

Low Power, Programmable Impact Sensor and Recorder

Data Sheet ADIS16240

FEATURES

Digital triple-axis accelerometer, ±19 g
Programmable event recorder
Internal and external trigger inputs
Automatic event data storage in nonvolatile flash
Low power operation
Sleep mode current: 100 µA

Continuous sampling current: 1 mA, 1 kSPS

Wake-up and record function

External trigger input and SPI trigger command Peak acceleration sample-and-hold Peak XYZ sum-of-squares output 1600 Hz (X, Y) and 550 Hz (Z) sensor bandwidth Digitally controlled sample rate, up to 4096 SPS Programmable alarms for condition monitoring Programmable digital input/output lines

Data-ready output and alarm indicator output
Real-time clock
Digitally activated self-test
Embedded temperature sensor
Programmable power management
SPI-compatible serial interface
Auxiliary 10-bit ADC input
Two analog trigger inputs with programmable threshold
Single-supply operation: 2.4 V to 3.6 V
>4000 g powered shock survivability

APPLICATIONS

Crash or impact detection
Condition monitoring of valuable goods
Safety, shut-off sensing
Impact event recording
Security sensing and tamper detection

GENERAL DESCRIPTION

The ADIS16240 is a fully integrated digital shock detection and recorder system. It combines industry-leading *i*MEMS* technology with a signal processing solution that optimizes dynamic performance for low power applications. The triple-axis sensing element enables shock measurement in all directions, eliminating the need for additional sensors and complex mechanical structures for many applications. The digital serial peripheral interface (SPI) uses four wires and is compatible with most processor platforms. The SPI interface provides access to sensor data and a set of configuration registers that control such operational parameters as offset bias correction, sample rate, sleep mode, peak detection, and event capture.

Rev. C

Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patients or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

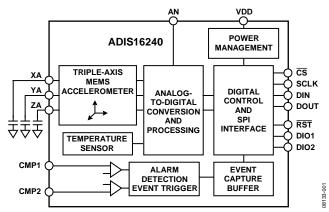


Figure 1.

The programmable event recorder offers two trigger modes. The internal mode monitors continuous sampled data and triggers the capture, based on the user-defined threshold. The external mode uses the two comparator inputs and a user-defined threshold to trigger the event captures. This function also provides user configuration controls for capture length, pretrigger data, and data storage. Each event is stored with a header that captures temperature, power supply, and time. Several power management features, including sleep mode and a wake-up function, enable power optimization with respect to specific mechanical system requirements.

The ADIS16240 is available in a 12 mm \times 12 mm laminate-based ball grid array (BGA) that meets IPC/JEDEC standards for Pb-free solder reflow processing (J-STD-020C and J-STD-033).

ADIS16240* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

- ADIS16240 Daughter Board
- · ADISUSB Evaluation System

DOCUMENTATION

Data Sheet

 ADIS16240: Low Power, Programmable Impact Sensor and Recorder Data Sheet

User Guides

• UG-363: ADISUSB User Guide

SOFTWARE AND SYSTEMS REQUIREMENTS \Box

- ADIS16240 IIO Programmable Impact Sensor and Recorder Linux Driver
- ADIS16240 Evaluation Software for the ADISUSB

DESIGN RESOURCES 🖵

- ADIS16240 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADIS16240 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

TABLE OF CONTENTS

4/09—Revision 0: Initial Version

Applications1
Functional Block Diagram
General Description
Revision History
Specifications
Timing Specifications4
Absolute Maximum Ratings5
ESD Caution5
Pin Configuration and Function Descriptions6
Typical Performance Characteristics
Theory of Operation
Sensing Element
Data Sampling and Processing8
REVISION HISTORY
REVISION HISTORY 12/12—Rev. B to Rev. C
12/12—Rev. B to Rev. C Changes to Features Section
12/12—Rev. B to Rev. CChanges to Features Section
12/12—Rev. B to Rev. C Changes to Features Section

User Interface	8
Capture	8
Basic Operation	
- Метогу Мар	
Output Data Registers	
Event Recorder	12
Operational Control	14
Applications Information	17
Assembly	17
Interface Printed Circuit Board (PCB)	17
Outline Dimensions	
Ordering Guide	15

SPECIFICATIONS

 $T_A = 25$ °C, $V_{\rm DD} = 2.4~V$ to 3.6 V unless otherwise noted.

Table 1.

Parameter	Conditions	Axis	Min	Тур	Max	Unit
ACCELEROMETER						
Dynamic Range			±16	±19		g
Initial Sensitivity				51.4		mg/LSB
Sensitivity Temperature Coefficient	−40°C to +85°C			±0.01		%
Sensitivity Change with Supply Voltage	$2.4 \text{ V} < \text{V}_{DD} < 3.6 \text{ V}$	X, Y		6		%
Nonlinearity	Compare with best fit line			±2		% FS
Sensor-to-Sensor Alignment Error				±0.1		Degree
Cross-Axis Sensitivity				±1		%
Initial Bias Error			-2.7		+2.7	g
Bias Temperature Coefficient				±1		m <i>g/</i> °C
Output Noise				24		mg rms
Noise Density				480		μ <i>g</i> /√Hz
Bandwidth	No external capacitance	X, Y		1600		Hz
	No external capacitance	Z		550		Hz
Sensor Resonant Frequency	·			5.5		kHz
Self-Test Change in Output Response		Х	-10	-21	-39	LSB
		Υ	+10	+21	+39	LSB
		Z	+10	+36	+65	LSB
TEMPERATURE SENSOR SCALE FACTOR	TEMP_OUT = 0x0133 (307) at 25°C			0.244		°C/LSB
ADC INPUT						
Input Range			0		V_{DD}	V
Resolution				10		Bits
Integral Nonlinearity, INL				±1	±2	LSB
Differential Nonlinearity, DNL				±1	±1.25	LSB
Offset Error				±1	±2	LSB
Gain Error				±1	±3	LSB
Input Capacitance				11		рF
LOGIC INPUTS ¹						
Input High Voltage, V _{INH}			2.0			٧
Input Low Voltage, V _{INL}					0.8	٧
Logic 1 Input Current, I _{INH}	$V_{IH} = V_{DD}$			±0.2	±1	μΑ
Logic 0 Input Current, I _{INL}	V _{IL} = 0 V			-40	-60	μΑ
Input Capacitance, C _{IN}				10		pF
DIGITAL OUTPUTS						<u> </u>
Output High Voltage, V _{он}	I _{SOURCE} = 1.6 mA		2.4			V
Output Low Voltage, Vol	I _{SINK} = 1.6 mA				0.4	V
START-UP TIME						1
Initial, Reset Recovery					32	ms
FLASH MEMORY			1			1
Endurance ²			10,000			Cycles
Data Retention ³	T _J = 85°C		20			Years
CONVERSION RATE SETTING	1,-05 €		20		4096	SPS
POWER SUPPLY			2.4		3.6	V V
	SMDL_DDD = 0v15 V = 2.5 V		2.4	1	5.0	
Average Supply Current ⁴	$SMPL_PRD = 0x1F, V_{DD} = 2.5 V$			1		mA
Sleep Mode Current				100		μΑ

¹ Note that the inputs are 5 V tolerant.

