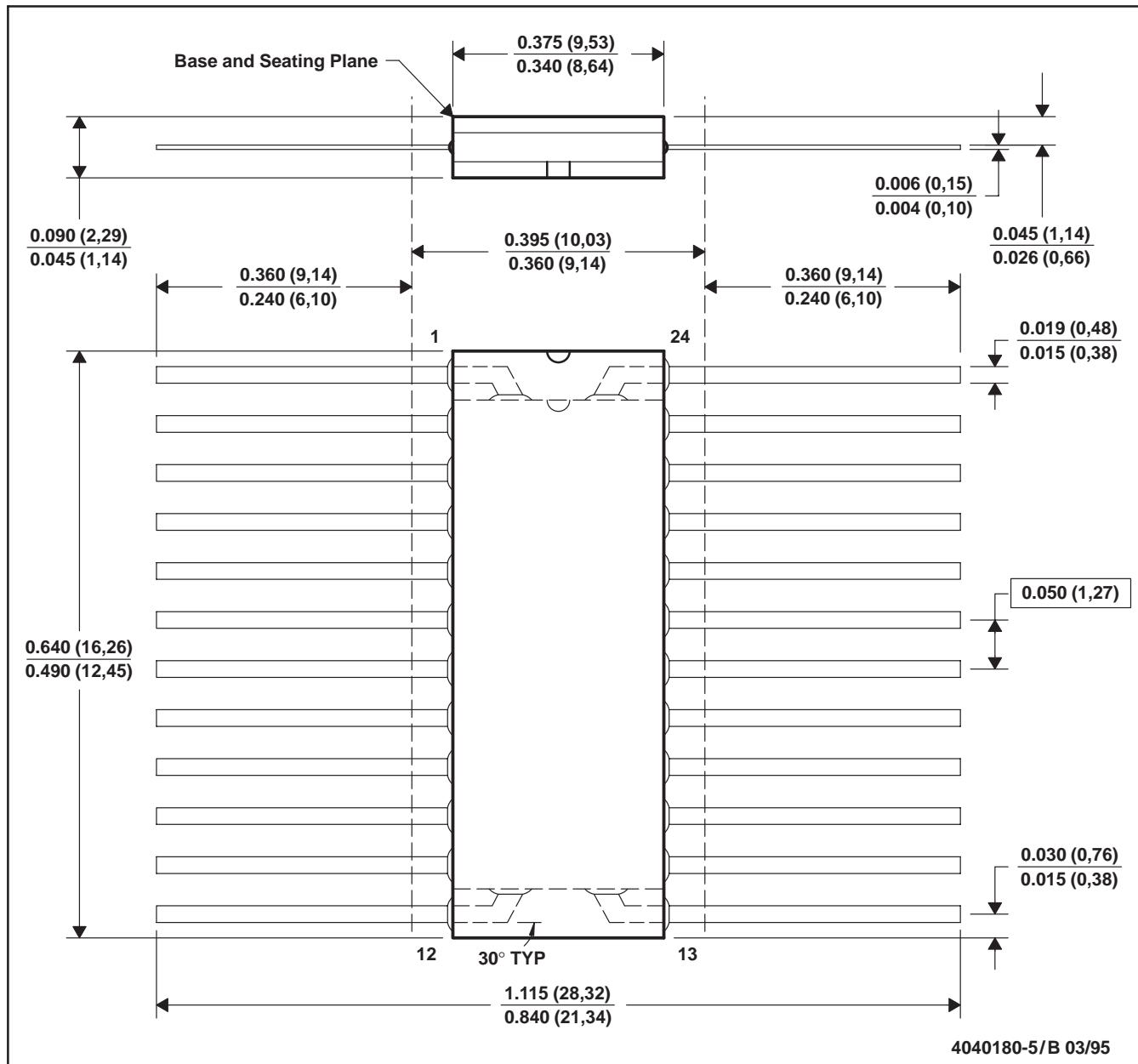
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

JT (R-GDIP-T**)