² Endurance is qualified as per JEDEC Standard 22, Method A117 and measured at -40°C, +25°C, and +105°C.
³ Retention lifetime equivalent at junction temperature (T₂) of 55°C as per JEDEC Standard 22, Method A117. Retention lifetime decreases with junction temperature.
⁴ Instantaneous current has periodic peaks at the sample rate that can reach 30 mA.

TIMING SPECIFICATIONS

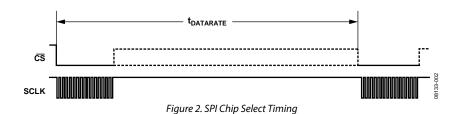

 $T_A = 25$ °C, $V_{\rm DD} = 3.3$ V, unless otherwise noted.

Table 2.

Parameter	Description	Min ¹	Тур	Max ¹	Unit
f _{SCLK}	Serial clock rate ²	0.01		2.5	MHz
t _{DATARATE}	Chip select period ²	60			μs
tcs	Chip select to clock edge	120			ns
t_{DAV}	Data output valid after SCLK edge			30	ns
t_{DSU}	Data input setup time before SCLK rising edge	20			ns
t_{DHD}	Data input hold time after SCLK rising edge	20			ns
t_{DF}	Data output fall time		10	25	ns
t_{DR}	Data output rise time		10	25	ns
t _{SFS}	CS high after SCLK edge	430			ns

 $^{^{\}rm 1}$ Guaranteed by design; typical specifications are not tested or guaranteed. $^{\rm 2}$ Based on sample rate selection.

Timing Diagrams

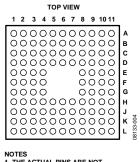
cs SCLK MSB DB13 DB12 DB11 DB10 DB2 LSB DOUT DB14 W/R Α6 Α5 Α4 D2 D1

 $Figure \ 3. \ SPI\ Timing\ (Utilizing\ SPI\ Settings\ Typically\ Identified\ as\ Phase = 1, Polarity = 1)$

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Acceleration	
Any Axis, Unpowered	2000 <i>g</i>
Any Axis, Powered	2000 <i>g</i>
VDD to GND	−0.3 V to +3.6 V
Digital Input Voltage to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Analog Inputs to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Operating Temperature Range	–40°C to +85°C
Storage Temperature Range	−65°C to +150°C


Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device.Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES
1. THE ACTUAL PINS ARE NOT VISIBLE FROM THE TOP VIEW.

Figure 4. Pin Configuration (Top View)

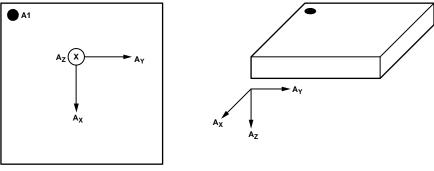


Figure 5. Axis Orientation of Device (Top View)

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Type ¹	Description
E10, E11	SCLK	1	SPI Serial Clock
F10, F11	CS	1	SPI Chip Select, Active Low
G10, G11	DIN	1	SPI Data Input
H10, H11	DOUT	0	SPI Data Output
J10, J11	DIO2	I/O	Multifunction Digital Input/Output 2
K9, L9	DIO1	I/O	Multifunction Digital Input/Output 1
K8, L8	AN	1	Analog Input Channel
K7, L7	CMP2	1	Analog Comparator Input 2
K6, L6	CMP1	1	Analog Comparator Input 1
K3, L3	RST	1	Reset, Active Low, No Pull-Up Resistor
J1, J2	XA	0	X-Axis Accelerometer Filter Pin
H1, H2	YA	0	Y-Axis Accelerometer Filter Pin
G1, G2	ZA	0	Z-Axis Accelerometer Filter Pin
A5, B5	ST	1	Self-Test Input Control Line
D4 to D8, E4, E8, F4, F8, G4, G8, H4 to H8	VDD	S	Power Supply, 3.3 V
A1, A2, A10, A11, B1, B2, B10, B11, C3 to C9, D3, D9, E3, E9, F3, F9, G3, G9, H3, H9, J3 to J9, K1, K2, K10, K11, L1, L2, L10, L11	GND	S	Ground
A3, A4, A6 to A9, B3, B4, B6 to B9, C1, C2, C10, C11, D1, D2, D10, D11, E1, E2, F1, F2, K4, K5, L4, L5	NC		No Connect

 $^{^{1}}$ I = input, O = output, I/O = input/output, S = supply.

TYPICAL PERFORMANCE CHARACTERISTICS

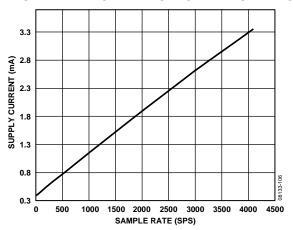


Figure 6. Supply Current vs. Sample Rate

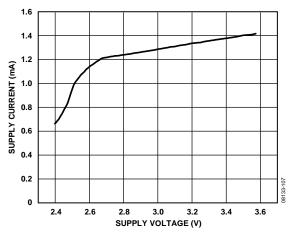


Figure 7. Supply Current vs. Supply Voltage

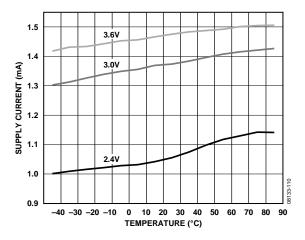


Figure 8. Supply Current vs. Temperature

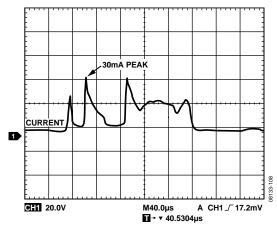


Figure 9. Instantaneous Supply Current

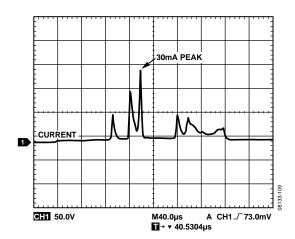


Figure 10. Instantaneous Supply Current

THEORY OF OPERATION

The ADIS16240 is a triple-axis accelerometer system for shock detection and recording applications. This sensing system collects data autonomously and makes it available to any processor system that supports a 4-wire serial peripheral interface (SPI).

SENSING ELEMENT

Digital shock sensing starts with the triple-axis MEMS sensing element in the ADIS16240. This element provides a linear motion-to-electrical transducer function. Figure 11 provides a basic physical diagram of the sensing element and its response to linear acceleration. It uses a fixed frame and a moving frame to form a differential capacitance network that responds to linear acceleration. Tiny springs tether the moving frame to the fixed frame and govern the relationship between acceleration and physical displacement. A modulation signal on the moving plate feeds through each capacitive path into the fixed frame plates and into a demodulation circuit, which produces the electrical signal that is proportional to the acceleration acting on the device.

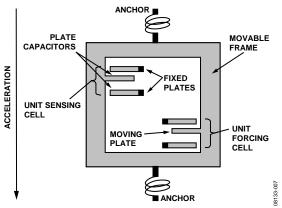


Figure 11. MEMS Sensor Diagram

DATA SAMPLING AND PROCESSING

The analog acceleration signals feed into an analog-to-digital converter stage that passes digitized data into the controller for data processing and capture. The ADIS16240 runs autonomously, based on the configuration in the user control registers.

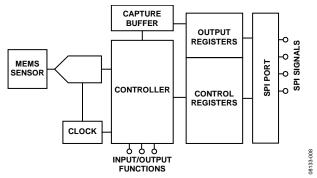


Figure 12. Simplified Sensor Signal Processing Diagram

USER INTERFACE

SPI Interface

Data collection and configuration commands both use the SPI, which consists of four wires. The chip select (\overline{CS}) signal activates the SPI interface, and the serial clock (SCLK) synchronizes the serial data lines. The serial input data clocks into DIN on the rising edge of SCLK, and the serial output data clocks out of DOUT on the falling edge of SCLK. Many digital processor platforms support this interface with dedicated serial ports and simple instruction sets.

User Registers

The user registers provide addressing for all input/output operations on the SPI interface. Each 16-bit register has its own unique bit assignment and has two 7-bit addresses: one for its upper byte and one for its lower byte. Table 7 provides a memory map for each register and identifies output registers as read only (R) and configuration registers as either read/write (R/W) or write only (W). The control registers use a dual-memory structure. The SRAM controls operation while the part is on and facilitates all user configuration inputs. The flash memory provides nonvolatile storage for the control registers that are identified with a "yes" in the flash backup column in Table 7. Storing configuration data in the flash memory requires a manual command (see GLOB_CMD[3] in Table 24). When the device starts up from an initial power-up or reset, the flash memory contents load into the SRAM. Then the device starts producing data according to the configuration in the control registers.

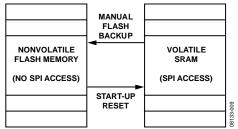


Figure 13. Control Registers—SRAM and Flash Memory Diagram

CAPTURE

The ADIS16240 offers a recorder function that captures acceleration information based on either internal or external triggers. The buffer memory is 3×8192 samples and is capable of storing multiple trigger events.

BASIC OPERATION

The ADIS16240 starts up automatically when it has a valid power supply and begins producing digital acceleration data in the output registers. When using the factory-default configuration, DIO1 serves as a data-ready indicator signal that can drive a processor interrupt function. Figure 14 shows a schematic for connecting to a SPI-compatible processor platform, referred to as the SPI master.

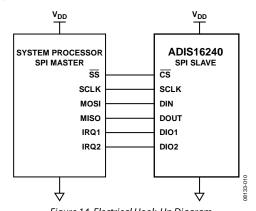


Figure 14. Electrical Hook-Up Diagram

Table 5. Generic Master Processor Pin Names and Functions

Pin Name	Function
SS	Slave select.
IRQ1, IRQ2	Interrupt request inputs.
MOSI	Master output, slave input.
MISO	Master input, slave output.
SCLK	Serial clock.

The ADIS16240 SPI interface supports full duplex serial communication (simultaneous transmit and receive) and uses the bit sequence shown in Figure 18. Processor platforms typically support SPI communication with general-purpose serial ports that require some configuration in their control registers. Table 6 lists the most common settings that require attention when initializing a pro-cessor serial port for communication with the ADIS16240.

Table 6. Generic Master Processor SPI Settings

	8
Processor Setting	Description
Master	The ADIS16240 operates as a slave.
SCLK Rate ≤ 2.5 MHz	Bit rate setting.
SPI Mode 3 (1,1)	Clock polarity/phase (CPOL = 1, CPHA = 1).
MSB First	Bit sequence.
16-Bit	Shift register/data length.

User registers govern all data collection and configuration. Table 7 provides a memory map that includes all user registers, along with references to bit assignment tables that follow the generic assignments in Figure 15.

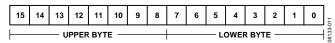


Figure 15. Generic Register Bit Assignments

SPI Write Commands

Master processors write to the control registers, one byte at a time, using the bit assignments shown in Figure 18. The programmable registers in Table 7 provide controls for optimizing sensor operation and for starting various automated functions. For example, set $GLOB_CMD[8] = 1$ (DIN = 0xCB01) to wake up the device.

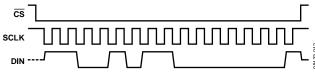


Figure 16. SPI Sequence for a Wake-Up Command (DIN = 0xCB01)

Some configurations require writing both bytes to a register, which takes two separate 16-bit sequences. See GLOB_CMD[3] in Table 24 for backing up configuration data in nonvolatile flash memory.

SPI Read Commands

Reading data on the SPI requires two consecutive 16-bit sequences. The first sequence transmits the read command on DIN, and the second sequence receives the resulting data from DOUT. The 7-bit register address can represent either the upper or lower byte address for the target register. For example, DIN can be either 0x0200 or 0x0300 when reading the SUPPLY_OUT register. The SPI operates in full duplex mode, which means that the master processor can read the output data from DOUT while using the same SCLK pulses to transmit a new command on DIN. In Figure 17, the second SPI segment sets up the device to read YACCL_OUT on the following SPI segment (not shown).

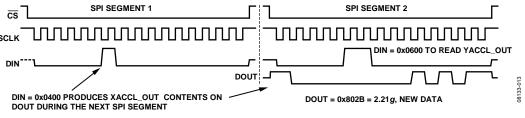


Figure 17. Example SPI Read Sequence Rev. C | Page 9 of 20

MEMORY MAP

Note that all registers are two bytes. All unused memory locations are reserved for future use.

Table 7. User Register Memory Map

Register Name	Read/ Write	Flash Backup	Register Address ¹	Default	Function	Bit Assignments
FLASH_CNT	R	Yes	0x00	N/A	Flash memory write count	See Table 35
SUPPLY_OUT	R	No	0x02	N/A	Output, power supply	See Table 10
XACCL OUT	R	No	0x04	N/A	Output, x-axis accelerometer	See Table 9
YACCL_OUT	R	No	0x06	N/A	Output, y-axis accelerometer	See Table 9
ZACCL_OUT	R	No	0x08	N/A	Output, z-axis accelerometer	See Table 9
AUX_ADC	R	No	0x0A	N/A	Output, auxiliary ADC input	See Table 8
TEMP_OUT	R	No	0x0C	N/A	Output, temperature	See Table 11
XPEAK_OUT	R	No	0x0E	N/A	Output, x-axis acceleration peak	See Table 9
YPEAK_OUT	R	No	0x10	N/A	Output, y-axis acceleration peak	See Table 9
ZPEAK_OUT	R	No	0x12	N/A	Output, z-axis acceleration peak	See Table 9
XYZPEAK_OUT	R	No	0x14	N/A	Output, sum-of-squares acceleration peak	See Table 8
CAPT_BUF1	R	No ²	0x16	N/A	Output, Capture Buffer 1, X and Y acceleration	See Table 18
CAPT_BUF2	R	No ²	0x18	N/A	Output, Capture Buffer 2, Z acceleration	See Table 19
DIAG_STAT	R	No	0x1A	0x0000	Diagnostic, error flags	See Table 28
EVNT_CNTR	R	Yes	0x1C	0x0000	Diagnostic, event counter	See Table 21
CHK_SUM	R	Yes	0x1E	N/A	Diagnostic, check sum value from firmware test	See Table 34
XACCL_OFF	R/W	Yes	0x20	0x0000	Calibration, x-axis acceleration offset adjustment	See Table 27
YACCL_OFF	R/W	Yes	0x22	0x0000	Calibration, y-axis acceleration offset adjustment	See Table 27
ZACCL_OFF	R/W	Yes	0x24	0x0000	Calibration, z-axis acceleration offset adjustment	See Table 27
CLK_TIME	R/W	Yes	0x2E	0x0000	Clock, hour and minute	See Table 29
CLK_DATE	R/W	Yes	0x30	0x0000	Clock, month and day	See Table 30
CLK_YEAR	R/W	Yes	0x32	0x0000	Clock, year	See Table 31
WAKE_TIME	R/W	Yes	0x34	0x0000	Wake-up setting, hour and minute	See Table 32
WAKE_DATE	R/W	Yes	0x36	0x0000	Wake-up setting, month and day	See Table 33
ALM_MAG1	R/W	Yes	0x38	0x9000	Alarm 1 amplitude threshold	See Table 13
ALM_MAG2	R/W	Yes	0x3A	0x9000	Alarm 2 amplitude threshold	See Table 13
ALM_CTRL	R/W	Yes	0x3C	0x0000	Alarm control	See Table 12
XTRIG_CTRL	R/W	Yes	0x3E	0x0000	Capture, external trigger control	See Table 15
CAPT_PNTR	R/W	Yes	0x40	0x0000	Capture, address pointer	See Table 20
CAPT_CTRL	R/W	Yes	0x42	0x0022	Capture, configuration and control	See Table 17
GPIO_CTRL	R/W	No	0x44	0x0000	General-purpose digital input/output control	See Table 26
MSC_CTRL	R/W	No	0x46	0x0006	Miscellaneous control	See Table 25
SMPL_PRD	R/W	Yes	0x48	0x001F	Internal sample period (rate) control	See Table 23
GLOB_CMD	W	Yes	0x4A	N/A	System command	See Table 24

¹ Each register contains two bytes. The address of the lower byte is displayed. The address of the upper byte is equal to the address of the lower byte plus 1.

² The event capture buffer is also stored in flash, but the CAPT_BUFx registers, which only contain a single sample, are not stored in nonvolatile flash.

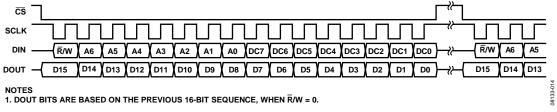


Figure 18. SPI Communication Bit Sequence

OUTPUT DATA REGISTERS

Each output data register uses the bit assignments shown in Figure 19. The ND flag indicates that unread data resides in the register. This flag clears and returns to 0 after reading the register. It returns to 1 after the next internal sample updates the register with new data. When the data-ready function (the DIO1 and DIO2 pins and the MSC_CTRL register; see Table 25) drives data collection, the ND bit is always high and does not require validation. The EA flag indicates that one of the error flags in the DIAG_STAT register (see Table 28) is active (true).

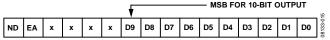


Figure 19. Output Register Bit Assignments

Table 8. Output Data Register Formats

Register	Bits	Format	Scale
SUPPLY_OUT	10	Binary, 0 V = 0x0000	4.88 mV
XACCL_OUT	10	Twos complement	51.4 m <i>g</i>
YACCL_OUT	10	Twos complement	51.4 m <i>g</i>
ZACCL_OUT	10	Twos complement	51.4 m <i>g</i>
AUX_ADC	10	Binary, 0 V = 0x0000	V _{DD} /1024
TEMP_OUT	10	Binary, 25°C = 0x0133	0.244°C
XPEAK_OUT ¹	10	Twos complement	51.4 m <i>g</i>
YPEAK_OUT ¹	10	Twos complement	51.4 m <i>g</i>
ZPEAK_OUT ¹	10	Twos complement	51.4 m <i>g</i>
XYZPEAK_OUT ²	12	Binary, $0 g^2 = 0 \times 00000$	0.676 g ²

¹ Function requires MSC_CTRL[14] = 1.

Processing Sensor Data

Processing sensor data starts with reading the appropriate output data register using the SPI. For example, use DIN = 0x0E00 to read the XPEAK_OUT register. Use the ND and EA bits to validate new data and normal operating status, if necessary. Then mask off all of the nondata bits and calculate the data, using the format and scale information shown in Table 8. For example, XACCL_OUT[9:0] and XYZPEAK_OUT[11:0] contain all relevant data for their function. Table 9, Table 10, and Table 11 provide output code examples for each output register.

Table 9. Accelerometer Data Output Format¹

Binary	Hex	Codes	Acceleration
01 0011 0111	0x137	+311	+16 <i>g</i>
	•••	•••	
00 0000 0010	0x002	+2	+102.8 m <i>g</i>
00 0000 0001	0x001	+1	+51.4 m <i>g</i>
00 0000 0000	0x000	0	0
11 1111 1111	0x3FF	-1	−51.4 m <i>g</i>
11 1111 1110	0x3FE	-2	–102.8 m <i>g</i>
10 1100 1001	0x2C9	-311	−16 <i>g</i>

¹ The XACCL_OUT register is located at Address 0x05[15:8] and Address 0x04[7:0]. The YACCL_OUT register is located at Address 0x07[15:8] and Address 0x06[7:0]. The ZACCL_OUT register is located at Address 0x09[15:8] and Address 0x08[7:0]. The XPEAK_OUT register is located at Address 0x0F[15:8] and Address 0x0E[7:0]. The YPEAK_OUT register is located at Address 0x11[15:8] and Address 0x10[7:0]. The ZPEAK_OUT register is located at Address 0x13[15:8] and Address 0x12[7:0].

When MSC_CTRL[14] = 1, the XPEAK_OUT, YPEAK_OUT, and ZPEAK_OUT registers track the peak acceleration in each acceleration output register. When MSC_CTRL[15] = 1, use the following equation to calculate the root mean square (rms) of all three peak registers, where 1 LSB = 0.822 g:

$$XYZ_{rms} = \sqrt{XYZPEAK_OUT}$$

Set $GLOB_CMD[5] = 1$ to reset these registers to 0x0000.

Table 10. Power Supply Data Output Format¹

Binary	Hex	Codes	Power Supply (V)
10 1110 0010	0x2E2	738	3.6
10 1010 0101	0x2A5	677	3.30488
10 1010 0100	0x2A4	676	3.3
10 1010 0011	0x2A3	675	3.29502
01 1110 1100	0x1EC	492	2.4

¹ The SUPPLY_OUT register is located at Address 0x03[15:8] and Address 0x02[7:0].

Table 11. Temperature Data Output Format¹

	Table 11. Temperature Data Output Format				
Binary		Hex	Codes	Temperature (°C)	
	10 0010 1001	0x229	553	+85°C	
			•••		
	01 0011 0100	0x134	308	+25.244°C	
	01 0011 0011	0x133	307	+25°C	
	01 0011 0010	0x132	306	+24.756°C	
	00 0010 1001	0x029	41	-40°C	

¹ The TEMP_OUT register is located at Address 0x0D[15:8] and Address 0x0C[7:0].

² Function requires MSC_CTRL[15] = 1.

EVENT RECORDER

The ADIS16240 provides a 3×8192 (8-bit) buffer memory for capturing and storing (in flash) transient acceleration data on all three axes (x, y, and z). There are a number of user controls for tailoring the event recorder for optimal system-level operation. Alarm 1 and Alarm 2 provide internal and external trigger options for starting a data capture sequence.

Internal Trigger Setup

Select the trigger data source for Alarm 1 and Alarm 2 using ALM_CTRL[15:8] (see Table 12). The ALM_MAG1 and ALM_MAG2 registers contain threshold magnitude and direction settings for Alarm 1 and Alarm 2, respectively. The format for the data bits in these registers matches the trigger data source, which is set using ALM_CTRL[15:8]. For example, if ALM_CTRL[15:12] equals 0010, then the format matches that of XACCL_OUT: 10-bit, twos complement, with 1 LSB = 51.4 mg of acceleration.

Table 12. ALM_CTRL Register Bit Descriptions¹

Table 12. ALM_CTRL Register bit Descriptions			
Bit	Description (Default = 0x0000)		
[15:12]	Alarm 2 source selection		
	0000 = disabled		
	0001 = power supply voltage (SUPPLY_OUT)		
	0010 = x acceleration (XACCL_OUT)		
	0011 = y acceleration (YACCL_OUT)		
	0100 = z acceleration (ZACCL_OUT)		
	0101 = auxiliary ADC voltage (AUX_ADC)		
	0110 = temperature (TEMP_OUT)		
	0111 = XYZ peak acceleration (XYZPEAK_OUT)		
	1000 = external trigger		
[11:8]	Alarm 1 source selection (same as Alarm 2)		
[7:6]	Unused		
5	Alarm 2 capture trigger: 1 = enabled, 0 = disabled		
4	Alarm 1 capture trigger: 1 = enabled, 0 = disabled		
3	Unused		
2	Alarm indicator enable: 1 = enabled, 0 = disabled		
1	Alarm indicator polarity: 1 = positive, 0 = negative		
0	Alarm indicator pin: 1 = DIO2, 0 = DIO1		

¹ The ALM_CTRL register is located at Address 0x3D[15:8] and Address 0x3C[7:0].

Table 13. ALM_MAG1, ALM_MAG2 Register Bit Descriptions¹

Bit	Description (Default = 0x9000)	
15	Threshold direction	
	1 = active for output greater than alarm magnitude 0 = inactive for output less than alarm magnitude	
	0 = inactive for output less than alarm magnitude	
14	Unused	
[13:0]	Trigger threshold; bit format matches that of the register selected by ALM_CTRL[15:8] but is unsigned.	

¹ The ALM_MAG1 register is located at Address 0x39[15:8] and Address 0x38[7:0]. The ALM_MAG2 register is located at Address 0x3B[15:8] and Address 0x3A[7:0].

Table 14. Internal Trigger Setup Example

DIN	Description
0xBD44	Set Alarm 1 and Alarm 2 to ZACCL_OUT
0xB980, 0xB832	Set Alarm 1 to trigger on a measured acceleration that has a magnitude of >2.57 g
0xBB00, 0xBA0A	Set Alarm 2 to trigger on a measured acceleration that has a magnitude of <0.5 <i>g</i>
0xBC37	Activate Alarm 1 and Alarm 2 to trigger capture events, and configure DIO2 as a positive alarm indicator output.

External Trigger Setup

ALM_CTRL[15:8] and XTRIG_CTRL (see Table 15) provide all of the settings needed to govern the use of the comparator pins (CMP1, CMP2) as external trigger inputs.

Table 15. XTRIG_CTRL Register Bit Descriptions¹

Bit	Bit Description (Default = 0x0000)		
[15:8]	Unused		
7	External Trigger 1 direction: 0 = <, 1 = >		
6	External Trigger 2 direction: 0 = <, 1 = >		
5	External Trigger 1 enable: 1 = enabled, 0 = disabled		
4	External Trigger 2 enable: 1 = enabled, 0 = disabled		
[3:0]	External trigger-level setting (TL), binary format		
	Note that trigger threshold = $TL \times supply/24$		

¹ The XTRIG_CTRL register is located at Address 0x3F[15:8] and Address 0x3E[7:0].

Table 16. External Trigger Setup Example

DIN	Description	
0xBD80	Set Alarm 2 to an external trigger (ALM_CTRL)	
0xBE1C	Activate and set CMP2 to trigger on signals that are greater than one-half of the supply voltage (XTRIG_CTRL)	
0xBC20	Activate Alarm 2 to trigger data capture (ALM_CTRL)	

If the device is in standby mode, an external trigger on CMD1 or CMD2 awakens the device and initiates an event capture. The first sample is taken 0.2 ms + sample period (SMPL_PRD[7:0]) after the trigger edge.

Buffer Memory Configuration

CAPT_CTRL (see Table 17) manages the buffer memory for the event recorder using two programmable controls: event length and pretrigger length.

Table 17. CAPT_CTRL Register Bit Descriptions¹

Bit	Bit Description (Default = 0x0022)	
[15:8]	Unused	
[7:4]	Pretrigger length control factor (P), binary format	
3	Unused	
[2:0]	Event length control factor (T), binary format	

¹ The CAPT_CTRL register is located at Address 0x43[15:8] and Address 0x42[7:0].

The event length (N_L) also determines the number of events (N_E) that the buffer can store at one time.

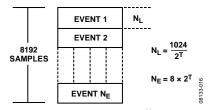


Figure 20. Event Storage in Buffer Memory

For example, if $CAPT_CTRL[2:0] = 100$, then T = 4, which organizes the buffer memory into 128 events of 64 samples each.

Event Organization

Each event contains a header, pretrigger data, and posttrigger data, as shown in Figure 21. The event header provides information about the conditions that occur when the capture takes place. CAPT_CTRL[7:4] sets the number of pretrigger samples in each event. If N_{PRE} is negative, there is no pretrigger data and the first sample after the trigger follows the header.

$$N_{PRE} = \frac{N_L}{16} - 6$$

	BUFF	ER 2	BUFF	ER 1	_
	(0	XYZPE	K_OUT	0
	(0	TII	ME]1 \
	()	DA	TE	2 EVENT
	()	TEMP	_OUT	3 HEADER
	()	SUPPL	Y_OUT]4 /
	()	AUX	ADC	5 /
Г	0	Z_26	Y_26	X_26	6
PRETRIGGER	0	Z ₋₂₅	Y ₋₂₅	X_25	7
DATA	0				1
\	0	Z_1	Y_1	X_1	31
Γ	0	Z ₀	Y ₀	X ₀	32
POSTTRIGGER	0	Z ₁	Y ₁	Х1	33
DATA	0				470
_	0	Z ₂₂₃	Y ₂₂₃	X ₂₂₃	255 255 255 255 255 255 255 255 255 255

Figure 21. Default Event Organization

Reading Event Data

The CAPT_BUF1, CAPT_BUF2, and CAPT_PNTR registers manage user access to data in the capture buffer (see Table 18, Table 19, and Table 20). The address pointer, CAPT_PNTR, determines which capture memory location loads into the capture buffer registers. It increments automatically with every CAPT BUF2 read. The most efficient method for reading the entire buffer memory space is to alternate between the CAPT_BUF1 (DIN = 0x9600) and $CAPT_BUF2$ (DIN = 0x9800) read commands. When alternating the read sequences in this manner, the CAP_PNTR increments automatically and optimizes SPI processing resources. Writing to the CAPT_PNTR register provides access to individual locations in the capture. For example, writing 0x0138 (DIN = 0xC038, DIN = 0xC101) to the CAPT_ PNTR register causes the 311th sample in each buffer memory to load into the CAP_BUF1 and CAPT_BUF2 locations (see Figure 22).

Table 18. CAPT_BUF1 Register Bit Descriptions1

Bit	Description	Format	
[15:8]	Y-axis acceleration	Twos complement,	
[7:0]	X-axis acceleration	205.7 m <i>g</i> /LSB	

¹ The CAPT_BUF1 register is located at Address 0x17[15:8] and Address 0x16[7:0].

Table 19. CAPT_BUF2 Register Bit Descriptions¹

Bit	Description	Format	
[15:8]	Unused	Twos complement,	
[7:0]	Z-axis acceleration	205.7 m <i>g</i> /LSB	

¹ The CAPT_BUF2 register is located at Address 0x19[15:8] and Address 0x18[7:0].

Table 20. CAPT_PNTR Register Bit Descriptions¹

Bit	Description
[15:13]	Unused
[7:0]	Buffer address that loads into CAPT_BUF1, CAPT_BUF2

¹ The CAPT_PNTR register is located at Address 0x41[15:8] and Address 0x40[7:0].

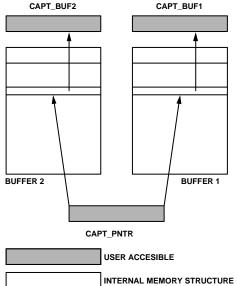


Figure 22. Capture Buffer Data Flow Diagram

The EVNT_CNTR register (see Table 21) provides a running count for the number of triggers (internal and external) that occur after a buffer clear and/or reset. If this number is greater than the number of events, this indicates that the device has experienced trigger events that it could not capture because its capture buffer is full. The EVNT CNTR returns to 0x0000 after a buffer clear (GLOB_CMD[6] = 1 by DIN = 0xCA40), or a factory reset (GLOB_CMD[1] = 1 by DIN = 0xCA02). After a power cycle or software reset command, the EVNT_CNTR contains the number of events stored in the buffer memory.

Table 21. EVNT CNTR Register Bit Descriptions¹

Bit	Description
[15:0]	Binary event counter
	-

¹ The EVNT CNTR register is located at Address 0x1D[15:8] and Address 0x1C[7:0].

Transient Behavior During Capture

During capture events, the device consumes an increased amount of current for a short period. Following a capture event, sampling suspends and the SPI commands are ignored by the sensor for the pause times that are listed in Table 22.

Table 22. Postcapture Operation Pause Times

Event Length (Samples)	Pause Time (ms)
<u><</u> 64	2
128	4
256	8
512	16
1024	33

OPERATIONAL CONTROL

Internal Sample Rate

The SMPL_PRD register (see Table 23) provides a user control for sample rate adjustment, using the following equation:

$$f_S = \frac{32768}{(N_{SR} + 1)}$$

For example, set SMPL_PRD[7:0] = 0x07 (DIN = 0xC807) to configure the ADIS16240 to operate at its maximum sample rate of 4096 SPS. Note that the sample rate affects power dissipation and peak resolution during event capture.

Table 23. SMPL_PRD Register Bit Descriptions¹

	= 8 1	
Bit	Description (Default = 0x001F)	
[15:0]	Sample rate scale factor, binary format (N _{SR})	

¹ The SMPL_PRD register is located at Address 0x49[15:8] and Address 0x48[7:0].

Global Commands

For convenience, the GLOB_CMD register (see Table 24) provides an array of single-write commands. Setting the assigned bit to 1 activates each function, right after the 16^{th} SCLK in the SPI communication sequence. When the function completes, the bit restores itself to 0. All commands in the GLOB_CMD register require the power supply to be within normal limits for the execution times listed in Table 24. The execution times reflect the factory default configuration, where applicable, and describe the time required to return to normal operation. For example, set $GLOB_CMD[2] = 1$ (DIN = 0xCA04) to place the part in standby mode. Set $GLOB_CMD[8] = 1$ (DIN = 0xCB01) to wake up the device and return to normal operation.

Input/Output Lines

The ADIS16240 provides two general-purpose digital input/ output lines that offer several functions. When using the factory-default configuration, MSC_CTRL[2:0] establishes DIO1 as a positive data-ready output. Change MSC_CTRL[2:0] to 100 (DIN = 0xC604) to make DIO1 a negative data-ready output signal. ALM_CTRL[2:0] offers a control for setting one of the digital signals as an alarm indicator. For example, set ALM_CTRL[2:0] = 110 (DIN = 0xBC06) to set DIO1 as a positive alarm indicator output signal. When configured as general-

purpose lines, the GPIO_CTRL register configures DIO1 and DIO2. For example, set GPIO_CTRL = 0x0103 (DIN = 0xC403, then 0xC501) to set DIO1 and DIO2 as outputs, with DIO1 in a 1 state and DIO2 in a 0 state. In the event of competing assignments, the order of precedence is MSC_CTRL, ALM_CTRL, and GPIO_CTRL.

Table 24. GLOB_CMD Register Bit Descriptions¹

Bit	Description	Execution Time ²
[15:9]	Unused	N/A
8	Wake up from standby mode	0.2 ms
7	Software reset	32 ms
6	Clear capture buffer flash memory	350 ms
5	Clear peak registers	N/A
4	Clear DIAG_STAT register	N/A
3	Save configuration to flash	24 ms
2	Start standby mode for low power	N/A
1	Restore factory-default settings	350 ms
0	Auto-null	N/A

¹ The GLOB_CMD register is located at Address 0x4B[15:8] and Address 0x4A[7:0].

Table 25. MSC CTRL Register Bit Descriptions¹

Bit	Description (Default = 0x0006)	
15	Enables sum-of-squares output (XYZPEAK_OUT)	
14	Enables peak tracking output (XPEAK_OUT, YPEAK_OUT, and ZPEAK_OUT)	
[13:10]	Unused	
9	No self-test on startup when set to 1	
8	Self-test enable: 1 = apply electrostatic force, 0 = disabled	
[7:3]	Unused	
2	Data-ready enable: 1 = enabled, 0 = disabled	
1	Data-ready polarity: 1 = active high, 0 = active low	
0	Data-ready line selection: 1 = DIO2, 0 = DIO1	

¹ The MSC_CTRL register is located at Address 0x47[15:8] and Address 0x46[7:0].

Table 26. GPIO_CTRL Register Bit Descriptions¹

Bit	Description (Default = 0x0000)
[15:10]	Unused
9	General-Purpose I/O Line 2 data level
8	General-Purpose I/O Line 1 data level
[7:2]	Unused
1	General-Purpose I/O Line 2, data direction control:
	1 = output, 0 = input
0	General-Purpose I/O Line 1, data direction control:
	1 = output, 0 = input

¹ The GPIO_CTRL register is located at Address 0x45[15:8] and Address 0x44[7:0].

Offset Adjustment

The XACCL_OUT, YACCL_OFF, and ZACCL_OFF registers add to the sensor outputs and provide a convenient offset adjustment function for each accelerometer output. For example, writing 0x0A to YACCL_OUT[7:0] (DIN = 0xA20A) results in a 514 mg offset adjustment for the YACCL_OUT output data.

² SPI processing and data sampling suspend for the indicated times.

Table 27. XACCL_OFF, YACCL_OFF, ZACCL_OFF¹

Bit	Description (Default = 0x0000)
[15:10]	Unused
[9:0]	Offset, twos complement, 51.4 mg/LSB

¹ The XACCL_OFF register is located at Address 0x21[15:8] and Address 0x20[7:0]. The YACCL_OFF register is located at Address 0x23[15:8] and Address 0x22[7:0]. The ZACCL_OFF register is located at Address 0x25[15:8] and Address 0x24[7:0].

Diagnostics

For all of the error flags in the DIAG_STAT register (see Table 28), a 1 identifies an error condition, and a 0 signals normal operation. All of the flags return to 0 after reading DIAG_STAT. If the power supply is still out of range during the next sample cycle, DIAG_STAT[0] and DIAG_STAT[1] return to 1. DIAG_STAT[9:8] provide flags to check for the alarms with respect to the conditions in the ALM_CTRL and ALM_MAGx registers. DIAG_STAT[6] contains the internal memory checksum result. If the sum of the firmware program memory does not does not match the expected value, this flag reports a 1. The SPI communication flag (DIAG_STAT[3]) changes to 1 when the number of SCLK pulses during a SPI transfer is not a multiple of 16 when \overline{CS} goes high.

Table 28. DIAG_STAT Register Bit Descriptions¹

Table 28. DIAG_STAT Register bit Descriptions	
Bit	Description (Default = 0x0000)
[15:10]	Unused
9	Alarm 2 status: 1 = alarm active, 0 = alarm inactive
8	Alarm 1 status: 1 = alarm active, 0 = alarm inactive
7	Capture buffer full: 1 = capture buffer is full
6	Flash test, checksum flag: $1 = mismatch$, $0 = match$
5	Power-on, self-test flag: 1 = failure, 0 = pass
4	Power-on self-test: 1 = in-progress, 0 = complete
3	SPI communications failure: 1 = error, 0 = normal
2	Flash update failure: 1 = failure, 0 = pass
1	Power supply above 3.625 V: 1 = above, 0 = below
0	Power supply below 2.225 V: 1 = below, 0 = above

¹ The DIAG_STAT register is located at Address 0x1B[15:8] and Address 0x1A[7:0].

Clock

The CLK_TIME, CLK_DATE, and CLK_YEAR registers provide an internal clock that enables a time entry into the event header and for user access. If CLK_TIME = 0x2231, the time is 22:31, or 10:31 p.m. The CLK_DATE and CLK_YEAR registers follow a similar binary-coded, decimal format.

Table 29. CLK_TIME Register Bit Descriptions¹

Bit	Description
[15:14]	Unused
[13:12]	Hours, 10s digit
[11:8]	Hours, 1s digit
7	Unused
[6:4]	Minutes, 10s digit
[3:0]	Minutes, 1s digit

¹ The CLK_TIME register is located at Address 0x2F[15:8] and Address 0x2E[7:0].

Table 30. CLK_DATE Register Bit Descriptions¹

Bit	Description (Default = 0x0000)
[15:13]	Unused
12	Month, 10s digit
[11:8]	Month, 1s digit
[7:6]	Unused
[5:4]	Day, 10s digit
[3:0]	Day, 1s digit

¹The CLK_DATE register is located at Address 0x31[15:8] and Address 0x30[7:0].

Table 31. CLK_YEAR Register Bit Descriptions¹

Bit	Description (Default = 0x0000)
[15:8]	Unused
[7:4]	Year, 10s digit
[3:0]	Year, 1s digit

¹ The CLK_YEAR register is located at Address 0x33[15:8] and Address 0x32[7:0].

The WAKE_TIME and WAKE_DATE registers enable users to program a specific time for the ADIS16240 to exit standby mode. Enable this function by writing the wake-up time and date to these registers.

Table 32. WAKE_TIME Register Bit Descriptions¹

Bit	Description (Default = 0x0000)
15	Wake time enable (1 = enabled, $0 = disabled$)
14	Unused
[13:12]	Hours, 10s digit
[11:8]	Hours, 1s digit
7	Unused
[6:4]	Minutes, 10s digit
[3:0]	Minutes, 1s digit

¹ The WAKE_TIME register is located at Address 0x35[15:8] and Address 0x34[7:0].

Table 33. WAKE_DATE Register Bit Descriptions¹

Bit	Description (Default = 0x0000)
[15:14]	Unused
[13:12]	Month, 10s digit
[11:8]	Month, 1s digit
[7:6]	Unused
[5:4]	Day, 10s digit
[3:0]	Day, 1s digit

¹ The WAKE_DATE register is located at Address 0x37[15:8] and Address 0x36[7:0].

Checksum

Table 34. CHK SUM Register Bit Descriptions¹

Bit	Description
[15:0]	Sum of memory locations used to verify code integrity

¹The CHK_SUM register is located at Address 0x1F[15:8] and Address 0x1E[7:0].

Flash Memory Endurance Management

The FLASH_CNT register (see Table 35) tracks the number of flash memory write cycles, to help manage the flash endurance of the ADIS16240 (see Table 1). This register contains a binary counter that increments after every flash memory write cycle, with one exception: event storage. Each event capture will automatically update in its particular flash memory location, but only the first event capture will trigger a complete flash update (all user control registers) and result in the FLASH_CNT incrementing the counter. In addition to the first event capture/storage, activating the auto-null (GLOB_CMD[0]),

factory reset (GLOB_CMD[1]), and manual flash update GLOB_CMD[3] will also result in a manual flash write cycle that causes FLASH_CNT to increment.

Table 35. FLASH_CNT Register Bit Descriptions¹

Bit	Description
[15:0]	Binary code, increments with every flash memory write cycle.

¹The FLASH_CNT register is located at Address 0x01[15:8] and Address 0x00[7:0].

APPLICATIONS INFORMATION ASSEMBLY

When developing a process flow for installing the ADIS16240 devices on PCBs, see the JEDEC standard document J-STD-020C for reflow temperature profile and processing information. The ADIS16240 can use the Sn-Pb eutectic process and the Pb-free eutectic process from this standard. See JEDEC J-STD-033 for moisture sensitivity (MSL) handling requirements. The MSL rating for these devices is marked on the antistatic bags, which protect these devices from ESD during shipping and handling.

Prior to assembly, review the process flow for information about introducing shock levels that exceed the absolute maximum ratings for the ADIS16240. PCB separation and ultrasonic cleaning processes can introduce high levels of shock and damage the MEMS element. Bowing or flexing the PCB after solder reflow can also place large pealing stress on the pad structure and can damage the device. If this is unavoidable, consider using an underfill material to help distribute these forces across the bottom of the package. Figure 23 provides a PCB pad design example for this package style.

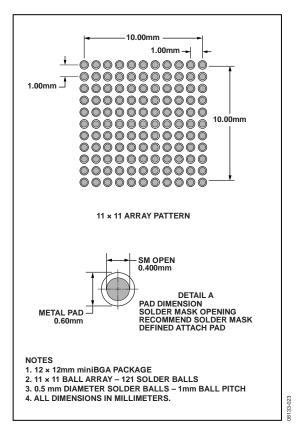


Figure 23. Recommended Pad Layout (Units in Millimeters)

INTERFACE PRINTED CIRCUIT BOARD (PCB)

The ADIS16240/PCBZ includes one ADIS16240ABCZ IC on a 1.2 inch \times 1.3 inch PCB. The interface PCB simplifies the IC connection of these devices to an existing processor system. The four mounting holes accommodate either M2 (2 mm) or 2-56 machine screws. These boards are made of IS410 material and are 0.063 inches thick. The second-level assembly uses a SAC305-compatible solder composition, which has a pre-solder reflow thickness of approximately 0.005 inches.

The pad pattern on these PCBs matches that shown in Figure 24. J1 and J2 are dual-row, 2 mm (pitch) connectors that work with a number of ribbon cable systems, including 3M Part Number 152212-0100-GB (ribbon crimp connector) and 3M Part Number 3625/12 (ribbon cable). The schematic and connector pin assignments for the ADIS16240/PCBZ are in Figure 25.

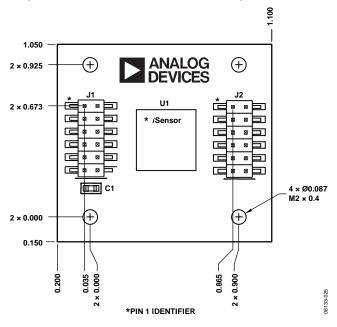


Figure 24. PCB Assembly View and Dimensions

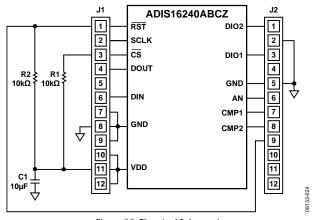


Figure 25. Electrical Schematic

OUTLINE DIMENSIONS

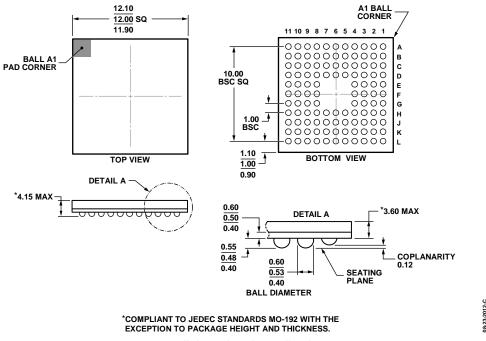


Figure 26. 112-Ball Chip Scale Package Ball Grid Array [CSP_BGA] (BC-112-2) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADIS16240ABCZ	−40°C to +85°C	112-Ball Chip Scale Package Ball Grid Array [CSP_BGA]	BC-112-2
ADIS16240/PCBZ		Evaluation Board	

 $^{^{1}}$ Z = RoHS Compliant Part.

NOTES

NOTES