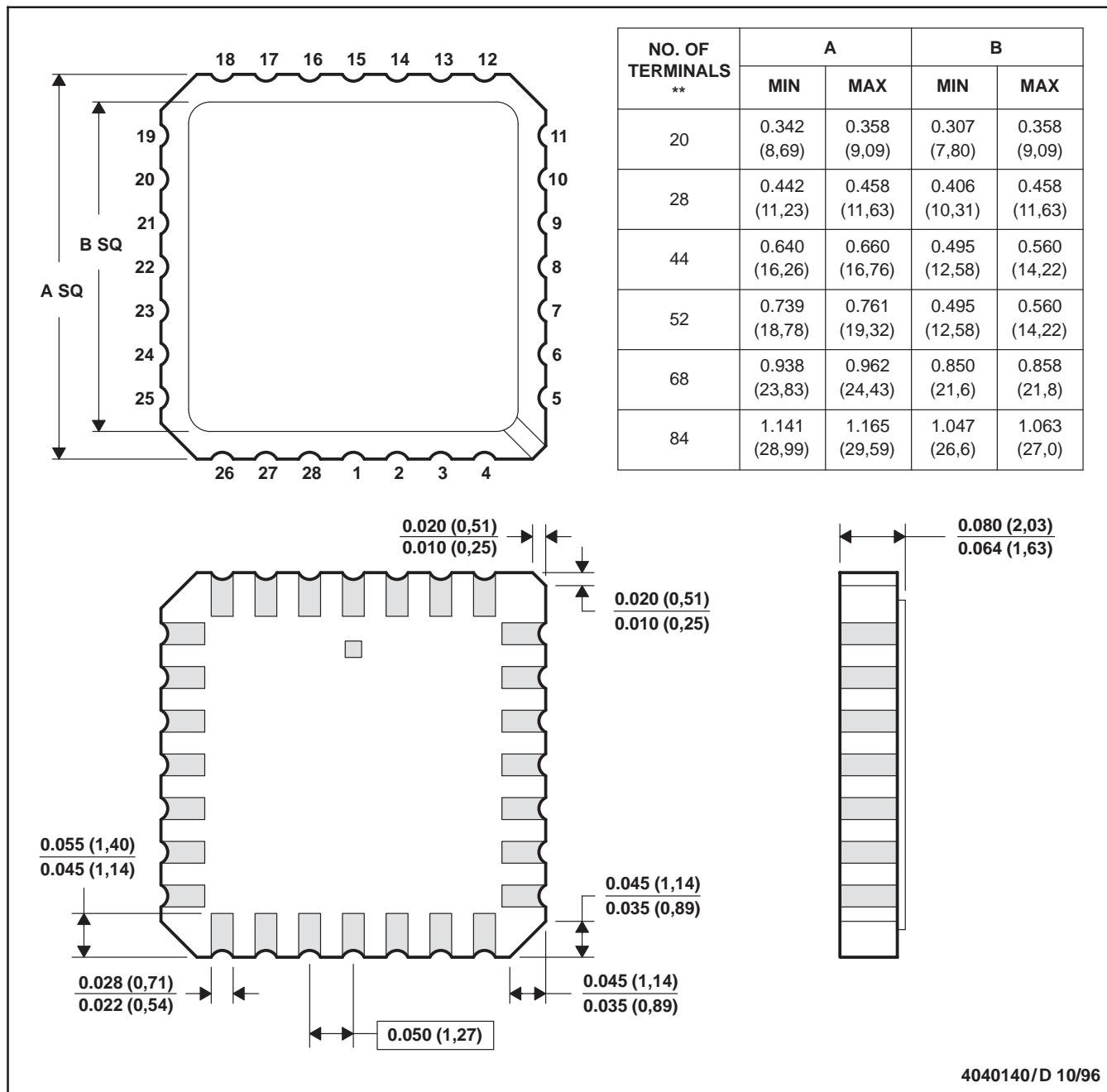
24 LEADS SHOWN


CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. This package can be hermetically sealed with a ceramic lid using glass frit.
 D. Index point is provided on cap for terminal identification.
 E. Falls within MIL STD 1835 GDIP3-T24, GDIP4-T28, and JEDEC MO-058 AA, MO-058 AB

W (R-GDFP-F24)

CERAMIC DUAL FLATPACK

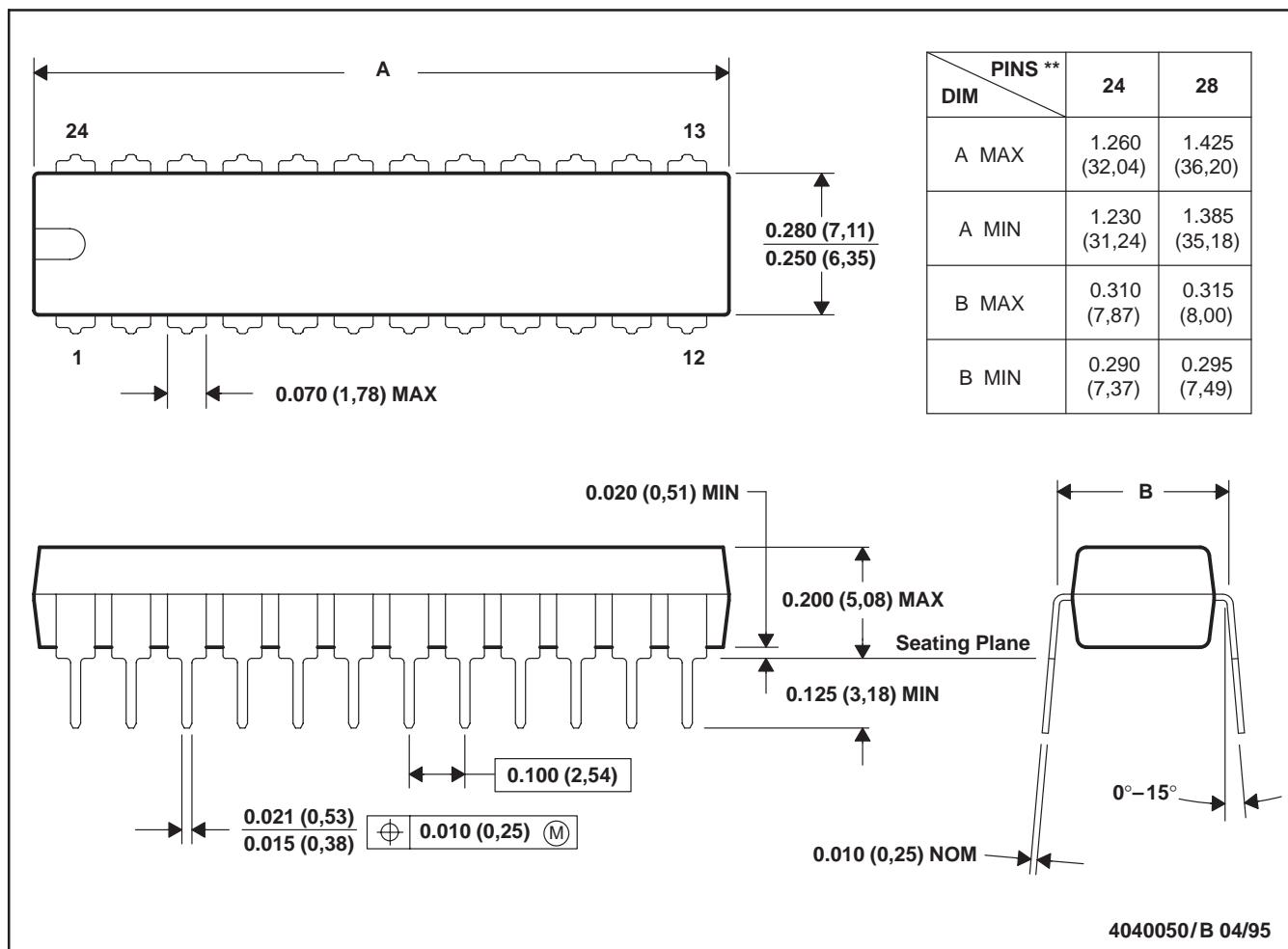


NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. This package can be hermetically sealed with a ceramic lid using glass frit.
 D. Falls within MIL-STD-1835 GDFP2-F24 and JEDEC MO-070AD
 E. Index point is provided on cap for terminal identification only.

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

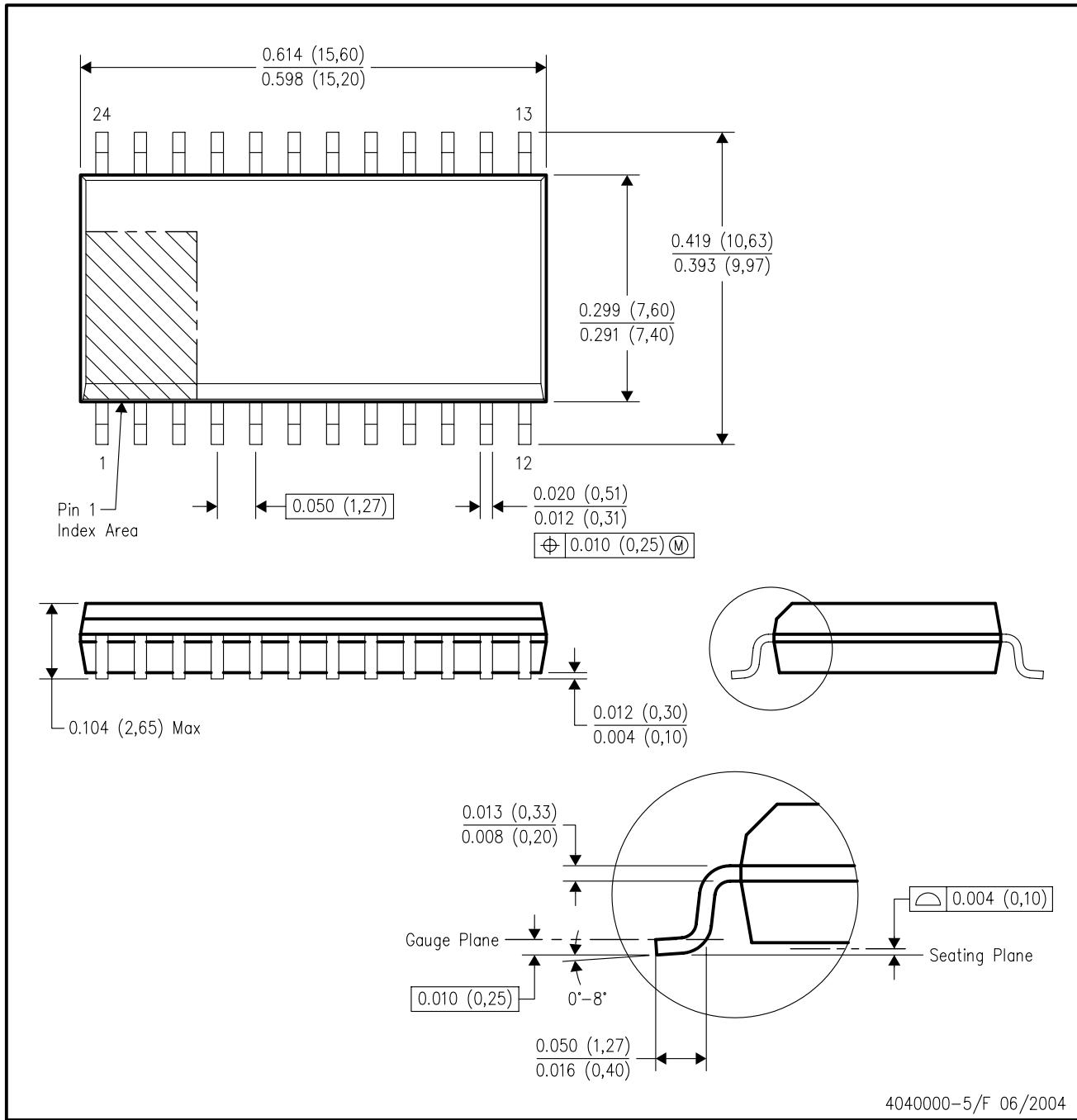

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

NT (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

24 PINS SHOWN



NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

DW (R-PDSO-G24)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
- Falls within JEDEC MS-013 variation AD.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated