

64 Mbit (4Mb x 16, Dual Bank, Burst) 1.8V Supply Flash Memory

FEATURES SUMMARY

- SUPPLY VOLTAGE
 - V_{DD} = 1.65V to 2V for Program, Erase and Read
 - V_{DDQ} = 1.65V to 3.3V for I/O Buffers
 - $-V_{PP} = 12V$ for fast Program (optional)
- SYNCHRONOUS / ASYNCHRONOUS READ
 - Synchronous Burst Read mode: 54MHz
 - Asynchronous/ Synchronous Page Read mode
 - Random Access: 85, 100, 120ns
- PROGRAMMING TIME
 - 10µs by Word typical
 - Double/Quadruple Word Program option
- MEMORY BLOCKS
 - Dual Bank Memory Array: 16/48 Mbit
 - Parameter Blocks (Top or Bottom location)
- DUAL OPERATIONS
 - Program Erase in one Bank while Read in other
 - No delay between Read and Write operations
- BLOCK LOCKING
 - All blocks locked at Power up
 - Any combination of blocks can be locked
 - WP for Block Lock-Down
- SECURITY
 - 128 bit user programmable OTP cells
 - 64 bit unique device number
 - One parameter block permanently lockable
- COMMON FLASH INTERFACE (CFI)
- 100,000 PROGRAM/ERASE CYCLES per BLOCK

Figure 1. Packages

■ ELECTRONIC SIGNATURE

- Manufacturer Code: 20h
- Top Device Code, M58CR064C: 88CAh
- Bottom Device Code, M58CR064D: 88CBh
- Top Device Code, M58CR064P: 8801h
- Bottom Device Code, M58CR064Q: 8802h

August 2002 1/68

TABLE OF CONTENTS

SUMMARY DESCRIPTION	6
Figure 2. Logic Diagram	7
Table 1. Signal Names	7
Figure 3. TFBGA Connections (Top view through package)	8
Table 2. Bank Architecture	8
Figure 4. Memory Map	9
SIGNAL DESCRIPTIONS	10
Address Inputs (A0-A21)	
, ,	
Data Input/Output (DQ0-DQ15)	
Chip Enable (E)	
Output Enable (G).	
Write Enable (W).	
Write Protect (WP)	
Reset/Power-Down (RP)	
Latch Enable (L)	
Clock (K)	
Wait (WAIT)	
V _{DD} Supply Voltage	
V _{DDQ} Supply Voltage	
V _{PP} Program Supply Voltage	
V _{SS} Ground	
V _{SSQ} Ground	10
BUS OPERATIONS	11
Bus Read	11
Bus Write	11
Address Latch	
Output Disable	
Standby	
Reset	
Table 3. Bus Operations	
·	
COMMAND INTERFACE	
Table 4. Command Codes	12
COMMAND INTERFACE - STANDARD COMMANDS	13
Read Array Command	13
Read Status Register Command	13
Read Electronic Signature Command	13
Read CFI Query Command	13
Clear Status Register Command	
Block Erase Command	
Bank Erase Command	
Program Command	

Program/Erase Suspend Command	14
Program/Erase Resume Command	15
Protection Register Program Command	15
Set Configuration Register Command	15
Block Lock Command	
Block Unlock Command	16
Block Lock-Down Command	16
Table 5. Standard Commands	17
Table 6. Electronic Signature Codes	18
Figure 5. Security Block and Protection Register Memory Map	18
COMMAND INTERFACE - FACTORY PROGRAM COMMANDS	10
Double Word Program Command	
Quadruple Word Program Command	
Table 7. Factory Program Commands	
Table 7. Factory Frogram Commands	20
STATUS REGISTER	20
Program/Erase Controller Status Bit (SR7)	20
Erase Suspend Status Bit (SR6)	
Erase Status Bit (SR5)	
Program Status Bit (SR4)	
V _{PP} Status Bit (SR3)	
Program Suspend Status Bit (SR2)	
Block Protection Status Bit (SR1)	
Reserved Bit (SR0)	
Table 8. Status Register Bits	
CONFIGURATION REGISTER	
Read Select Bit (CR15)	23
X-Latency Bits (CR13-CR11)	
Power-Down Bit (CR10)	23
Wait Configuration Bit (CR8)	23
Burst Type Bit (CR7)	
Valid Clock Edge Bit (CR6)	23
Wrap Burst Bit (CR3)	23
Burst length Bits (CR2-CR0)	24
Table 9. Configuration Register	24
Table 10. Burst Type Definition	25
Figure 6. X-Latency and Data Output Configuration Example	26
Figure 7. Wait Configuration Example	26
READ MODES	27
Asynchronous Read Mode	27
Synchronous Burst Read Mode	
Single Synchronous Read Mode	
DUAL OPERATIONS AND MULTIPLE BANK ARCHITECTURE	28

Table 11. Dual Operations Allowed In Other Bank	
BLOCK LOCKING	29
Reading a Block's Lock Status	29
Locked State	
Unlocked State	
Lock-Down State	
Locking Operations During Erase Suspend	
Table 13. Lock Status	
PROGRAM AND ERASE TIMES AND ENDURANCE CYCLES	31
Table 14. Program, Erase Times and Program, Erase Endurance Cycles	31
MAXIMUM RATING	32
Table 15. Absolute Maximum Ratings	
DC and AC PARAMETERS	
Table 16. Operating and AC Measurement Conditions	
Figure 8. AC Measurement I/O Waveform	
Figure 9. AC Measurement Load Circuit	
Table 17. Capacitance	
Table 18. DC Characteristics - Currents	
Table 19. DC Characteristics - Voltages	
Figure 10. Asynchronous Random Access Read AC Waveforms	
Figure 11. Asynchronous Page Read AC Waveforms	
Table 20. Asynchronous Read AC Characteristics	
Figure 12. Synchronous Burst Read AC Waveforms	
Figure 13. Single Synchronous Read AC Waveforms	
Table 21. Synchronous Read AC Characteristics	
Figure 14. Write AC Waveforms, Write Enable Controlled	
Table 22. Write AC Characteristics, Write Enable Controlled	
Figure 15. Write AC Waveforms, Chip Enable Controlled	
Table 23. Write AC Characteristics, Chip Enable Controlled	
Figure 16. Reset and Power-up AC Waveforms	
Table 24. Reset and Power-up AC Characteristics	46
PACKAGE MECHANICAL	47
Figure 17. TFBGA56 6.5x10mm - 8x7 ball array, 0.75 mm pitch, Bottom View Package Ou Table 25. TFBGA56 6.5x10mm - 8x7 ball array, 0.75 mm pitch, Package Mechanical Data	
PART NUMBERING	48
Table 26. Ordering Information Scheme	48
REVISION HISTORY	49
Table 27. Document Revision History	49

APPENDIX A. BLOCK ADDRESS TABLES	50
Table 28. Top Boot Block Addresses, M58CR064C, M58CR064P	50
Table 29. Bottom Boot Block Addresses, M58CR064D, M58CR064Q	
APPENDIX B. COMMON FLASH INTERFACE	54
Table 30. Query Structure Overview	54
Table 31. CFI Query Identification String	54
Table 32. CFI Query System Interface Information	55
Table 33. Device Geometry Definition	55
Table 34. Primary Algorithm-Specific Extended Query Table	56
Table 35. Burst Read Information	57
APPENDIX C. FLOWCHARTS AND PSEUDO CODES	58
Figure 18. Program Flowchart and Pseudo Code	58
Figure 19. Double Word Program Flowchart and Pseudo code	59
Figure 20. Quadruple Word Program Flowchart and Pseudo Code	
Figure 21. Program Suspend & Resume Flowchart and Pseudo Code	61
Figure 22. Block Erase Flowchart and Pseudo Code	62
Figure 23. Erase Suspend & Resume Flowchart and Pseudo Code	63
Figure 24. Locking Operations Flowchart and Pseudo Code	64
Figure 25. Protection Register Program Flowchart and Pseudo Code	65
APPENDIX D. COMMAND INTERFACE STATE TABLES	66
Table 36. Command Interface States - Lock table	66
Table 37 Command Interface States - Modify Table	67

SUMMARY DESCRIPTION

The M58CR064 is a 64 Mbit (4Mbit x16) non-volatile Flash memory that may be erased electrically at block level and programmed in-system on a Word-by-Word basis using a 1.65V to 2V V_{DD} supply for the circuitry and a 1.65V to 3.3V V_{DDQ} supply for the Input/Output pins. An optional 12V V_{PP} power supply is provided to speed up customer programming. In M58CR064C and M58CR064D the V_{PP} pin can also be used as a control pin to provide absolute protection against program or erase. In M58CR064P and M58CR064Q this feature is disabled.

The device features an asymmetrical block architecture. M58CR064 has an array of 135 blocks, and is divided into two banks, Banks A and B. The Dual Bank Architecture allows Dual Operations, while programming or erasing in one bank, Read operations are possible in the other bank. Only one bank at a time is allowed to be in Program or Erase mode. It is possible to perform burst reads that cross bank boundaries. The bank architecture is summarized in Table 2, and the memory maps are shown in Figure 4. The Parameter Blocks are located at the top of the memory address space for the M58CR064C and M58CR064P, and at the bottom for the M58CR064D and M58CR064Q.

Each block can be erased separately. Erase can be suspended, in order to perform program in any other block, and then resumed. Program can be suspended to read data in any other block and then resumed. Each block can be programmed and erased over 100,000 cycles using the supply voltage V_{DD} .

Program and Erase commands are written to the Command Interface of the memory. An internal Program/Erase Controller takes care of the timings necessary for program and erase operations.

The end of a program or erase operation can be detected and any error conditions identified in the Status Register. The command set required to control the memory is consistent with JEDEC standards.

The device supports synchronous burst read and asynchronous read from all blocks of the memory array; at power-up the device is configured for asynchronous read. In synchronous burst mode, data is output on each clock cycle at frequencies of up to 54MHz.

The M58CR064 features an instant, individual block locking scheme that allows any block to be locked or unlocked with no latency, enabling instant code and data protection. All blocks have three levels of protection. They can be locked and locked-down individually preventing any accidental programming or erasure. In M58CR064C and M58CR064D there is an additional hardware protection against program and erase. When $V_{\text{PPLK}} \approx V_{\text{PPLK}}$ all blocks are protected against program or erase. All blocks are locked at Power- Up.

The device includes a Protection Register and a Security Block to increase the protection of a system's design. The Protection Register is divided into two segments: a 64 bit segment containing a unique device number written by ST, and a 128 bit segment One-Time-Programmable (OTP) by the user. The user programmable segment can be permanently protected. The Security Block, parameter block 0, can be permanently protected by the user. Figure 5, shows the Security Block and Protection Register Memory Map.

The memory is offered in a TFBGA56, 6.5 x 10mm, 0.75 mm ball pitch package and is supplied with all the bits erased (set to '1').

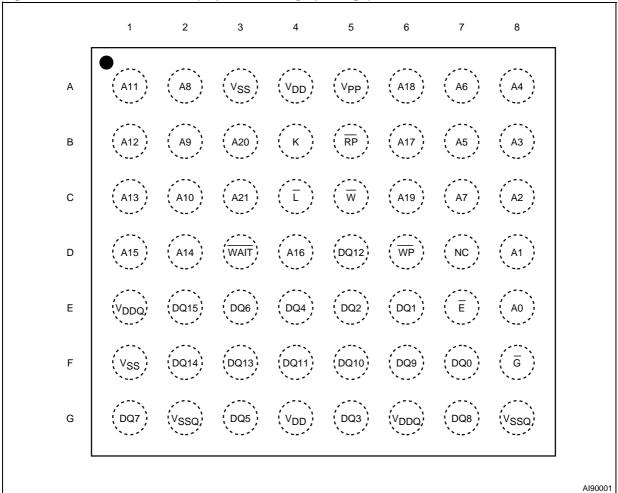

Figure 2. Logic Diagram

Table 1. Signal Names

A0-A21	Address Inputs
DQ0-DQ15	Data Input/Outputs, Command Inputs
Ē	Chip Enable
G	Output Enable
W	Write Enable
RP	Reset/Power-Down
WP	Write Protect
К	Clock
Ī	Latch Enable
WAIT	Wait
V _{DD}	Supply Voltage
V_{DDQ}	Supply Voltage for Input/Output Buffers
V _{PP}	Optional Supply Voltage for Fast Program & Erase
V _{SS}	Ground
V _{SSQ}	Ground Input/Output Supply
NC	Not Connected Internally

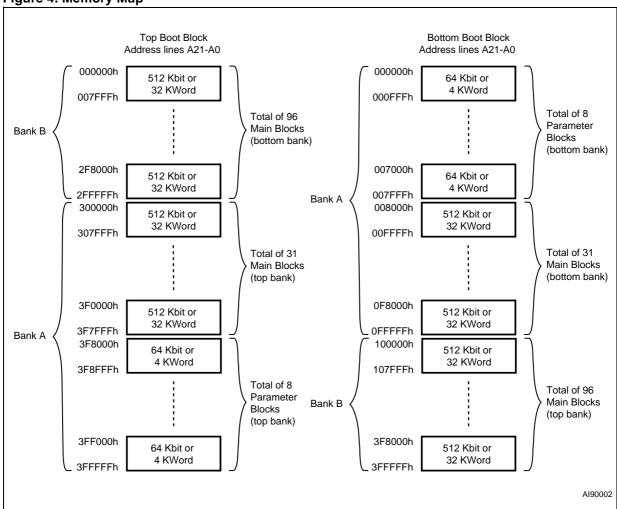

Figure 3. TFBGA Connections (Top view through package)

Table 2. Bank Architecture

	Bank Size	Parameter Blocks	Main Blocks
Bank A	16 Mbit	8 blocks of 4 KWord	31 blocks of 32 KWord
Bank B	48 Mbit	-	96 blocks of 32 KWord

Figure 4. Memory Map

SIGNAL DESCRIPTIONS

See Figure 2 Logic Diagram and Table 1,Signal Names, for a brief overview of the signals connected to this device.

Address Inputs (A0-A21). The Address Inputs select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the Command Interface of the internal state machine.

Data Input/Output (DQ0-DQ15). The Data I/O outputs the data stored at the selected address during a Bus Read operation or inputs a command or the data to be programmed during a Bus Write operation.

Chip Enable ($\overline{\mathbf{E}}$). The Chip Enable input activates the memory control logic, input buffers, decoders and sense amplifiers. When Chip Enable is at V_{IL} and Reset/Power-Down is at V_{IH} the device is in active mode. When Chip Enable is at V_{IH} the memory is deselected, the outputs are high impedance and the power consumption is reduced to the stand-by level.

Output Enable $(\overline{\mathbf{G}})$. The Output Enable controls the outputs during the Bus Read operation of the memory.

Write Enable (\overline{W}). The Write Enable controls the Bus Write operation of the memory's Command Interface. The data and address inputs are latched on the rising edge of Chip Enable or Write Enable whichever occurs first.

Write Protect (\overline{WP}). Write Protect is an input that gives an additional hardware protection for each block. When Write Protect is at V_{IL} , the Lock-Down is enabled and the protection status of the Locked-Down blocks cannot be changed. When Write Protect is at V_{IH} , the Lock-Down is disabled and the Locked-Down blocks can be locked or unlocked. (refer to Table 13, Lock Status).

Reset/Power-Down (RP). The Reset/Power-Down input provides a hardware reset of the memory, and/or Power-Down functions, depending on the Configuration Register status. When Reset/ Power-Down is at V_{IL} , the memory is in reset mode: the outputs are high impedance and if the Power-Down function is enabled the current consumption is reduced to the Reset Supply Current IDD2. Refer to Table 2, DC Characteristics - Currents for the value of IDD2. After Reset all blocks are in the Locked state and the Configuration Register is reset. When Reset/Power-Down is at V_{IH}, the device is in normal operation. Exiting reset mode the device enters asynchronous read mode, but a negative transition of Chip Enable or Latch Enable is required to ensure valid data outputs.

The Reset/Power-Down pin can be interfaced with 3V logic without any additional circuitry. It can be

tied to V_{RPH} (refer to Table 19, DC Characteristics).

Latch Enable (\overline{L}). Latch Enable latches the address bits on its rising edge. The address latch is transparent when Latch Enable is at V_{IL} and it is inhibited when Latch Enable is at V_{IH}. Latch Enable can be kept Low (also at board level) when the Latch Enable function is not required or supported.

Clock (K). The clock input synchronizes the memory to the microcontroller during synchronous read operations; the address is latched on a Clock edge (rising or falling, according to the configuration settings) when Latch Enable is at $V_{\rm IL}$. Clock is don't care during asynchronous read and in write operations.

Wait (WAIT). Wait is an output signal used during synchronous read to indicate whether the data on the output bus are valid. This output is high impedance when Chip Enable or Output Enable are at V_{IH} or Reset/Power-Down is at V_{IL}. It can be configured to be active during the wait cycle or one clock cycle in advance.

V_{DD} Supply Voltage. V_{DD} provides the power supply to the internal core of the memory device. It is the main power supply for all operations (Read, Program and Erase).

 V_{DDQ} Supply Voltage. V_{DDQ} provides the power supply to the I/O pins and enables all Outputs to be powered independently from V_{DD} . V_{DDQ} can be tied to V_{DD} or can use a separate supply.

V_{PP} Program Supply Voltage. V_{PP} is both a control input and a power supply pin. In M58CR064C/D the two functions are selected by the voltage range applied to the pin. In the M58CR064P/Q the control feature is disabled.

In M58CR064C/D if V_{PP} is kept in a low voltage range (0V to V_{DDQ}) V_{PP} is seen as a control input. In this case a voltage lower than V_{PPLK} gives an absolute protection against program or erase, while V_{PP} > V_{PP1} enables these functions (see Tables 18 and 19, DC Characteristics for the relevant values). V_{PP} is only sampled at the beginning of a program or erase; a change in its value after the operation has started does not have any effect and program or erase operations continue.

If V_{PP} is in the range of V_{PPH} it acts as a power supply pin. In this condition V_{PP} must be stable until the Program/Erase algorithm is completed.

 V_{SS} Ground. V_{SS} ground is the reference for the core supply. It must be connected to the system ground.

 V_{SSQ} Ground. V_{SSQ} ground is the reference for the input/output circuitry driven by $V_{DDQ}.\ V_{SSQ}$ must be connected to V_{SS}

Note: Each device in a system should have V_{DD} , V_{DDQ} and V_{PP} decoupled with a $0.1\mu F$ ceramic capacitor close to the pin (high frequency, inherently low inductance capacitors should be as close as possible to the pack-

age). See Figure 9, AC Measurement Load Circuit. The PCB trace widths should be sufficient to carry the required V_{PP} program and erase currents.

BUS OPERATIONS

There are six standard bus operations that control the device. These are Bus Read, Bus Write, Address Latch, Output Disable, Standby and Reset. See Table 3, Bus Operations, for a summary.

Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect Bus Write operations.

Bus Read. Bus Read operations are used to output the contents of the Memory Array, the Electronic Signature, the Status Register and the Common Flash Interface. Both Chip Enable and Output Enable must be at $V_{\rm IL}$ in order to perform a read operation. The Chip Enable input should be used to enable the device. Output Enable should be used to gate data onto the output. The data read depends on the previous command written to the memory (see Command Interface section). Refer to the Read AC Waveform figures and Characteristics tables in the DC and AC Parameters section for details of when the output becomes valid

Bus Write. Bus Write operations write Commands to the memory or latch Input Data to be programmed. A bus write operation is initiated when Chip Enable and Write Enable are at V_{IL} with Output Enable at V_{IH}. Commands, Input Data and Addresses are latched on the rising edge of Write Enable or Chip Enable, whichever occurs first. The addresses can also be latched prior to the write operation by toggling Latch Enable. In this case

the Latch Enable should be tied to V_{IH} during the bus write operation.

See Figures 14 and 15, Write AC Waveforms, and Tables 22 and 23, Write AC Characteristics, for details of the timing requirements.

Address Latch. Address latch operations input valid addresses. Both Chip enable and Latch Enable must be at V_{IL} during address latch operations. The addresses are latched on the rising edge of Latch Enable.

Output Disable. The outputs are high impedance when the Output Enable is at V_{IH}.

Standby. Standby disables most of the internal circuitry allowing a substantial reduction of the current consumption. The memory is in stand-by when Chip Enable and Reset/Power-Down are at V_{IH} . The power consumption is reduced to the stand-by level and the outputs are set to high impedance, independently from the Output Enable or Write Enable inputs. If Chip Enable switches to V_{IH} during a program or erase operation, the device enters Standby mode when finished.

Reset. During Reset mode the memory is deselected and the outputs are high impedance. The memory is in Reset mode when Reset/Power-Down is at V_{IL} . The power consumption is reduced to the Standby level, independently from the Chip Enable, Output Enable or Write Enable inputs. If Reset is pulled to V_{SS} during a Program or Erase, this operation is aborted and the memory content is no longer valid.

Table 3. Bus Operations

Operation	Ē	G	W	Ī	RP	WAIT	DQ15-DQ0	
Bus Read	V _{IL}	VIL	V _{IH}	V _{IL} ⁽²⁾	V _{IH}		Data Output	
Bus Write	V _{IL}	V _{IH}	V _{IL}	V _{IL} ⁽²⁾	V _{IH}	Hi-Z	Data Input	
Address Latch	V _{IL}	Х	V _{IH}	V _{IL}	V _{IH}		Data Output or Hi-Z (3)	
Output Disable	V _{IL}	V _{IH}	V _{IH}	Х	V _{IH}	Hi-Z	Hi-Z	
Standby	V _{IH}	Х	Х	Х	V _{IH}	Hi-Z	Hi-Z	
Reset	Х	Х	Х	Х	V _{IL}	Hi-Z	Hi-Z	

Note: 1. X = Don't care.

2. \overline{L} can be tied to V_{IH} if the valid address has been previously latched.

3. Depends on \overline{G} .

COMMAND INTERFACE

All Bus Write operations to the memory are interpreted by the Command Interface. Commands consist of one or more sequential Bus Write operations. An internal Program/Erase Controller handles all timings and verifies the correct execution of the Program and Erase commands. The Program/Erase Controller provides a Status Register whose output may be read at any time to monitor the progress or the result of the operation.

The Command Interface is reset to read mode when power is first applied, when exiting from Reset or whenever V_{DD} is lower than V_{LKO} . Command sequences must be followed exactly. Any invalid combination of commands will reset the device to read mode.

Refer to Table 4, Command Codes and Appendix D, Tables 36 and 37, Command Interface States - Modify and Lock Tables, for a summary of the Command Interface.

The Command Interface is split into two types of commands: Standard commands and Factory Program commands. The following sections explain in detail how to perform each command.

Table 4. Command Codes

Hex Code	Command
01h	Block Lock Confirm
03h	Set Configuration Register Confirm
10h	Alternative Program Setup
20h	Block Erase Setup
2Fh	Block Lock-Down Confirm
30h	Double Word Program Setup
40h	Program Setup
50h	Clear Status Register
55h	Quadruple Word Program Setup
60h	Block Lock Setup, Block Unlock Setup, Block Lock Down Setup and Set Configuration Register Setup
70h	Read Status Register
80h	Bank Erase Setup
90h	Read Electronic Signature
98h	Read CFI Query
B0h	Program/Erase Suspend
C0h	Protection Register Program
D0h	Program/Erase Resume, Block Erase Confirm, Bank Erase Confirm, Block Unlock Confirm
FFh	Read Array

COMMAND INTERFACE - STANDARD COMMANDS

The following commands are the basic commands used to read, write to and configure the device. Refer to Table 5, Standard Commands, in conjunction with the following text descriptions.

Read Array Command

The Read Array command returns the addressed bank to Read Array mode. One Bus Write cycle is required to issue the Read Array command and return the addressed bank to Read Array mode. Subsequent read operations will read the addressed location and output the data. A Read Array command can be issued in one bank while programming or erasing in the other bank. However if a Read Array command is issued to a bank currently executing a Program or Erase operation the command will be ignored.

Read Status Register Command

A Bank's Status Register indicates when a Program or Erase operation is complete and the success or failure of operation itself. Issue a Read Status Register command to read the Status Register content of the addressed Bank. The Read Status Register command can be issued at any time, even during Program or Erase operations.

The following Bus Read operations output the content of the Status Register of the addressed bank. The Status Register is latched on the falling edge of \overline{E} or \overline{G} signals, and can be read until \overline{E} or \overline{G} returns to $V_{IH}.$ Either \overline{E} or \overline{G} must be toggled to update the latched data. See Table 8 for the description of the Status Register Bits. This mode supports asynchronous or single synchronous reads only.

Read Electronic Signature Command

The Read Electronic Signature command reads the Manufacturer and Device Codes, the Block Locking Status, the Protection Register, and the Configuration Register.

The Read Electronic Signature command consists of one write cycle to an address within the bottom bank. A subsequent read operation in the address of the bottom bank will output the Manufacturer Code, the Device Code, the protection Status of Blocks of the bottom bank, the Die Revision Code, the Protection Register, or the Read Configuration Register (see Table 6).

If the first write cycle of Read Electronic Signature command is issued to an address within the top bank, a subsequent read operation in an address of the top bank will output the protection Status of blocks of the top bank. The status of the other bank is not affected by the command (see Table 11). This mode supports asynchronous or single synchronous reads only, it does not support page mode or synchronous burst reads.

Read CFI Query Command

The Read CFI Query command is used to read data from the Common Flash Interface (CFI) memory area located in the bottom bank. The Read CFI Query Command consists of one Bus Write cycle, to an address within the bottom bank. Once the command is issued subsequent Bus Read operations in the same bank read from the Common Flash Interface.

If a Read CFI Query command is issued in a bank that is executing a Program or Erase operation the bank will go into Read Status Register mode, subsequent Bus Read cycles will output the Status Register and the Program/Erase controller will continue to Program or Erase in the background. When the Program or Erase operation has finished the device will enter Read CFI Query mode.

This mode supports asynchronous or single synchronous reads only, it does not support page mode or synchronous burst reads.

The status of the other banks is not affected by the command (see Table 11). After issuing a Read CFI Query command, a Read Array command should be issued to the addressed bank to return the bank to read mode.

See Appendix C, Common Flash Interface, Tables 30, 31, 32, 33, 34 and 35 for details on the information contained in the Common Flash Interface memory area.

Clear Status Register Command

The Clear Status Register command can be used to reset (set to '0') error bits 1, 3, 4 and 5 in the Status Register of the addressed bank. One bus write cycle is required to issue the Clear Status Register command. After the Clear Status Register command the bank returns to Read Array mode.

The error bits in the Status Register do not automatically return to '0' when a new command is issued. The error bits in the Status Register should be cleared before attempting a new Program or Erase command.

Block Erase Command

The Block Erase command can be used to erase a block. It sets all the bits within the selected block to '1'. All previous data in the block is lost. If the block is protected then the Erase operation will abort, the data in the block will not be changed and the Status Register will output the error. The Block Erase command can be issued at any moment, regardless of whether the block has been programmed or not.

Two Bus Write cycles are required to issue the command.

■ The first bus cycle sets up the Erase command.

The second latches the block address in the internal state machine and starts the Program/ Erase Controller.

If the second bus cycle is not Write Erase Confirm (D0h), Status Register bits 4 and 5 are set and the command aborts. Erase aborts if Reset turns to V_{IL} . As data integrity cannot be guaranteed when the Erase operation is aborted, the block must be erased again.

Once the command is issued the device outputs the Status Register data when any address within the bank is read. At the end of the operation the bank will remain in Read Status Register mode until a Read Array, Read CFI Query or Read Electronic Signature command is issued.

During Erase operations the bank containing the block being erased will only accept the Read Status Register and the Program/Erase Suspend command, all other commands will be ignored. Refer to Dual Operations section for detailed information about simultaneous operations allowed in banks not being erased. Typical Erase times are given in Table 14, Program, Erase Times and Program/Erase Endurance Cycles.

See Appendix C, Figure 22, Block Erase Flowchart and Pseudo Code, for a suggested flowchart for using the Block Erase command.

Bank Erase Command

The Bank Erase command can be used to erase a bank. It sets all the bits within the selected bank to '1'. All previous data in the bank is lost. The Bank Erase command will ignore any protected blocks within the bank. If all blocks in the bank are protected then the Bank Erase operation will abort and the data in the bank will not be changed. The Status Register will not output any error.

Two Bus Write cycles are required to issue the command.

- The first bus cycle sets up the Bank Erase command.
- The second latches the bank address in the internal state machine and starts the Program/ Erase Controller.

If the second bus cycle is not Write Bank Erase Confirm (D0h), Status Register bits b4 and b5 are set and the command aborts. Erase aborts if Reset turns to V_{IL} . As data integrity cannot be guaranteed when the Erase operation is aborted, the bank must be erased again.

Once the command is issued the device outputs the Status Register data when any address within the bank is read. At the end of the operation the bank will remain in Read Status Register mode until a Read Array, Read CFI Query or Read Electronic Signature command is issued.

During Bank Erase operations the bank being erased will only accept the Read Status Register command, all other commands will be ignored. A Bank Erase operation cannot be suspended.

Refer to Dual Operations section for detailed information about simultaneous operations allowed in banks not being erased. Typical Erase times are given in Table 14, Program, Erase Times and Program/Erase Endurance Cycles.

Program Command

The memory array can be programmed word-byword. Only one Word in one bank can be programmed at any one time. Two bus write cycles are required to issue the Program Command.

- The first bus cycle sets up the Program command.
- The second latches the Address and the Data to be written and starts the Program/Erase Controller.

After programming has started, read operations in the bank being programmed output the Status Register content.

During Program operations the bank being programmed will only accept the Read Status Register and the Program/Erase Suspend command. Refer to Dual Operations section for detailed information about simultaneous operations allowed in banks not being programmed. Typical Program times are given in Table 14, Program, Erase Times and Program/Erase Endurance Cycles.

Programming aborts if Reset goes to V_{IL} . As data integrity cannot be guaranteed when the program operation is aborted, the memory location must be reprogrammed.

See Appendix C, Figure 18, Program Flowchart and Pseudo Code, for the flowchart for using the Program command.

Program/Erase Suspend Command

The Program/Erase Suspend command is used to pause a Program or Block Erase operation. A Bank Erase operation cannot be suspended.

One bus write cycle is required to issue the Program/Erase Suspend command. Once the Program/Erase Controller has paused bits 7, 6 and/ or 2 of the Status Register will be set to '1'. The command must be addressed to the bank containing the Program or Erase operation.

During Program/Erase Suspend the Command Interface will accept the Program/Erase Resume, Read Array (cannot read the suspended block), Read Status Register, Read Electronic Signature and Read CFI Query commands. Additionally, if the suspend operation was Erase then the Clear status Register, Program, Block Lock, Block Lock-Down or Protection Program commands will also be accepted. The block being erased may be pro-

tected by issuing the Block Lock, Block Lock-Down or Protection Register Program commands. Only the blocks not being erased may be read or programmed correctly. When the Program/Erase Resume command is issued the operation will complete. Refer to the Dual Operations section for detailed information about simultaneous operations allowed during Program/Erase Suspend.

During a Program/Erase Suspend, the device can be placed in standby mode by taking Chip Enable to V_{IH} . Program/Erase is aborted if Reset turns to V_{IL} .

See Appendix C, Figure 21, Program Suspend & Resume Flowchart and Pseudo Code, and Figure 23, Erase Suspend & Resume Flowchart and Pseudo Code for flowcharts for using the Program/ Erase Suspend command.

Program/Erase Resume Command

The Program/Erase Resume command can be used to restart the Program/Erase Controller after a Program/Erase Suspend command has paused it. One Bus Write cycle is required to issue the command. The command must be written to the bank containing the Program or Erase Suspend.

The Program/Erase Resume command changes the read mode of the target bank to Read Status Register mode.

If a Program command is issued during a Block Erase Suspend, then the erase cannot be resumed until the programming operation has completed. It is possible to accumulate suspend operations. For example: suspend an erase operation, start a programming operation, suspend the programming operation then read the array. See Appendix C, Figure 21, Program Suspend & Resume Flowchart and Pseudo Code, and Figure 23, Erase Suspend & Resume Flowchart and Pseudo Code for flowcharts for using the Program/Erase Resume command.

Protection Register Program Command

The Protection Register Program command is used to Program the 128 bit user One-Time-Programmable (OTP) segment of the Protection Register. The segment is programmed 16 bits at a time. When shipped all bits in the segment are set to '1'. The user can only program the bits to '0'.

Two write cycles are required to issue the Protection Register Program command.

- The first bus cycle sets up the Protection Register Program command.
- The second latches the Address and the Data to be written to the Protection Register and starts the Program/Erase Controller.

Read operations output the Status Register content after the programming has started.

The segment can be protected by programming bit 1 of the Protection Lock Register. Bit 1 of the Protection Lock Register also protects bit 2 of the Protection Lock Register. Programming bit 2 of the Protection Lock Register will result in a permanent protection of Parameter Block #0 (see Figure 5, Security Block and Protection Register Memory Map). Attempting to program a previously protected Protection Register will result in a Status Register error. The protection of the Protection Register and/or the Security Block is not reversible.

The Protection Register Program cannot be suspended. See Appendix C, Figure 25, Protection Register Program Flowchart and Pseudo Code, for a flowchart for using the Protection Register Program command.

Set Configuration Register Command.

The Set Configuration Register command is used to write a new value to the Configuration Control Register which defines the burst length, type, X latency, Synchronous/Asynchronous Read mode and the valid Clock edge configuration.

Two Bus Write cycles are required to issue the Set Configuration Register command.

- The first cycle writes the setup command and the address corresponding to the Configuration Register content.
- The second cycle writes the Configuration Register data and the confirm command.

Once the command is issued the memory returns to Read mode.

The value for the Configuration Register is always presented on A0-A15. CR0 is on A0, CR1 on A1, etc.; the other address bits are ignored.

Block Lock Command

The Block Lock command is used to lock a block and prevent Program or Erase operations from changing the data in it. All blocks are locked at power-up or reset.

Two Bus Write cycles are required to issue the Block Lock command.

- The first bus cycle sets up the Block Lock command.
- The second Bus Write cycle latches the block address.

The lock status can be monitored for each block using the Read Electronic Signature command. Table. 13 shows the Lock Status after issuing a Block Lock command.

The Block Lock bits are volatile, once set they remain set until a hardware reset or power-down/power-up. They are cleared by a Block Unlock command. Refer to the section, Block Locking, for a detailed explanation. See Appendix C, Figure

24, Locking Operations Flowchart and Pseudo Code, for a flowchart for using the Lock command.

Block Unlock Command

The Block Unlock command is used to unlock a block, allowing the block to be programmed or erased. Two Bus Write cycles are required to issue the Block Unlock command.

- The first bus cycle sets up the Block Unlock command.
- The second Bus Write cycle latches the block address.

The lock status can be monitored for each block using the Read Electronic Signature command. Table 13 shows the protection status after issuing a Block Unlock command. Refer to the section, Block Locking, for a detailed explanation and Appendix C, Figure 24, Locking Operations Flow-chart and Pseudo Code, for a flowchart for using the Unlock command.

Block Lock-Down Command

A locked or unlocked block can be locked-down by issuing the Block Lock-Down command. A locked-

down block cannot be programmed or erased, or have its protection status changed when \overline{WP} is low, V_{IL} . When \overline{WP} is high, V_{IH} , the Lock-Down function is disabled and the locked blocks can be individually unlocked by the Block Unlock command.

Two Bus Write cycles are required to issue the Block Lock-Down command.

- The first bus cycle sets up the Block Lock command.
- The second Bus Write cycle latches the block address.

The lock status can be monitored for each block using the Read Electronic Signature command. Locked-Down blocks revert to the locked (and not locked-down) state when the device is reset on power-down. Table. 13 shows the Lock Status after issuing a Block Lock-Down command. Refer to the section, Block Locking, for a detailed explanation and Appendix C, Figure 24, Locking Operations Flowchart and Pseudo Code, for a flowchart for using the Lock-Down command.

Table 5. Standard Commands

	S	Bus Operations								
Commands	Cycles		1st Cycle		2nd Cycle					
	5	Op.	Add	Data	Op.	Add	Data			
Read Array	1+	Write	BKA	FFh	Read	WA	RD			
Read Status Register	1+	Write	ВКА	70h	Read	BKA ⁽²⁾	SRD			
Read Electronic Signature	1+	Write	BBKA or BKA ⁽³⁾	90h	Read	BBKA or BKA ^(2,3)	ESD ⁽³⁾			
Read CFI Query	1+	Write	BBKA	98h	Read	BBKA ⁽²⁾	QD			
Clear Status Register	1	Write	ВКА	50h						
Block Erase	2	Write	BKA	20h	Write	BA	D0h			
Bank Erase	2	Write	BKA	80h	Write	BKA	D0h			
Program	2	Write	BKA	40h or 10h	Write	WA	PD			
Program/Erase Suspend	1	Write	BKA	B0h						
Program/Erase Resume	1	Write	BKA	D0h						
Protection Register Program	2	Write	PRA	C0h	Write	PRA	PRD			
Set Configuration Register	2	Write	CRD	60h	Write	CRD	03h			
Block Lock	2	Write	BKA	60h	Write	ВА	01h			
Block Unlock	2	Write	BKA	60h	Write	ВА	D0h			
Block Lock-Down	2	Write	BKA	60h	Write	ВА	2Fh			

Note: 1. X = Don't Care, WA=Word Address in targeted bank, RD=Read Data, SRD=Status Register Data, ESD=Electronic Signature Data, QD=Query Data, BA=Block Address, BKA= Bank Address, BBKA= Bottom Bank Address, PD=Program Data, PRA=Protection Register Address, PRD=Protection Register Data, CRD=Configuration Register Data.

^{2.} Must be same bank as in the first cycle. The signature addresses are listed in Table 6.

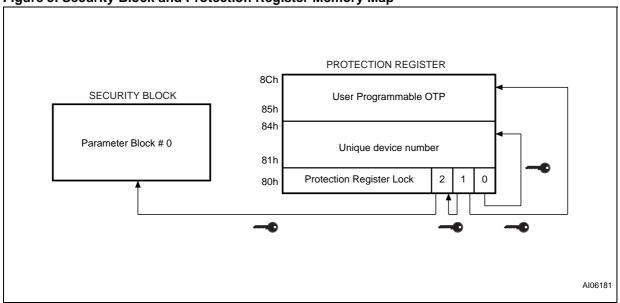

3. When addressed to a block in the Top Bank, reads Block Protection data only.

Table 6. Electronic Signature Codes

	Code	Address (h)	Data (h)
Manufacturer Code		Bottom Bank Address + 00	0020
	Top (M58CR064C)		88CA
Davis a Oasta	Bottom (M58CR064D)	Bottom Bank Address + 01	88CB
Device Code	Top (M58CR064P)	BOROTT BATIK Address + 01	8801
	Bottom (M58CR064Q)		8802
	Lock		0001
Block Protection	Unlocked	Block Address + 02	0000
DIOCK PIOLECTION	Locked and Locked-Down	Block Address + 02	0003
	Unlocked and Locked-Down		0002
Reserved		Bottom Bank Address + 03	Reserved
Configuration Register		Bottom Bank Address + 05	CR
	ST Factory Default		xx06
	Security Block Permanently Locked		xx02
Protection Register Lock	OTP Area Permanently Locked	Bottom Bank Address + 80	xx04
	Security Block and OTP Area Permanently Locked		xx00
Protection Pogister		Bottom Bank Address + 81 Bottom Bank Address + 84	Unique Device Number
Protection Register		Bottom Bank Address + 85 Bottom Bank Address + 8C	OTP Area

Note: CR=Configuration Register.

Figure 5. Security Block and Protection Register Memory Map

COMMAND INTERFACE - FACTORY PROGRAM COMMANDS

The Factory Program commands are used to speed up programming. They require V_{PP} to be at V_{PPH} . Refer to Table 7, Factory Program Commands, in conjunction with the following text descriptions.

Double Word Program Command

The Double Word Program command improves the programming throughput by writing a page of two adjacent words in parallel. The two words must differ only for the address A0.

Programming should not be attempted when V_{PP} is not at V_{PPH}. The command can be executed if V_{PP} is below V_{PPH} but the result is not guaranteed.

Three bus write cycles are necessary to issue the Double Word Program command.

- The first bus cycle sets up the Double Word Program Command.
- The second bus cycle latches the Address and the Data of the first word to be written.
- The third bus cycle latches the Address and the Data of the second word to be written and starts the Program/Erase Controller.

Read operations in the bank being programmed output the Status Register content after the programming has started.

During Double Word Program operations the bank being programmed will only accept the Read Status Register command, all other commands will be ignored. Dual operations are not supported during Double Word Program operations. It is not recommended to suspend the Double Word Program command. Typical Program times are given in Table 14, Program, Erase Times and Program/Erase Endurance Cycles.

Programming aborts if Reset goes to V_{IL} . As data integrity cannot be guaranteed when the program operation is aborted, the memory locations must be reprogrammed.

See Appendix C, Figure 19, Double Word Program Flowchart and Pseudo Code, for the flow-chart for using the Double Word Program command.

Quadruple Word Program Command

The Quadruple Word Program command improves the programming throughput by writing a page of four adjacent words in parallel. The four words must differ only for the addresses A0 and A1.

Programming should not be attempted when V_{PP} is not at V_{PPH}. The command can be executed if V_{PP} is below V_{PPH} but the result is not guaranteed. Five bus write cycles are necessary to issue the

■ The first bus cycle sets up the Double Word Program Command.

Quadruple Word Program command.

- The second bus cycle latches the Address and the Data of the first word to be written.
- The third bus cycle latches the Address and the Data of the second word to be written.
- The fourth bus cycle latches the Address and the Data of the third word to be written.
- The fifth bus cycle latches the Address and the Data of the fourth word to be written and starts the Program/Erase Controller.

Read operations to the bank being programmed output the Status Register content after the programming has started.

Programming aborts if Reset goes to V_{IL} . As data integrity cannot be guaranteed when the program operation is aborted, the memory locations must be reprogrammed.

During Quadruple Word Program operations the bank being programmed will only accept the Read Status Register command, all other commands will be ignored.

Dual operations are not supported during Quadruple Word Program operations. It is not recommended to suspend the Quadruple Word Program command. Typical Program times are given in Table 14, Program, Erase Times and Program/Erase Endurance Cycles.

See Appendix C, Figure 20, Quadruple Word Program Flowchart and Pseudo Code, for the flowchart for using the Quadruple Word Program command.

Table 7. Factory Program Comma

		S	Bus Write Operations									
Command	Phase S	>	19	st	2n	d	3r	d	4th	1	5t	h
		ပ	Add	Data	Add	Data	Add	Data	Add	Data	Add	Data
Double Word	Program ⁽²⁾	3	BKA	30h	WA1	PD1	WA2	PD2				
Quadruple W Program ⁽³⁾	ord/	5	ВКА	55h	WA1	PD1	WA2	PD2	WA3	PD3	WA4	PD4

- Note: 1. WA=Word Address in targeted bank, BKA= Bank Address, PD=Program Data, WA1 is the Start Address.
 - 2. Word Addresses 1 and 2 must be consecutive Addresses differing only for A0.
 - 3. Word Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1.

STATUS REGISTER

The M58CR064 has two Status Registers, one for each bank. The Status Registers provide information on the current or previous Program or Erase operations executed in each bank. Issue a Read Status Register command to read the contents of the Status Register, refer to Read Status Register Command section for more details. To output the contents, the Status Register is latched and updated on the falling edge of the Chip Enable or Output Enable signals, and can be read until Chip Enable or Output Enable returns to VIH. The Status Register can only be read using single asynchronous or single synchronous reads. Bus Read operations from any address within the bank, always read the Status Register during Program and Erase operations.

The various bits convey information about the status and any errors of the operation. Bits SR7, SR6 and SR2 give information on the status of the bank and are set and reset by the device. Bits SR5, SR4, SR3 and SR1 give information on errors, they are set by the device but must be reset by issuing a Clear Status Register command or a hardware reset. If an error bit is set to '1' the Status Register should be reset before issuing another command.

The bits in the Status Register are summarized in Table 8, Status Register Bits. Refer to Table 8 in conjunction with the following text descriptions.

Program/Erase Controller Status Bit (SR7). The Program/Erase Controller Status bit indicates whether the Program/Erase Controller is active or inactive in the addressed bank. When the Program/Erase Controller Status bit is Low (set to '0'), the Program/Erase Controller is active; when the bit is High (set to '1'), the Program/Erase Controller is inactive, and the device is ready to process a new command.

The Program/Erase Controller Status is Low immediately after a Program/Erase Suspend command is issued until the Program/Erase Controller

pauses. After the Program/Erase Controller pauses the bit is High.

During Program, Erase, operations the Program/ Erase Controller Status bit can be polled to find the end of the operation. Other bits in the Status Register should not be tested until the Program/Erase Controller completes the operation and the bit is High.

After the Program/Erase Controller completes its operation the Erase Status, Program Status, V_{PP} Status and Block Lock Status bits should be tested for errors.

Erase Suspend Status Bit (SR6). The Erase Suspend Status bit indicates that an Erase operation has been suspended or is going to be suspended in the addressed block. When the Erase Suspend Status bit is High (set to '1'), a Program/Erase Suspend command has been issued and the memory is waiting for a Program/Erase Resume command.

The Erase Suspend Status should only be considered valid when the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). SR7 is set within 30µs of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than entering the Suspend mode.

When a Program/Erase Resume command is issued the Erase Suspend Status bit returns Low.

Erase Status Bit (SR5). The Erase Status bit can be used to identify if the memory has failed to verify that the block or bank has erased correctly. When the Erase Status bit is High (set to '1'), the Program/Erase Controller has applied the maximum number of pulses to the block or bank and still failed to verify that it has erased correctly. The Erase Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Controller inactive).

Once set High, the Erase Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program or Erase command is issued, otherwise the new command will appear to fail.

Program Status Bit (SR4). The Program Status bit is used to identify a Program failure. When the Program Status bit is High (set to '1'), the Program/Erase Controller has applied the maximum number of pulses to the byte and still failed to verify that it has programmed correctly. The Program Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Controller inactive).

Once set High, the Program Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new command is issued, otherwise the new command will appear to fail.

VPP Status Bit (SR3). The VPP Status bit can be used to identify an invalid voltage on the VPP pin during Program and Erase operations. The VPP pin is only sampled at the beginning of a Program or Erase operation. Indeterminate results can occur if VPP becomes invalid during an operation.

When the V_{PP} Status bit is Low (set to '0'), the voltage on the V_{PP} pin was sampled at a valid voltage; when the V_{PP} Status bit is High (set to '1'), the V_{PP} pin has a voltage that is below the V_{PP} Lockout Voltage, V_{PPLK}, the memory is protected and Program and Erase operations cannot be performed.

Once set High, the V_{PP} Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program or Erase command is issued, otherwise the new command will appear to fail.

Program Suspend Status Bit (SR2). The Program Suspend Status bit indicates that a Program operation has been suspended in the addressed block. When the Program Suspend Status bit is High (set to '1'), a Program/Erase Suspend command has been issued and the memory is waiting for a Program/Erase Resume command. The Program Suspend Status should only be considered valid when the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). SR2 is set within 5µs of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than entering the Suspend mode.

When a Program/Erase Resume command is issued the Program Suspend Status bit returns Low.

Block Protection Status Bit (SR1). The Block Protection Status bit can be used to identify if a Program or Block Erase operation has tried to modify the contents of a locked block.

When the Block Protection Status bit is High (set to '1'), a Program or Erase operation has been attempted on a locked block.

Once set High, the Block Protection Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new command is issued, otherwise the new command will appear to fail.

Reserved Bit (SR0). SR0 is reserved. Its value must be masked.

Table 8. Status Register Bits

Bit	Name	Туре	Logic Level	Definition
SR7	P/E.C. Status	Status	'1'	Ready
JK1	F/E.C. Status	Status	'0'	Busy
SR6	Erase Suspend Status	Status	'1'	Erase Suspended
SKO	Erase Suspend Status	Status	'0'	Erase In progress or Completed
CDE	SR5 Erase Status Error -		'1'	Erase Error
SKO			'0'	Erase Success
SR4	Program Status	Error	'1'	Program Error
3114	Frogram Status	LIIOI	'0'	Program Success
SR3	V _{PP} Status	Error	'1'	V _{PP} Invalid, Abort
SKS	VPP Status	EIIOI	'0'	V _{PP} OK
CDO	Dragram Cuanand Status	Ctatus	'1'	Program Suspended
SR2	Program Suspend Status	Status	'0'	Program In Progress or Completed
SR1	Block Protection Status	Error	'1'	Program/Erase on protected Block, Abort
SKI	BIOCK FIOLECTION Status	LIIOI	'0'	No operation to protected blocks
SR0				Reserved

Note: Logic level '1' is High, '0' is Low.

CONFIGURATION REGISTER

The Configuration Register is used to configure the type of bus access that the memory will perform. Refer to Read Modes section for details on read operations.

The Configuration Register is set through the Command Interface. After a Reset or Power-Up the device is configured for asynchronous page read (CR15 = 1). The Configuration Register bits are described in Table 9. They specify the selection of the burst length, burst type, burst X latency and the Read operation. Refer to Figures 6 and 7 for examples of synchronous burst configurations.

Read Select Bit (CR15)

The Read Select bit, CR15, is used to switch between asynchronous and synchronous Bus Read operations. When the Read Select bit is set to '1', read operations are asynchronous; when the Read Select bit is set to '0', read operations are synchronous. Synchronous Burst Read is supported in both parameter and main blocks and can be performed across banks.

On reset or power-up the Read Select bit is set to'1' for asynchronous access.

X-Latency Bits (CR13-CR11)

The X-Latency bits are used during Synchronous Read operations to set the number of clock cycles between the address being latched and the first data becoming available. For correct operation the X-Latency bits can only assume the values in Table 9, Configuration Register.

The correspondence between X-Latency settings and the maximum sustainable frequency must be calculated taking into account some system parameters. Two conditions must be satisfied:

 Depending on whether t_{AVK_CPU} or t_{DELAY} is supplied either one of the following two equations must be satisfied:

$$(n + 1) t_K \ge t_{ACC} - t_{AVK_CPU} + t_{QVK_CPU}$$

 $(n + 2) t_K \ge t_{ACC} + t_{DELAY} + t_{QVK_CPU}$

2. and also

$$t_K > t_{KQV} + t_{QVK_CPU}$$

where

n is the chosen X-Latency configuration code t_K is the clock period

 t_{AVK_CPU} is clock to address valid, \overline{L} Low, or \overline{E} Low, whichever occurs last

 t_{DELAY} is address valid, \overline{L} Low, or \overline{E} Low to clock, whichever occurs last

 $t_{\mbox{\scriptsize QVK_CPU}}$ is the data setup time required by the system CPU,

t_{KOV} is the clock to data valid time

t_{ACC} is the random access time of the device.

Refer to Figure 6, X-Latency and Data Output Configuration Example.

Power-Down Bit (CR10)

The Power-Down bit is used to enable or disable the power-down function.

When the Power-Down bit is set to '0' the power-down function is disabled. If the Reset/Power-Down, \overline{RP} , pin goes Low, V_{IL} , the device is reset and the supply current, I_{DD} , is reduced to the standby value, I_{DD3} .

When the Power-Down bit is set to '1' the power-down function is enabled. If the Reset/Power-Down, \overline{RP} , pin goes Low, V_{IL} , the device goes into the power-down state and the supply current, I_{DD} , is reduced to the power-down value, I_{DD2} .

The recovery time after a Reset/Power-Down, \overline{RP} , pulse is significantly longer when power-down is enabled (see Table 24).

After a reset the Power-Down Bit is set to '0'.

Wait Configuration Bit (CR8)

In burst mode the Wait bit controls the timing of the Wait output pin, WAIT. When the Wait bit is '0' the Wait output pin is asserted during the wait state. When the Wait bit is '1' (default) the Wait output pin is asserted one clock cycle before the wait state.

WAIT is asserted during a continuous burst and also during a 4 or 8 burst length if no-wrap configuration is selected. WAIT is not asserted during asynchronous reads, single synchronous reads or during latency in synchronous reads.

Burst Type Bit (CR7)

The Burst Type bit is used to configure the sequence of addresses read as sequential or interleaved. When the Burst Type bit is '0' the memory outputs from interleaved addresses; when the Burst Type bit is '1' (default) the memory outputs from sequential addresses. See Tables 10, Burst Type Definition, for the sequence of addresses output from a given starting address in each mode.

Valid Clock Edge Bit (CR6)

The Valid Clock Edge bit, CR6, is used to configure the active edge of the Clock, K, during Synchronous Burst Read operations. When the Valid Clock Edge bit is '0' the falling edge of the Clock is the active edge; when the Valid Clock Edge bit is '1' the rising edge of the Clock is active.

Wrap Burst Bit (CR3)

The burst reads can be confined inside the 4 or 8 Word boundary (wrap) or overcome the boundary (no wrap). The Wrap Burst bit is used to select between wrap and no wrap. When the Wrap Burst bit is set to '0' the burst read wraps; when it is set to '1' the burst read does not wrap.

Burst length Bits (CR2-CR0)

The Burst Length bits set the number of Words to be output during a Synchronous Burst Read operation as result of a single address latch cycle. They can be set for 4 words, 8 words or continuous burst, where all the words are read sequentially.

In continuous burst mode the burst sequence can cross bank boundaries.

In continuous burst mode or in 4, 8 words no-wrap, depending on the starting address, the device asserts the WAIT output to indicate that a delay is necessary before the data is output.

If the starting address is aligned to a 4 $\frac{\text{word}}{\text{WAIT}}$ boundary no wait states are needed and the $\frac{\text{WAIT}}{\text{WAIT}}$ output is not asserted.

If the starting address is shifted by 1,2 or 3 positions from the four word boundary, WAIT will be asserted for 1, 2 or 3 clock cycles when the burst sequence crosses the first 64 word boundary, to indicate that the device needs an internal delay to read the successive words in the array. WAIT will be asserted only once during a continuous burst access. See also Table 10, Burst Type Definition.


CR14, CR9, CR5 and CR4 are reserved for future

Table 9. Configuration Register

Bit	Description	Value	Description
CR15	Road Salast	O	Synchronous Read
CKIS	Read Select	1	Asynchronous Read (Default at power-on)
CR14			Reserved
		010	2 clock latency
		011	3 clock latency
CR13-CR11	V Latanav	100	4 clock latency
CR13-CR11	A-Latericy	101	5 clock latency
		111	Reserved
		Other con	figurations reserved
CR10	Power-Down	0	Power-Down disabled
CRIU		1	Power-Down enabled
CR9			Reserved
CD0	Mait Carfin matica	0	WAIT is active during wait state
CR8	wait Configuration	1	WAIT is active one data cycle before wait state (default)
0.07	Durat Turk	0	Interleaved
CR7	Burst Type	1	Sequential (default)
CR6	Valid Clask Edge	0	Falling Clock edge
CRO	Valid Clock Edge	Asynchron Reserved	Rising Clock edge
CR5-CR4			Reserved
CR3	Wron Buret	0	Wrap
CRS	Wiap Buist	1	No Wrap
		001	4 words
CR2-CR0	Burst Length	010	8 words
		111	Continuous (CR7 must be set to '1')

Table 10. Burst Type Definition

ae Je	Start					
Mode	Address	4 Word	S	8 Word	S	Continuous Burst
		Sequential	Interleaved	Sequential	Interleaved	
	0	0-1-2-3	0-1-2-3	0-1-2-3-4-5-6-7	0-1-2-3-4-5-6-7	0-1-2-3-4-5-6
	1	1-2-3-0	1-0-3-2	1-2-3-4-5-6-7-0	1-0-3-2-5-4-7-6	1-2-3-4-5-6-7
	2	2-3-0-1	2-3-0-1	2-3-4-5-6-7-0-1	2-3-0-1-6-7-4-5	2-3-4-5-6-7-8
	3	3-0-1-2	3-2-1-0	3-4-5-6-7-0-1-2	3-2-1-0-7-6-5-4	3-4-5-6-7-8-9
Wrap	7	7-4-5-6	7-6-5-4	7-0-1-2-3-4-5-6	7-6-5-4-3-2-1-0	7-8-9-10-11-12-13
>						
	60					60-61-62-63-64-65-66
	61					61-62-63-WAIT-64-65-66
	62					62-63-WAIT-WAIT-64-65-66
	63					63-WAIT-WAIT-WAIT-64-65- 66
		Sequential	Interleaved	Sequential	Interleaved	
	0	0-1-2-3		0-1-2-3-4-5-6-7		
	1	1-2-3-4		1-2-3-4-5-6-7-8		
	2	2-3-4-5		2-3-4-5-6-7-8-9		
	3	3-4-5-6		3-4-5-6-7-8-9-10		
Q.	7	7-8-9-10		7-8-9-10-11-12-13-14		Same as for Wrap
No-wrap						(Wrap /No Wrap has no effect on
Š	60	60-61-62-63		60-61-62-63-64-65-66- 67		Continuous Burst)
	61	61-62-63-WAIT-64		61-62-63-WAIT-64-65- 66-67-68		
	62	62-63-WAIT-WAIT- 64-65		62-63-WAIT-WAIT-64- 65-66-67-68-69		
	63	63-WAIT-WAIT- WAIT-64-65-66		63-WAIT-WAIT-WAIT- 64-65-66-67-68-69-70		

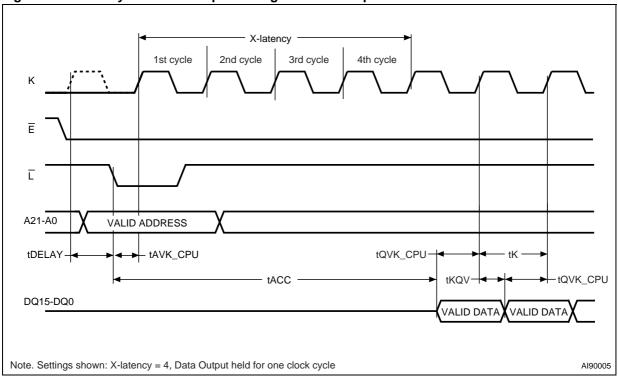
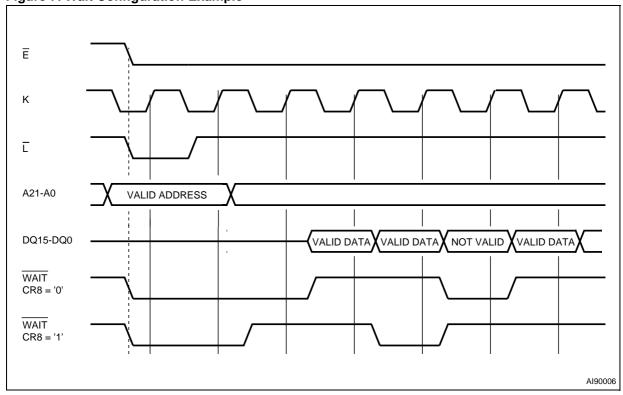



Figure 7. Wait Configuration Example

READ MODES

Read operations can be performed in two different ways depending on the settings in the Configuration Register. If the clock signal is 'don't care' for the data output, the read operation is Asynchronous; if the data output is synchronized with clock, the read operation is Synchronous.

The Read mode and data output format are determined by the Configuration Register. (See Configuration Register section for details). All banks supports both asynchronous and synchronous read operations. The Dual Bank architecture allows read operations in one bank, while write operations are being executed in the other (see Tables 11 and 12).

Asynchronous Read Mode

In Asynchronous Read operations the clock signal is 'don't care'. The device outputs the data corresponding to the address latched, that is the memory array, Status Register, Common Flash Interface or Electronic Signature depending on the command issued. CR15 in the Configuration Register must be set to '1' for Asynchronous operations

In Asynchronous Read mode a Page of data is internally read and stored in a Page Buffer. The Page has a size of 4 Words and is addressed by A0 and A1 address inputs. The address inputs A0 and A1 are not gated by Latch Enable in Asynchronous Read mode.

The first read operation within the Page has a longer access time (T_{acc}, Random access time), subsequent reads within the same Page have much shorter access times. If the Page changes then the normal, longer timings apply again.

Asynchronous Read operations can be performed in two different ways, Asynchronous Random Access Read and Asynchronous Page Read. Only Asynchronous Page Read takes full advantage of the internal page storage so different timings are applied.

See Table 20, Asynchronous Read AC Characteristics, Figure 10, Asynchronous Random Access Read AC Waveform and Figure 11, Asynchronous Page Read AC Waveform for details.

Synchronous Burst Read Mode

In Synchronous Burst Read mode the data is output in bursts synchronized with the clock. It is possible to perform burst reads across bank boundaries.

Synchronous Burst Read mode can only be used to read the memory array. For other read operations, such as Read Status Register, Read CFI and Read Electronic Signature, Single Synchronous Read or Asynchronous Random Access Read must be used.

In Synchronous Burst Read mode the flow of the data output depends on parameters that are configured in the Configuration Register.

A burst sequence is started at the first clock edge (rising or falling depending on Valid Clock Edge bit CR6 in the Configuration Register) after the falling edge of Latch Enable. Addresses are internally incremented and after a delay of 2 to 5 clock cycles (X latency bits CR13-CR11) the corresponding data are output on each clock cycle.

The number of Words to be output during a Synchronous Burst Read operation can be configured as 4 or 8 Words or Continuous (Burst Length bits CR2-CR0). The data can be configured to remain valid for one or two clock cycles (Data Output Configuration bit CR9).

The order of the data output can be modified through the Burst Type and the Wrap Burst bits in the Configuration Register. The burst sequence may be configured to be sequential or interleaved (CR7). The burst reads can be confined inside the 4 or 8 Word boundary (Wrap) or overcome the boundary (No Wrap). If the starting address is aligned to a 4 Word Page the wrapped configuration has no impact on the output sequence. Interleaved mode is not allowed in Continuous Burst Read mode or with No Wrap sequences.

A WAIT signal may be asserted to indicate to the system that an output delay will occur. This delay will depend on the starting address of the burst sequence; the worst case delay will occur when the sequence is crossing a 64 word boundary and the starting address was at the end of a four word boundary.

WAIT is asserted during X latency and the Wait state and is only deasserted when output data are valid. In Continuous Burst Read mode a Wait state will occur when crossing the first 64 Word boundary. If the burst starting address is aligned to a 4 Word Page, the Wait state will not occur.

The WAIT signal is active Low. The WAIT signal is meaningful only in Synchronous Burst Read mode, in other modes, WAIT is not asserted (except for Read Array mode).

See Table 21, Synchronous Read AC Characteristics and Figure 12, Synchronous Burst Read AC Waveform for details.

Single Synchronous Read Mode

Single Synchronous Read operations are similar to Synchronous Burst Read operations except that only the first data output after the X latency is valid. Other Configuration Register parameters have no effect on Single Synchronous Read operations.

Synchronous Single Reads are used to read the Electronic Signature, Status Register, CFI, Block

Protection Status, Configuration Register Status or Protection Register. When the addressed bank is in Read CFI, Read Status Register or Read Electronic Signature mode, the WAIT signal is always asserted.

See Table 21, Synchronous Read AC Characteristics and Figure 13, Single Synchronous Read AC Waveform for details.

DUAL OPERATIONS AND MULTIPLE BANK ARCHITECTURE

The Dual Operations feature simplifies the software management of the device and allows code to be executed from one bank while the other bank is being programmed or erased.

The Dual operations feature means that while programming or erasing in one bank, Read operations are possible in the other bank with zero latency (only one bank at a time is allowed to be in Program or Erase mode). If a Read operation is required in a bank which is programming or erasing, the Program or Erase operation can be suspended. Also if the suspended operation was Erase then a Program command can be issued to anoth-

er block, so the device can have one block in Erase Suspend mode, one programming and the other bank in Read mode. Bus Read operations are allowed in the other bank between setup and confirm cycles of program or erase operations. The combination of these features means that read operations are possible at any moment.

Tables 11 and 12 show the dual operations possible in the other bank and in the same bank. Note that only the commonly used commands are represented in these tables. For a complete list of possible commands refer to Appendix D, Command Interface State Tables.

Table 11. Dual Operations Allowed In Other Bank

	Commands allowed in other bank									
Status of bank	Read Array	Read Status Register	Read CFI Query	Read Electronic Signature	Program	Erase	Program/ Erase Suspend	Program/ Erase Resume		
Idle	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Programming	Yes	Yes	Yes	Yes	-	_	_	_		
Erasing	Yes	Yes	Yes	Yes	-	_	_	_		
Program Suspended	Yes	Yes	Yes	Yes	_	_	_	Yes		
Erase Suspended	Yes	Yes	Yes	Yes	Yes	_	_	Yes		

Table 12. Dual Operations Allowed In Same Bank

	Commands allowed in same bank								
Status of bank	Read Array	Read Status Register	Read CFI Query	Read Electronic Signature	Program	Erase	Program/ Erase Suspend	Program/ Erase Resume	
Idle	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Programming	_	Yes	-	_	-	_	Yes	_	
Erasing	_	Yes	-	-	_	_	Yes	_	
Program Suspended	Yes ⁽¹⁾	Yes	Yes	Yes	-	_	_	Yes	
Erase Suspended	Yes ⁽¹⁾	Yes	Yes	Yes	Yes ⁽¹⁾	_	_	Yes	

Note: 1. Not allowed in the Block or Word that is being erased or programmed.

BLOCK LOCKING

The M58CR064 features an instant, individual block locking scheme that allows any block to be locked or unlocked with no latency. This locking scheme has three levels of protection.

- Lock/Unlock this first level allows softwareonly control of block locking.
- Lock-Down this second level requires hardware interaction before locking can be changed.
- V_{PP} ≤ V_{PPLK} the third level offers a complete hardware protection against program and erase on all blocks (M58CR064C/D only).

The first two levels (Lock/Unlock and Lock-Down) are available in M58CR064C/D and M58CR064P/Q. The third level ($V_{PP} \le V_{PPLK}$) is only available for the M58CR064C/D versions, in the M58CR064P/Q this feature has been disabled.

For all devices the protection status of each block can be set to Locked, Unlocked, and Lock-Down. Table 13, defines all of the possible protection states (WP, DQ1, DQ0), and Appendix C, Figure 24, shows a flowchart for the locking operations.

Reading a Block's Lock Status

The lock status of every block can be read in the Read Electronic Signature mode of the device. To enter this mode write 90h to the device. Subsequent reads at the address specified in Table 6, will output the protection status of that block. The lock status is represented by DQ0 and DQ1. DQ0 indicates the Block Lock/Unlock status and is set by the Lock command and cleared by the Unlock command. It is also automatically set when entering Lock-Down. DQ1 indicates the Lock-Down status and is set by the Lock-Down command. It cannot be cleared by software, only by a hardware reset or power-down.

The following sections explain the operation of the locking system.

Locked State

The default status of all blocks on power-up or after a hardware reset is Locked (states (0,0,1) or (1,0,1)). Locked blocks are fully protected from any program or erase. Any program or erase operations attempted on a locked block will return an error in the Status Register. The Status of a Locked block can be changed to Unlocked or Lock-Down using the appropriate software commands. An Unlocked block can be Locked by issuing the Lock command.

Unlocked State

Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)), can be programmed or erased. All unlocked blocks return to the Locked state after a hardware

reset or when the device is powered-down. The status of an unlocked block can be changed to Locked or Locked-Down using the appropriate software commands. A locked block can be unlocked by issuing the Unlock command.

Lock-Down State

Blocks that are Locked-Down (state (0,1,x))are protected from program and erase operations (as for Locked blocks) but their protection status cannot be changed using software commands alone. A Locked or Unlocked block can be Locked-Down by issuing the Lock-Down command. Locked-Down blocks revert to the Locked state when the device is reset or powered-down.

The Lock-Down function is dependent on the \overline{WP} input pin. When $\overline{WP}=0$ (V_{IL}), the blocks in the Lock-Down state (0,1,x) are protected from program, erase and protection status changes. When WP=1 (V_{IH}) the Lock-Down function is disabled (1,1,x) and Locked-Down blocks can be individually unlocked to the (1,1,0) state by issuing the software command, where they can be erased and programmed. These blocks can then be re-locked (1,1,1) and unlocked (1,1,0) as desired while \overline{WP} remains high. When WP is low, blocks that were previously Locked-Down return to the Lock-Down state (0,1,x) regardless of any changes made while WP was high. Device reset or power-down resets all blocks, including those in Lock-Down, to the Locked state.

Locking Operations During Erase Suspend

Changes to block lock status can be performed during an erase suspend by using the standard locking command sequences to unlock, lock or lock-down a block. This is useful in the case when another block needs to be updated while an erase operation is in progress.

To change block locking during an erase operation, first write the Erase Suspend command, then check the status register until it indicates that the erase operation has been suspended. Next write the desired Lock command sequence to a block and the lock status will be changed. After completing any desired lock, read, or program operations, resume the erase operation with the Erase Resume command.

If a block is locked or locked-down during an erase suspend of the same block, the locking status bits will be changed immediately, but when the erase is resumed, the erase operation will complete. Locking operations cannot be performed during a program suspend. Refer to Appendix D, Command Interface State Table, for detailed information on which commands are valid during erase suspend.

Table 13. Lock Status

Protectio	rrent n Status ⁽¹⁾ Q1, DQ0)		Next <u>Pro</u> tect (WP, DC		
Current State	Program/Erase Allowed	After Block Lock Command	After Block Unlock Command	After Block Lock-Down Command	After WP transition
1,0,0	yes	1,0,1	1,0,0	1,1,1	0,0,0
1,0,1 ⁽²⁾	no	1,0,1	1,0,0	1,1,1	0,0,1
1,1,0	yes	1,1,1	1,1,0	1,1,1	0,1,1
1,1,1	no	1,1,1	1,1,0	1,1,1	0,1,1
0,0,0	yes	0,0,1	0,0,0	0,1,1	1,0,0
0,0,1 ⁽²⁾	no	0,0,1	0,0,0	0,1,1	1,0,1
0,1,1	no	0,1,1	0,1,1	0,1,1	1,1,1 or 1,1,0 ⁽³⁾

Note: 1. The lock status is defined by the write protect pin and by DQ1 ('1' for a locked-down block) and DQ0 ('1' for a locked block) as read in the Read Electronic Signature command with A1 = V_{IH} and A0 = V_{IL}.

2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP status.

3. A WP transition to V_{IH} on a locked block will restore the previous DQ0 value, giving a 111 or 110.

PROGRAM AND ERASE TIMES AND ENDURANCE CYCLES

The Program and Erase times and the number of Program/ Erase cycles per block are shown in Table 14. In the M58CR064 the maximum number of

Program/ Erase cycles depends on the voltage supply used.

Table 14. Program, Erase Times and Program, Erase Endurance Cycles

	Parameter	Condition	Min	Тур	Typical after 100k W/E Cycles	Max	Unit
	Parameter Block (4 KWord) Erase ⁽²⁾			0.3	1	2.5	S
	Main Plack (22 KWard) Erasa	Preprogrammed		0.8	3	4	S
	Main Block (32 KWord) Erase	Not Preprogrammed		1.1		4	S
	Bank A (16Mbit) Frace	Preprogrammed		11			s
	Bank A (16Mbit) Erase	Not Preprogrammed		18			s
	Bank B (48Mbit) Erase	Preprogrammed		33			s
VDC	Dank B (40MBR) Liase	Not Preprogrammed		54			S
Vрр = V _{DD}	Parameter Block (4 KWord) Program	1(3)		40			ms
	Main Block (32 KWord) Program ⁽³⁾			300			ms
	Word Program (3)		10	10	100	μs	
	Program Suspend Latency			5		10	μs
	Erase Suspend Latency		5		20	μs	
	Program/Erase Cycles (per Block)	Main Blocks	100,000				cycles
	Program/Erase Cycles (per block)	Parameter Blocks	100,000				cycles
	Parameter Block (4 KWord) Erase			0.3		2.5	S
	Main Block (32 KWord) Erase			0.9		4	S
	Bank A (16Mbit) Erase			13			S
	Bank B (48Mbit) Erase			39			S
_	4Mbit Program	Quadruple Word		510			ms
Vрр = Vррн	Word/ Double Word/ Quadruple Wor	rd Program ⁽³⁾		8		100	μs
⊩ dd	Parameter Block (4 KWord)	Quadruple Word		8			ms
>	Program ⁽³⁾	Word		32			ms
	M : DI (00 0M 1) D (3)	Quadruple Word		64			ms
	Main Block (32 KWord) Program ⁽³⁾	Word		256			ms
	Program/Erase Cycles (per Block)	Main Blocks			_	1000	cycles
	Trogram/Liase Cycles (per block)	Parameter Blocks				2500	cycles

Note: 1. T_A = -40 to 85°C; V_{DD} = 1.65V to 2V; V_{DDQ} = 1.65V to 3.3V.

2. The difference between Preprogrammed and not preprogrammed is not significant (<30ms).

3. Excludes the time needed to execute the command sequence.

MAXIMUM RATING

Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not im-

plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 15. Absolute Maximum Ratings

		'	/alue	
Symbol	Parameter	Min	Max	Unit
T _A	Ambient Operating Temperature	-40	85	°C
T _{BIAS}	Temperature Under Bias	-40	125	°C
T _{STG}	Storage Temperature	-55	155	°C
V _{IO}	Input or Output Voltage	-0.5	V _{DDQ} +0.5	V
V_{DD}	Supply Voltage	-0.5	2.7	V
V_{DDQ}	Input/Output Supply Voltage	-0.5	3.6	V
V _{PP}	Program Voltage	-0.5	13	V
lo	Output Short Circuit Current		100	mA
t∨PPH	Time for V _{PP} at V _{PPH}		100	hours

DC AND AC PARAMETERS

This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement

Conditions summarized in Table 16, Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters.

Table 16. Operating and AC Measurement Conditions

	M58CR064C, M58CR064D, M58CR064P, M58CR064Q						
Parameter	85		100		120		Units
Farameter	Min	Max	Min	Max	Min	Max	Units
V _{DD} Supply Voltage	1.8	2.0	1.65	2.0	1.65	2.0	V
V _{DDQ} Supply Voltage	1.8	3.3	1.65	3.3	1.65	3.3	V
V _{PP} Supply Voltage (Factory environment)	11.4	12.6	11.4	12.6	11.4	12.6	V
V _{PP} Supply Voltage (Application environment)	-0.4	V _{DDQ} +0.4	-0.4	V _{DDQ} +0.4	-0.4	V _{DDQ} +0.4	V
Ambient Operating Temperature	- 40	85	- 40	85	- 40	85	°C
Load Capacitance (C _L)	3	30	3	30	3	30	pF
Input Rise and Fall Times		4		4		4	ns
Input Pulse Voltages	0 to V _{DDQ}		0 to V _{DDQ}		0 to V _{DDQ}		V
Input and Output Timing Ref. Voltages	V _{DI}	_{DQ} /2	V _{DI}	_{DQ} /2	V _{DI}	_{DQ} /2	V

Figure 8. AC Measurement I/O Waveform

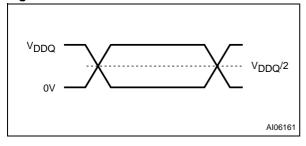


Figure 9. AC Measurement Load Circuit

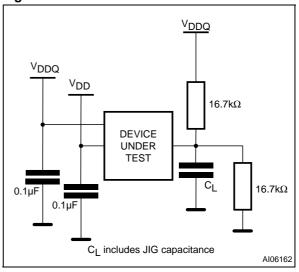


Table 17. Capacitance

Symbol	Parameter	Test Condition	Min	Max	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$	6	8	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	8	12	pF

Note: Sampled only, not 100% tested.

Table 18. DC Characteristics - Currents

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
ILI	Input Leakage Current	$0V \le V_{IN} \le V_{DDQ}$			±1	μA
ILO	Output Leakage Current	$0V \le V_{OUT} \le V_{DDQ}$			±1	μA
	Supply Current Asynchronous Read (f=6MHz)	$\overline{E} = V_{IL}, \overline{G} = V_{IH}$		3	6	mA
	Supply Current Synchronous Read (f=40MHz)	4 Word		6	13	mA
		8 Word		8	14	mA
ILI ILO ILO IDD1 IDD2 IDD3 IDD4 (1) IDD5 (1,2) IDD6(1) IDD6(1)	,	Continuous		6	10	mA
		4 Word		7	16	mA
	Supply Current Synchronous Read (f=54MHz)	8 Word		10	18	mA
	,	Continuous		13	25	mA
I _{DD2}	Supply Current (Power-Down)	$\overline{RP} = V_{SS} \pm 0.2V$		2	10	μА
I _{DD3}	Supply Current (Standby)	$\overline{E} = V_{DD} \pm 0.2V$		10	50	μA
	Cupply Current (Program)	V _{PP} = V _{PPH}		8	15	mA
. (1)	Supply Current (Program)	$V_{PP} = V_{DD}$		10	20	mA
IDD4 (1)	Cumply Current (Frees)	Vpp = VppH		8	15	mA
	Supply Current (Erase)	$V_{PP} = V_{DD}$		10	20	mA
(12)	Supply Current	Program/Erase in one Bank, Asynchronous Read in another Bank		13	26	mA
IDD5 (1)=/	(Dual Operations)	Program/Erase in one Bank, Synchronous Read in another Bank		16	30	mA
I _{DD6} ⁽¹⁾	Supply Current Program/ Erase Suspended (Standby)	$\overline{E} = V_{DD} \pm 0.2V$		10	50	μA
	V _{PP} Supply Current (Program)	V _{PP} = V _{PPH}		2	5	mA
. (1)	VPP Supply Current (Program)	$V_{PP} = V_{DD}$		0.2	5	μA
IPP1 ^(')	V Cumply Coursest (Finance)	Vpp = VppH		2	5	mA
	V _{PP} Supply Current (Erase)	$V_{PP} = V_{DD}$		0.2	5	μA
1-	\/ Cumply Cumpet (Dec. 1)	V _{PP} = V _{PPH}		100	400	μA
IPP2	V _{PP} Supply Current (Read)	$V_{PP} \le V_{DD}$		0.2	5	μA
I _{PP3} ⁽¹⁾	V _{PP} Supply Current (Standby)	$V_{PP} \le V_{DD}$		0.2	5	μA

47/ 34/68

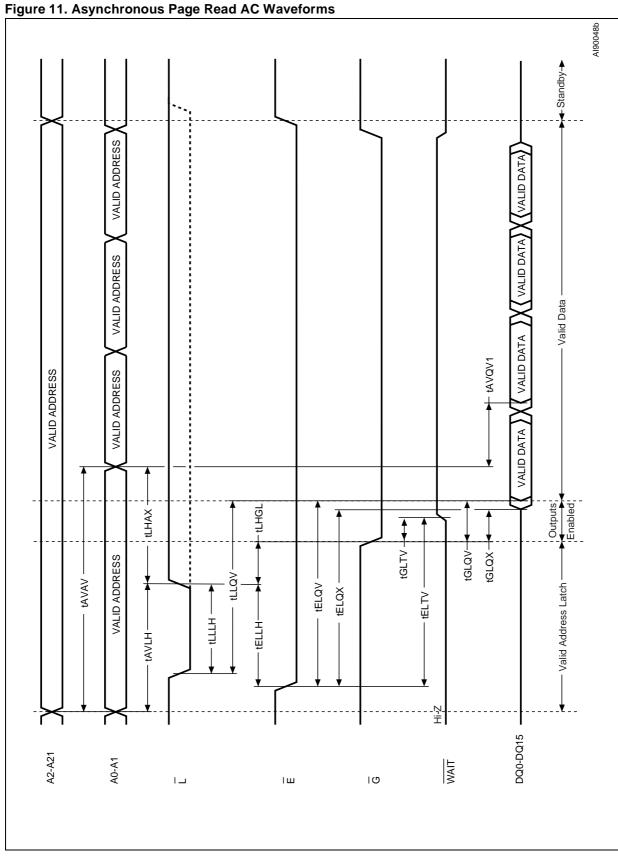

Note: 1. Sampled only, not 100% tested.
2. V_{DD} Dual Operation current is the sum of read and program or erase currents.

Table 19. DC Characteristics - Voltages

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
VIL	Input Low Voltage		-0.5		0.4	V
VIH	Input High Voltage		V _{DDQ} -0.4		V _{DDQ} + 0.4	V
V _{OL}	Output Low Voltage	$I_{OL} = 100 \mu A$			0.1	V
V _{OH}	Output High Voltage	$I_{OH} = -100\mu A$	V _{DDQ} -0.1			V
V _{PP1}	V _{PP} Program Voltage-Logic	Program, Erase	1	1.8	1.95	V
V _{PPH}	V _{PP} Program Voltage Factory	Program, Erase	11.4	12	12.6	V
V _{PPLK}	Program or Erase Lockout				0.9	V
V _{LKO}	V _{DD} Lock Voltage		1			V
V _{RPH}	RP pin Extended High Voltage				3.3	V


A7/

Table 20. Asynchronous Read AC Characteristics

	Symbol	Alt	Parameter		N	158CR06	64	Unit
,	Symbol All		raiametei		85	100	120	Onit
	t _{AVAV}	t _{RC}	Address Valid to Next Address Valid Mir		85	100	120	ns
	t _{AVQV}	t _{ACC}	Address Valid to Output Valid (Random) Max		85	100	120	ns
	t _{AVQV1}	t _{PAGE}	Address Valid to Output Valid (Page)	Max	30	45	45	ns
	t _{AXQX} (1)	tон	Address Transition to Output Transition	Min	0	0	0	ns
•	t _{ELTV}		Chip Enable Low to Wait Valid	Max	14	14	18	ns
	t _{ELQV} (2)	t _{CE}	Chip Enable Low to Output Valid	Max	85	100	120	ns
sgu	t _{ELQX} (1)	t _{LZ}	Chip Enable Low to Output Transition	Min	0	0	0	ns
Timi	t _{EHTZ}		Chip Enable High to Wait Hi-Z Max		20	20	20	ns
Read Timings	t _{EHQX} (1)	tон	Chip Enable High to Output Transition	Min	0	0	0	ns
<u>~</u>	t _{EHQZ} (1)	t _{HZ}	Chip Enable High to Output Hi-Z	Max	20	20	20	ns
,	t _{GLQV} (2)	t _{OE}	Output Enable Low to Output Valid	Max	25	25	25	ns
	t _{GLQX} (1)	t _{OLZ}	Output Enable Low to Output Transition	Min	0	0	0	ns
•	t _{GLTV}		Output Enable Low to Wait Valid	Max	14	14	18	ns
	t _{GHQX} (1)	tон	Output Enable High to Output Transition	Min	0	0	0	ns
•	t _{GHQZ} (1)	t _{DF}	Output Enable High to Output Hi-Z	Max	20	20	20	ns
	t _{AVLH}	t _{AVADVH}	Address Valid to Latch Enable High	Min	10	10	10	ns
gs	tELLH	tELADVH	Chip Enable Low to Latch Enable High	Min	10	10	10	ns
Latch Timings	t _{LHAX}	t _{ADVHAX}	Latch Enable High to Address Transition	Min	10	10	10	ns
ch T	t _{LLLH}	t _{ADVLADVH}	DVLADVH Latch Enable Pulse Width		10	10	10	ns
Lat	t _{LLQV}	t _{ADVLQV}	Latch Enable Low to Output Valid (Random)	Max	85	100	120	ns
	t _{LHGL}	t _{ADVHGL}	Latch Enable High to Output Enable Low	Min	10	10	10	ns

Note: 1. Sampled only, not 100% tested.
2. \overline{G} may be delayed by up to t_{ELQV} - t_{GLQV} after the falling edge of \overline{E} without increasing t_{ELQV}.

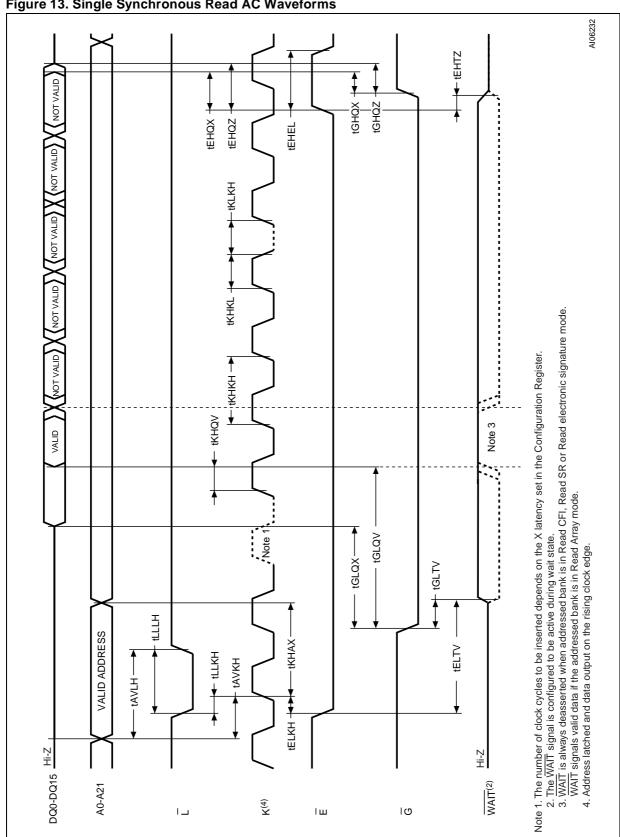


Figure 13. Single Synchronous Read AC Waveforms

577

Table 21. Synchronous Read AC Characteristics

					N	158CR06	4	I I m id
,	Symbol	Alt	Parameter		85	100	120	Unit
	t _{AVKH}	tavclkh	Address Valid to Clock High	Min	7	7	7	ns
	t _{ELKH}	t _{ELCLKH}	Chip Enable Low to Clock High	Min	7	7	7	ns
SE	tELTV		Chip Enable Low to Wait Valid	Max	14	14	18	ns
Read Timings	tehel		Chip Enable Pulse Width (subsequent synchronous reads)			20	20	ns
	t _{EHTZ}		Chip Enable High to Wait Hi-Z Max		20	20	20	ns
snouc	tKHAX	tCLKHAX	Clock High to Address Transition Min		10	10	10	ns
Synchronous	tkhqv tkhtv	[†] CLKHQV	Clock High to Output Valid Clock High to WAIT Valid	Max	14	14	18	ns
	t _{KHQX} t _{KHTX}	tCLKHQX	Clock High to Output Transition Clock High to WAIT Transition	Min	4	4	4	ns
	t _{LLKH}	t _{ADVLCLKH}	Latch Enable Low to Clock High	Min	7	7	7	ns
ions	•	4	Clock Period (f=40MHz)	Min			25	ns
Specifications	tkhkh	tCLK	Clock Period (f=54MHz)	Min	18	18		ns
	^t KHKL	tCLKHCLKL	Clock High to Clock Low	Min	5	5	5	ns
Clock	tĸĿĸĦ	tCLKLCLKH	Clock Low to Clock High	Max	5	5	5	ns

Note: 1. Sampled only, not 100% tested.

^{2.} For other timings please refer to Table 20, Asynchronous Read AC Characteristics.

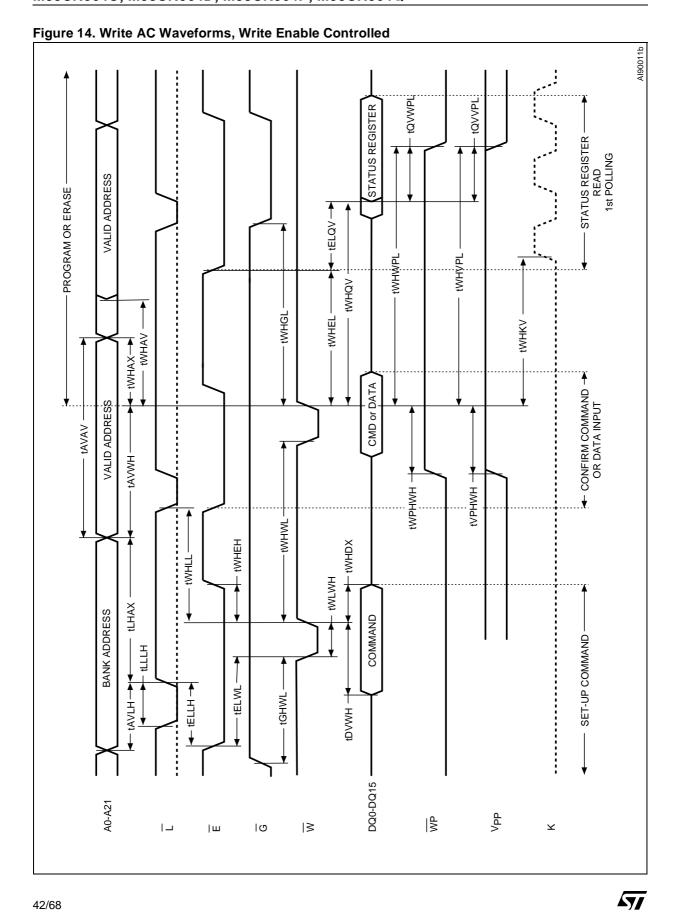


Table 22. Write AC Characteristics, Write Enable Controlled

	Symbol Alt		Baramatar		N	158CR06	4	l lmi4
3			Parameter		85	100	120	Unit
	t _{AVAV}	twc	Address Valid to Next Address Valid	Min	85	100	120	ns
	t _{AVLH}		Address Valid to Latch Enable High	Min	10	10	10	ns
	t _{AVWH}	t _{WC}	Address Valid to Write Enable High	Min	60	60	60	ns
	t _{DVWH}	t _{DS}	Input Valid to Write Enable High	Min	40	40	40	ns
	tELLH		Chip Enable Low to Latch Enable High	Min	10	10	10	ns
	t _{ELWL}	t _{CS}	Chip Enable Low to Write Enable Low	Min	0	0	0	ns
	t _{ELQV}		Chip Enable Low to Output Valid	Min	85	100	120	ns
Write Enable Controlled Timings	t _{GHWL}		Output Enable High to Write Enable Low	Min	20	20	20	ns
Τim	t _{LHAX}		Latch Enable High to Address Transition	Min	10	10	10	ns
olled	tLLLH		Latch Enable Pulse Width	Min	10	10	10	ns
Sontr	t _{WHAV}		Write Enable High to Address Valid Min		0	0	0	ns
ple (t _{WHAX}	t _{AH}	Write Enable High to Address Transition Min		0	0	0	ns
Ena	t _{WHDX}	t _{DH}	Write Enable High to Input Transition Min		0	0	0	ns
Vrite	t _{WHEH}	t _{CH}	Write Enable High to Chip Enable High	Min	0	0	0	ns
	t _{WHEL} (2)		Write Enable High to Chip Enable Low	Min	50	50	50	ns
	twhgl		Write Enable High to Output Enable Low	Min	0	0	0	ns
	t _{WHLL}		Write Enable High to Latch Enable Low	Min	0	0	0	ns
	t _{WHKV}		Write Enable High to Clock Valid	Min	25	25	25	ns
	t _{WHWL}	t _{WPH}	Write Enable High to Write Enable Low	Min	30	30	30	ns
	t _{WHQV}		Write Enable High to Output Valid	Min	105	120	140	ns
	t _{WLWH}	t _{WP}	Write Enable Low to Write Enable High	Min	50	50	50	ns
	t _{QVVPL}		Output (Status Register) Valid to V _{PP} Low	Min	0	0	0	ns
ings	t _{QVWPL}		Output (Status Register) Valid to Write Protect Low	Min	0	0	0	ns
Protection Timings	t _{VPHWH}	t _{VPS}	V _{PP} High to Write Enable High	Min	200	200	200	ns
ctior	t _{WHVPL}		Write Enable High to V _{PP} Low	Min	200	200	200	ns
Prote	t _{WHWPL}		Write Enable High to Write Protect Low	Min	200	200	200	ns
	twphwh		Write Protect High to Write Enable High	Min	200	200	200	ns

Note: 1. Sampled only, not 100% tested.

^{2.} t_{WHEL} has the values shown when reading in the targeted bank. System designers should take this into account and may insert a software No-Op instruction to delay the first read in the same bank after issuing a command. If the read operation is in a different bank t_{WHEL} is 0ns.

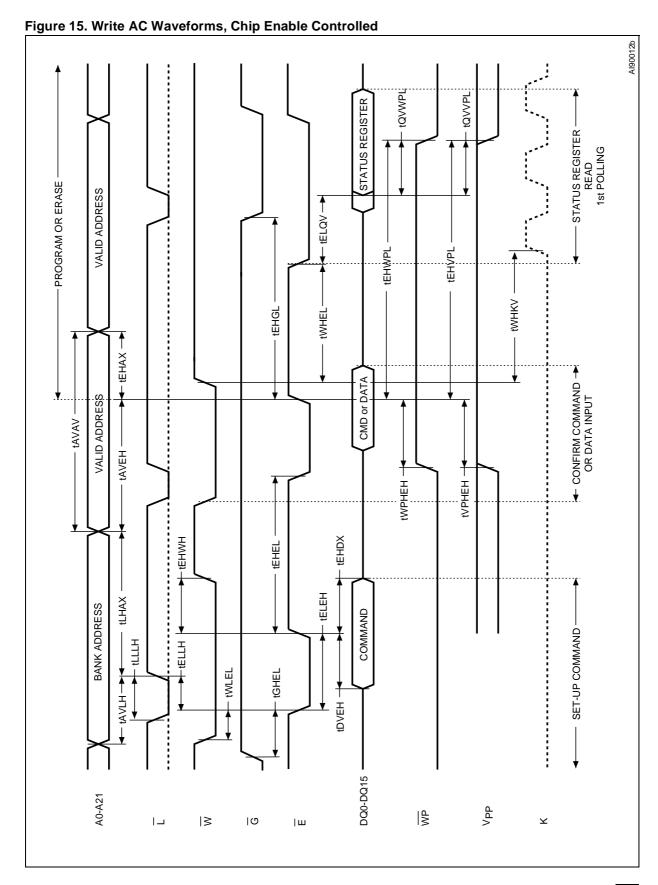


Table 23. Write AC Characteristics, Chip Enable Controlled

	Symbol		t Parameter			/158CR06	4	Unit
3	Symbol	Alt	Parameter		85	100	120	Unit
	t _{AVAV}	t _{WC}	Address Valid to Next Address Valid	Min	85	100	120	ns
	taveh	t _{WC}	Address Valid to Chip Enable High	Min	60	60	60	ns
	t _{AVLH}		Address Valid to Latch Enable High	Min	10	10	10	ns
	tDVEH	t _{DS}	Input Valid to Write Enable High	Min	40	40	40	ns
	t _{EHAX}	t _{AH}	Chip Enable High to Address Transition	Min	0	0	0	ns
Sć	t _{EHDX}	t _{DH}	Chip Enable High to Input Transition	Min	0	0	0	ns
Chip Enable Controlled Timings	tEHEL	twph	Chip Enable High to Chip Enable Low	Min	30	30	30	ns
ed T	t _{EHGL}		Chip Enable High to Output Enable Low	Min	0	0	0	ns
itroll	t _{EHWH}	t _{CH}	Chip Enable High to Write Enable High	Min	0	0	0	ns
Cor	tELEH	t _{WP}	Chip Enable Low to Chip Enable High Min		60	60	60	ns
nable	t _{ELLH}		Chip Enable Low to Latch Enable High Min		10	10	10	ns
ip Er	t _{ELQV}		Latch Enable Low to Output Valid Min		85	100	120	ns
ည်	t _{GHEL}		Output Enable High to Chip Enable Low	Min	20	20	20	ns
	t _{LHAX}		Latch Enable High to Address Transition	Min	10	10	10	ns
	t _{LLLH}		Latch Enable Pulse Width	Min	10	10	10	ns
	t _{WHEL} ⁽²⁾		Write Enable High to Chip Enable Low	Min	50	50	50	ns
	t _{WHKV}		Write Enable High to Clock Valid	Min	25	25	25	ns
	t _{WLEL}	t _{CS}	Write Enable Low to Chip Enable Low	Min	0	0	0	ns
	t _{EHVPL}		Chip Enable High to V _{PP} Low	Min	200	200	200	ns
ings	t _{EHWPL}		Chip Enable High to Write Protect Low	Min	200	200	200	ns
Protection Timings	t _{QVVPL}	VPL Output (Status Register) Valid to V _{PP} Low Mi		Min	0	0	0	ns
ctior	t _{QVWPL}		Output (Status Register) Valid to Write Protect Low	Min	0	0	0	ns
Prote	t _{VPHEH}	t _{VPS}	V _{PP} High to Chip Enable High	Min	200	200	200	ns
4	t _{WPHEH}		Write Protect High to Chip Enable High	Min	200	200	200	ns

Note: 1. Sampled only, not 100% tested.
2. t_{WHEL} has the values shown when reading in the targeted bank. System designers should take this into account and may insert a software No-Op instruction to delay the first read in the same bank after issuing a command. If the read operation is in a different bank t_{WHEL} is 0ns.

Figure 16. Reset and Power-up AC Waveforms

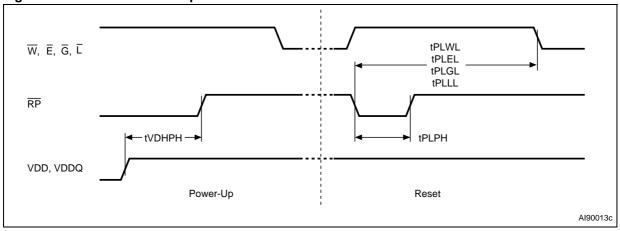
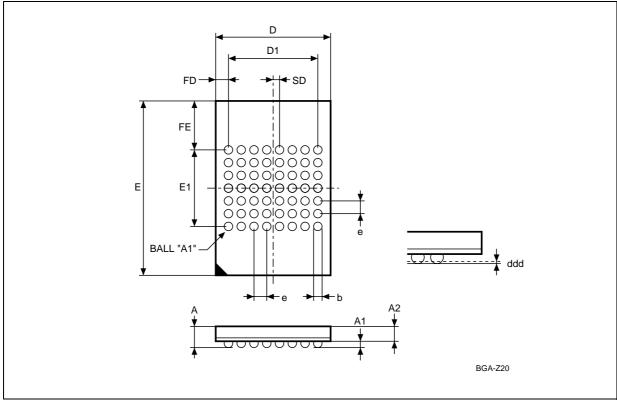


Table 24. Reset and Power-up AC Characteristics


Symbol	Parameter Test Condition		85	100	120	Unit	
tpLWL	Reset Low to	During Program	Min	10	10	10	μs
t _{PLEL} t _{PLGL}	Write Enable Low, Chip Enable Low,	During Erase	Min	20	20	20	μs
t _{PLLL}	Output Enable Low, Latch Enable Low	Other Conditions M		80	80	80	ns
t _{PLPH} (1,2)	RP Pulse Width		Min	50	50	50	ns
t _{VDHPH} (3)	Supply Voltages High to Reset High		Min	50	50	50	μs

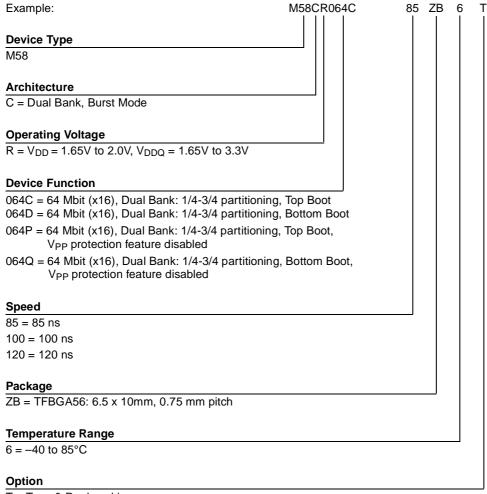
Note: 1. The device Reset is possible but not guaranteed if $t_{PLPH} < 50$ ns.

Sampled only, not 100% tested.
 It is important to assert RP in order to allow proper CPU initialization during Power-Up or Reset.

PACKAGE MECHANICAL

Figure 17. TFBGA56 6.5x10mm - 8x7 ball array, 0.75 mm pitch, Bottom View Package Outline

Note: Drawing is not to scale.


Table 25. TFBGA56 6.5x10mm - 8x7 ball array, 0.75 mm pitch, Package Mechanical Data

Sumbal		millimeters			inches	
Symbol	Тур	Min	Max	Тур	Min	Max
А		1.010	1.200		0.0398	0.0472
A1		0.250	0.400		0.0098	0.0157
A2	0.790			0.0311		
b	0.400	0.350	0.450	0.0157	0.0138	0.0177
D	6.500	6.400	6.600	0.2559	0.2520	0.2598
D1	5.250	-	-	0.2067	_	-
ddd			0.100			0.0039
E	10.000	9.900	10.100	0.3937	0.3898	0.3976
E1	4.500	_	_	0.1772	_	_
е	0.750	_	_	0.0295	_	_
FD	0.625	_	_	0.0246	_	_
FE	2.750	_	_	0.1083	_	_
SD	0.375	_	_	0.0148	_	_

477

PART NUMBERING

Table 26. Ordering Information Scheme

T = Tape & Reel packing

Devices are shipped from the factory with the memory content bits erased to '1'.

For a list of available options (Speed, Package, etc....) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you.

477

REVISION HISTORY

Table 27. Document Revision History

Date	Version	Revision Details
November 2000	-01	First Issue
12/20/00	-02	Protection/Security clarification Memory Map diagram clarification (Figure 4) Single Synchronous Read clarification (Figure 6) Identifier Codes clarification (Table 6) X-Latency configuration clarification CFI Query Identification String change (Table 31) Synchronous Burst Read Waveforms change (Figure 12) Reset AC Characteristics clarification (Table 24) Program Time clarification (Table)
1/08/01	-03	Reset AC Characteristics clarification (Table 24) Reset AC Waveforms diagram change (Figure 1)
3/02/01	-04	Document type: from Target Specification to Product Preview Read Status Register clarification Read Electronic Signature clarification Protection Register Program clarification Write Configuration Register clarification Wait Configuration Sequence change (Figure 7) CFI Query System Interface clarification (Table 32) CFI Device Geometry change (Table 33) Asynchronous Read AC Waveforms change (Figure 10) Page Read AC Waveforms added (Figure 11) Write AC Waveforms W Contr. and E Contr. change (Figure 14, 15) Reset and Power-up AC Characteristics and Waveform change (Table 24, Figure 1) TFBGA Package Mechanical Data and Outline added (Table 25, Figure 17)
4/05/01	-05	TFBGA Connections change X-Latency Configuration Sequence change Reset and Power-up AC Characteristics clarification V _{DDQ} clarification
23-Jul-2001	-06	Complete rewrite and restructure
23-Oct-2001	-07	85ns speed class added, document classified as Preliminary Data
15-Mar-2002	-08	Part numbers M58CR064P/Q added. CFI information clarified: Table 31,data modified at Offset 13h. Table 32, data modified at Offsets 20h, 23h, 24h and 25h. Table 35, Offset addresses modified. DC Characteristics table modified, Program, Erase Times and Program, Erase Endurance Cycles table modified.
23-May-2002	-09	Document changed to new structure
27-Aug-2002	9.1	Revision numbering modified: a minor revision will be indicated by incrementing the digit after the dot, and a major revision, by incrementing the digit before the dot. (revision version 09 equals 9.0). Document status changed from Preliminary Data to Datasheet. Minimum V _{DD} and V _{DDQ} supply voltages for 85ns speed class changed to 1.8V in Table16, Operating and AC Measurement Conditions.

APPENDIX A. BLOCK ADDRESS TABLES

Table 28. Top Boot Block Addresses, M58CR064C, M58CR064P

Bank	#	Size (KWord)	Address Range
	0	4	3FF000-3FFFFF
	1	4	3FE000-3FEFFF
	2	4	3FD000-3FDFFF
	3	4	3FC000-3FCFFF
	4	4	3FB000-3FBFFF
	5	4	3FA000-3FAFFF
,	6	4	3F9000-3F9FFF
	7	4	3F8000-3F8FFF
,	8	32	3F0000-3F7FFF
	9	32	3E8000-3EFFFF
,	10	32	3E0000-3E7FFF
,	11	32	3D8000-3DFFFF
,	12	32	3D0000-3D7FFF
	13	32	3C8000-3CFFFF
•	14	32	3C0000-3C7FFF
	15	32	3B8000-3BFFFF
	16	32	3B0000-3B7FFF
•	17	32	3A8000-3AFFFF
<	18	32	3A0000-3A7FFF
Bank A	19	32	398000-39FFFF
Ba	20	32	390000-397FFF
	21	32	388000-38FFFF
,	22	32	380000-387FFF
	23	32	378000-37FFFF
•	24	32	370000-377FFF
•	25	32	368000-36FFFF
•	26	32	360000-367FFF
•	27	32	358000-35FFFF
•	28	32	350000-357FFF
,	29	32	348000-34FFFF
	30	32	340000-347FFF
	31	32	338000-33FFFF
	32	32	330000-337FFF
	33	32	328000-32FFFF
	34	32	320000-327FFF
•	35	32	318000-31FFFF
	36	32	310000-317FFF
	37	32	308000-30FFFF
	38	32	300000-307FFF

	-		
	39	32	2F8000-2FFFFF
	40	32	2F0000-2F7FFF
	41	32	2E8000-2EFFFF
	42	32	2E0000-2E7FFF
	43	32	2D8000-2DFFFF
	44	32	2D0000-2D7FFF
	45	32	2C8000-2CFFFF
	46	32	2C0000-2C7FFF
	47	32	2B8000-2BFFFF
	48	32	2B0000-2B7FFF
	49	32	2A8000-2AFFFF
	50	32	2A0000-2A7FFF
	51	32	298000-29FFFF
	52	32	290000-297FFF
	53	32	288000-28FFFF
	54	32	280000-287FFF
	55	32	278000-27FFFF
	56	32	270000-277FFF
	57	32	268000-26FFFF
⊼ B	58	32	260000-267FFF
Bank B	59	32	258000-25FFFF
	60	32	250000-257FFF
	61	32	248000-24FFFF
	62	32	240000-247FFF
	63	32	238000-23FFFF
	64	32	230000-237FFF
	65	32	228000-22FFFF
	66	32	220000-227FFF
	67	32	218000-21FFFF
	68	32	210000-217FFF
	69	32	208000-20FFFF
	70	32	200000-207FFF
	71	32	1F8000-1FFFFF
	72	32	1F0000-1F7FFF
	73	32	1E8000-1EFFFF
	74	32	1E0000-1E7FFF
	75	32	1D8000-1DFFFF
	76	32	1D0000-1D7FFF
	77	32	1C8000-1CFFFF
	78	32	1C0000-1C7FFF
	!		

	79	32	1B8000-1BFFFF
	80	32	1B0000-1B7FFF
	81	32	1A8000-1AFFFF
	82	32	1A0000-1A7FFF
	83	32	198000-19FFFF
	84	32	190000-197FFF
	85	32	188000-18FFFF
	86	32	180000-187FFF
	87	32	178000-17FFFF
	88	32	170000-177FFF
	89	32	168000-16FFFF
	90	32	160000-167FFF
	91	32	158000-15FFFF
	92	32	150000-157FFF
В	93	32	148000-14FFFF
Bank B	94	32	140000-147FFF
ä	95	32	138000-13FFFF
	96	32	130000-137FFF
	97	32	128000-12FFFF
	98	32	120000-127FFF
	99	32	118000-11FFFF
	100	32	110000-117FFF
	101	32	108000-10FFFF
	102	32	100000-107FFF
	103	32	0F8000-0FFFF
	104	32	0F0000-0F7FFF
	105	32	0E8000-0EFFFF
	106	32	0E0000-0E7FFF
	107	32	0D8000-0DFFFF
	108	32	0D0000-0D7FFF
<u></u>	109	32	0C8000-0CFFFF

	110	32	0C0000-0C7FFF
	111	32	0B8000-0BFFFF
	112	32	0B0000-0B7FFF
	113	32	0A8000-0AFFFF
	114	32	0A0000-0A7FFF
	115	32	098000-09FFFF
	116	32	090000-097FFF
	117	32	088000-08FFFF
	118	32	080000-087FFF
	119	32	078000-07FFFF
	120	32	070000-077FFF
В	121	32	068000-06FFFF
Bank B	122	32	060000-067FFF
Ä	123	32	058000-05FFFF
	124	32	050000-057FFF
	125	32	048000-04FFFF
	126	32	040000-047FFF
	127	32	038000-03FFFF
	128	32	030000-037FFF
	129	32	028000-02FFFF
	130	32	020000-027FFF
	131	32	018000-01FFFF
	132	32	010000-017FFF
	133	32	008000-00FFFF
	134	32	000000-007FFF

Table 29. Bottom Boot Block Addresses, M58CR064D, M58CR064Q

Bank	#	Size (KWord)	Address Range
	134	32	3F8000-3FFFFF
	133	32	3F0000-3F7FFF
	132	32	3E8000-3EFFFF
	131	32	3E0000-3E7FFF
	130	32	3D8000-3DFFFF
	129	32	3D0000-3D7FFF
	128	32	3C8000-3CFFFF
	127	32	3C0000-3C7FFF
	126	32	3B8000-3BFFFF
	125	32	3B0000-3B7FFF
	124	32	3A8000-3AFFFF
	123	32	3A0000-3A7FFF
	122	32	398000-39FFFF
	121	32	390000-397FFF
	120	32	388000-38FFFF
	119	32	380000-387FFF
	118	32	378000-37FFFF
	117	32	370000-377FFF
	116	32	368000-36FFFF
Α̈́B	115	32	360000-367FFF
Bank B	114	32	358000-35FFFF
	113	32	350000-357FFF
	112	32	348000-34FFFF
	111	32	340000-347FFF
	110	32	338000-33FFFF
	109	32	330000-337FFF
	108	32	328000-32FFFF
	107	32	320000-327FFF
	106	32	318000-31FFFF
	105	32	310000-317FFF
	104	32	308000-30FFFF
	103	32	300000-307FFF
	102	32	2F8000-2FFFFF
	101	32	2F0000-2F7FFF
	100	32	2E8000-2EFFFF
	99	32	2E0000-2E7FFF
	98	32	2D8000-2DFFFF
	97	32	2D0000-2D7FFF
	96	32	2C8000-2CFFFF
	95	32	2C0000-2C7FFF

	94	32	2B8000-2BFFFF
	93	32	2B0000-2B7FFF
	92	32	2A8000-2AFFFF
	91	32	2A0000-2A7FFF
	90	32	298000-29FFFF
	89	32	290000-297FFF
	88	32	288000-28FFFF
	87	32	280000-287FFF
	86	32	278000-27FFFF
	85	32	270000-277FFF
	84	32	268000-26FFFF
	83	32	260000-267FFF
	82	32	258000-25FFFF
	81	32	250000-257FFF
	80	32	248000-24FFFF
	79	32	240000-247FFF
	78	32	238000-23FFFF
	77	32	230000-237FFF
_	76	32	228000-22FFFF
ב ≚	75	32	220000-227FFF
bank	74	32	218000-21FFFF
	73	32	210000-217FFF
	72	32	208000-20FFFF
	71	32	200000-207FFF
	70	32	1F8000-1FFFFF
	69	32	1F0000-1F7FFF
	68	32	1E8000-1EFFFF
	67	32	1E0000-1E7FFF
	66	32	1D8000-1DFFFF
	65	32	1D0000-1D7FFF
	64	32	1C8000-1CFFFF
	63	32	1C0000-1C7FFF
	62	32	1B8000-1BFFFF
	61	32	1B0000-1B7FFF
	60	32	1A8000-1AFFFF
	59	32	1A0000-1A7FFF
	58	32	198000-19FFFF
	57	32	190000-197FFF
	56	32	188000-18FFFF
	55	32	180000-187FFF

	54	32	178000-17FFFF
	53	32	170000-177FFF
	52	32	168000-16FFFF
	51	32	160000-167FFF
	50	32	158000-15FFFF
	49	32	150000-157FFF
	48	32	148000-14FFFF
A B	47	32	140000-147FFF
Bank B	46	32	138000-13FFFF
_	45	32	130000-137FFF
	44	32	128000-12FFFF
	43	32	120000-127FFF
	42	32	118000-11FFFF
	41	32	110000-117FFF
	40	32	108000-10FFFF
	39	32	100000-107FFF
	38	32	0F8000-0FFFFF
	37	32	0F0000-0F7FFF
	36	32	0E8000-0EFFFF
	35	32	0E0000-0E7FFF
	34	32	0D8000-0DFFFF
	33	32	0D0000-0D7FFF
	32	32	0C8000-0CFFFF
Bank A	31	32	0C0000-0C7FFF
3an	30	32	0B8000-0BFFFF
	29	32	0B0000-0B7FFF
	28	32	0A8000-0AFFFF
	27	32	0A0000-0A7FFF
	26	32	098000-09FFFF
	25	32	090000-097FFF
	24	32	088000-08FFFF
	23	32	080000-087FFF

	22	32	078000-07FFFF
	21	32	070000-077FFF
	20	32	068000-06FFFF
	19	32	060000-067FFF
	18	32	058000-05FFFF
	17	32	050000-057FFF
	16	32	048000-04FFFF
	15	32	040000-047FFF
	14	32	038000-03FFFF
	13	32	030000-037FFF
⋖	12	32	028000-02FFFF
Bank A	11	32	020000-027FFF
ä	10	32	018000-01FFFF
	9	32	010000-017FFF
	8	32	008000-00FFFF
	7	4	007000-007FFF
	6	4	006000-006FFF
	5	4	005000-005FFF
	4	4	004000-004FFF
	3	4	003000-003FFF
	2	4	002000-002FFF
	1	4	001000-001FFF
	0	4	000000-000FFF

APPENDIX B. COMMON FLASH INTERFACE

The Common Flash Interface is a JEDEC approved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to determine various electrical and timing parameters, density information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when necessary.

When the Read CFI Query Command is issued the device enters CFI Query mode and the data structure is read from the memory. Tables 30, 31, 32, 33, 34 and 35 show the addresses used to retrieve the data. The Query data is always presented on the lowest order data outputs (DQ0-DQ7), the other outputs (DQ8-DQ15) are set to 0.

The CFI data structure also contains a security area where a 64 bit unique security number is written (see Table , Security Code area). This area can be accessed only in Read mode by the final user. It is impossible to change the security number after it has been written by ST. Issue a Read Array command to return to Read mode.

Table 30. Query Structure Overview

Offset	Sub-section Name	Description
00h	Reserved	Reserved for algorithm-specific information
10h	CFI Query Identification String	Command set ID and algorithm data offset
1Bh	System Interface Information	Device timing & voltage information
27h	Device Geometry Definition	Flash device layout
Р	Primary Algorithm-specific Extended Query table	Additional information specific to the Primary Algorithm (optional)
А	Alternate Algorithm-specific Extended Query table	Additional information specific to the Alternate Algorithm (optional)
80h	Security Code Area	Lock Protection Register Unique device Number and User Programmable OTP

Note: The Flash memory display the CFI data structure when CFI Query command is issued. In this table are listed the main sub-sections detailed in Tables 31, 32, 33, 34 and 35. Query data is always presented on the lowest order data outputs.

Table 31. CFI Query Identification String

Offset	Sub-section Name	Description	Value
00h	0020h	Manufacturer Code	ST
01h	88CAh 88CBh 8801h 8802h	Device Code (M58CR064C/D/P/Q)	Top Bottom
02h	reserved	Reserved	
03h	reserved	Reserved	
04h-0Fh	reserved	Reserved	
10h	0051h		"Q"
11h	0052h	Query Unique ASCII String "QRY"	"R"
12h	0059h		"Y"
13h	0003h	Primary Algorithm Command Set and Control Interface ID code 16	
14h	0000h	bit ID code defining a specific algorithm	
15h	offset = P = 0039h	Address for Primary Algorithm extended Query table (see Table 22)	p = 39h
16h	0000h	Address for Primary Algorithm extended Query table (see Table 33)	
17h	0000h	Alternate Vendor Command Set and Control Interface ID Code	NA
18h	0000h	second vendor - specified algorithm supported	INA

Offset	Sub-section Name	Description	Value
19h	value = A = 0000h	Address for Alternate Algerithm extended Query table	NA
1Ah	0000h	Address for Alternate Algorithm extended Query table	INA

Table 32. CFI Query System Interface Information

Offset	Data	Description	Value
1Bh	0017h	V _{DD} Logic Supply Minimum Program/Erase or Write voltage bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 millivolts	1.7V
1Ch	0020h	V _{DD} Logic Supply Maximum Program/Erase or Write voltage bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 millivolts	2.0V
1Dh	0017h	V _{PP} [Programming] Supply Minimum Program/Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 millivolts	1.7V
1Eh	00C0h	V _{PP} [Programming] Supply Maximum Program/Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 millivolts	12V
1Fh	0004h	Typical time-out per single byte/word program = 2 ⁿ μs	16µs
20h	0003h	Typical time-out for quadruple word program = 2 ⁿ μs	8µs
21h	000Ah	Typical time-out per individual block erase = 2 ⁿ ms	1s
22h	0000h	Typical time-out for full chip erase = 2 ⁿ ms	NA
23h	0003h	Maximum time-out for word program = 2 ⁿ times typical	128µs
24h	0004h	Maximum time-out for quadruple word = 2 ⁿ times typical	128µs
25h	0002h	Maximum time-out per individual block erase = 2 ⁿ times typical	4s
26h	0000h	Maximum time-out for chip erase = 2 ⁿ times typical	NA

Table 33. Device Geometry Definition

Offset Word Mode	Data	Description	Value
27h	0017h	Device Size = 2 ⁿ in number of bytes	8 MByte
28h 29h	0001h 0000h	Flash Device Interface Code description	x16 Async.
2Ah 2Bh	0003h 0000h	Maximum number of bytes in multi-byte program or page = 2 ⁿ	8 Byte
2Ch	0002h	Number of identical sized erase block regions within the device bit 7 to 0 = x = number of Erase Block Regions	2

	set Word Mode	Data	Description	Value
	2Dh 2Eh	007Eh 0000h	Region 1 Information Number of identical-size erase blocks = 007Eh+1	127
.C/P	2Fh 30h	0000h 0001h	Region 1 Information Block size in Region 1 = 0100h * 256 byte	64 KByte
M58CR064C/P	31h 32h	0007h 0000h	Region 2 Information Number of identical-size erase blocks = 000Eh+1	8
M58	33h 34h	0020h 0000h	Region 2 Information Block size in Region 2 = 0020h * 256 byte	8 KByte
	35h 38h	0000h	Reserved for future erase block region information	NA
M58CR064D/Q	2Dh 2Eh	0007h 0000h	Region 1 Information Number of identical-size erase block = 0007h+1	8
	2Fh 30h	0020h 0000h	Region 1 Information Block size in Region 1 = 0020h * 256 byte	8 KByte
	31h 32h	007Eh 0000h	Region 2 Information Number of identical-size erase block = 007Eh+1	127
	33h 34h	0000h 0001h	Region 2 Information Block size in Region 2 = 0100h * 256 byte	64 KByte
	35h 38h	0000h	Reserved for future erase block region information	NA

Table 34. Primary Algorithm-Specific Extended Query Table

Offset	Data	Description	Value
(P)h = 39h	0050h		"P"
	0052h	Primary Algorithm extended Query table unique ASCII string "PRI"	"R"
	0049h		"]"
(P+3)h = 3Ch	0031h	Major version number, ASCII	"1"
(P+4)h = 3Dh	0030h	Minor version number, ASCII	"0"
(P+5)h = 3Eh	00E6h 0003h	Extended Query table contents for Primary Algorithm. Address (P+5)h contains less significant byte.	No.
(P+7)h = 40h	0000h	bit 0 Chip Erase supported (1 = Yes, 0 = No) bit 1 Erase Suspend supported (1 = Yes, 0 = No)	No Yes
(P+8)h = 41h	0000h	bit 2 Program Suspend supported (1 = Yes, 0 = No) bit 3 Legacy Lock/Unlock supported (1 = Yes, 0 = No) bit 4 Queued Erase supported (1 = Yes, 0 = No) bit 5 Instant individual block locking supported (1 = Yes, 0 = No) bit 6 Protection bits supported (1 = Yes, 0 = No) bit 7 Page mode read supported (1 = Yes, 0 = No) bit 8 Synchronous read supported (1 = Yes, 0 = No) bit 9 Simultaneous operation supported (1 = Yes, 0 = No) bit 10 to 31 Reserved; undefined bits are '0'. If bit 31 is '1' then another 31 bit field of optional features follows at the end of the bit-30 field.	Yes No No Yes Yes Yes Yes Yes

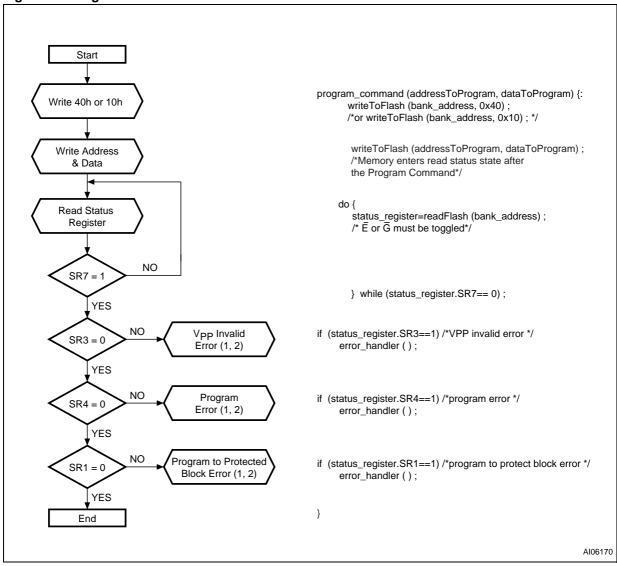

Offset	Data	Description	Value
(P+9)h = 42h	0001h	Supported Functions after Suspend Read Array, Read Status Register and CFI Query bit 0 Program supported after Erase Suspend (1 = Yes, 0 = No) bit 7 to 1 Reserved; undefined bits are '0'	Yes
(P+A)h = 43h (P+B)h = 44h	0003h 0000h	Block Protect Status Defines which bits in the Block Status Register section of the Query are implemented. bit 0 Block protect Status Register Lock/Unlock bit active (1 = Yes, 0 = No) bit 1 Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No) bit 15 to 2 Reserved for future use; undefined bits are '0'	Yes Yes
(P+C)h = 45h	0018h	V _{DD} Logic Supply Optimum Program/Erase voltage (highest performance) bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV	1.8V
(P+D)h = 46h	00C0h	V _{PP} Supply Optimum Program/Erase voltage bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV	12V
(P+E)h = 47h (P+F)h = 48h (P+10)h = 49h (P+11)h = 4Ah (P+12)h = 4Bh	0000h	Reserved	

Table 35. Burst Read Information

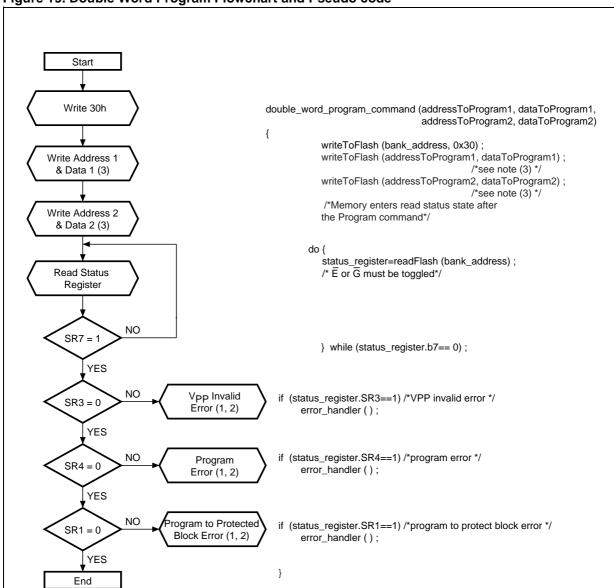
Offset	Data	Description	Value
(P+13)h = 4Ch	0003h	Page-mode read capability bits 0-7 'n' such that 2 ⁿ HEX value represents the number of read- page bytes. See offset 28h for device word width to determine page-mode data output width.	8 Bytes
(P+14)h = 4Dh	0003h	Number of synchronous mode read configuration fields that follow.	3
(P+15)h = 4Eh	0001h	Synchronous mode read capability configuration 1 bit 3-7 Reserved bit 0-2 'n' such that 2 ⁿ⁺¹ HEX value represents the maximum number of continuous synchronous reads when the device is configured for its maximum word width. A value of 07h indicates that the device is capable of continuous linear bursts that will output data until the internal burst counter reaches the end of the device's burstable address space. This field's 3-bit value can be written directly to the read configuration register bit 0-2 if the device is configured for its maximum word width. See offset 28h for word width to determine the burst data output width.	4
(P+16)h = 4Fh	0002h	Synchronous mode read capability configuration 2	8
(P+17)h = 50h	0007h	Synchronous mode read capability configuration 3	Cont.
(P+18)h = 51h	0036h	Max operating clock frequency (MHz)	54 MHz
(P+19)h = 52h	0001h	Supported handshaking signal (WAIT pin) bit 0 during synchronous read (1 = Yes, 0 = No) bit 1 during asynchronous read (1 = Yes, 0 = No)	Yes No

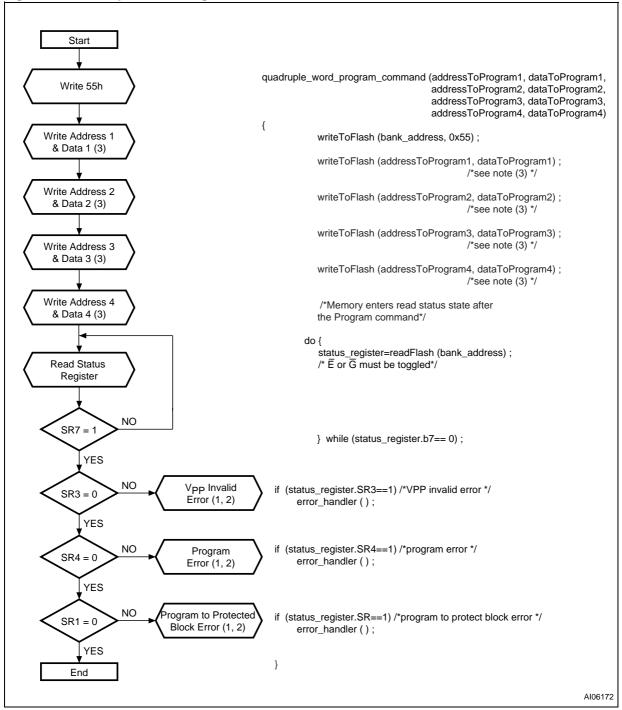
APPENDIX C. FLOWCHARTS AND PSEUDO CODES

Figure 18. Program Flowchart and Pseudo Code

Note: 1. Status check of SR1 (Protected Block), SR3 (V_{PP} Invalid) and SR4 (Program Error) can be made after each program operation or after a sequence.

2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.




Figure 19. Double Word Program Flowchart and Pseudo code

Note: 1. Status check of b1 (Protected Block), b3 (V_{PP} Invalid) and b4 (Program Error) can be made after each program operation or after a sequence.

- 2. If an error is found, the Status Register must be cleared before further Program/Erase operations.
- 3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0.

AI06171

Figure 20. Quadruple Word Program Flowchart and Pseudo Code

Note: 1. Status check of SR1 (Protected Block), SR3 (V_{PP} Invalid) and SR4 (Program Error) can be made after each program operation or after a sequence.

^{2.} If an error is found, the Status Register must be cleared before further Program/Erase operations.

^{3.} Address 1 to Address 4 must be consecutive addresses differing only for bits A0 and A1.

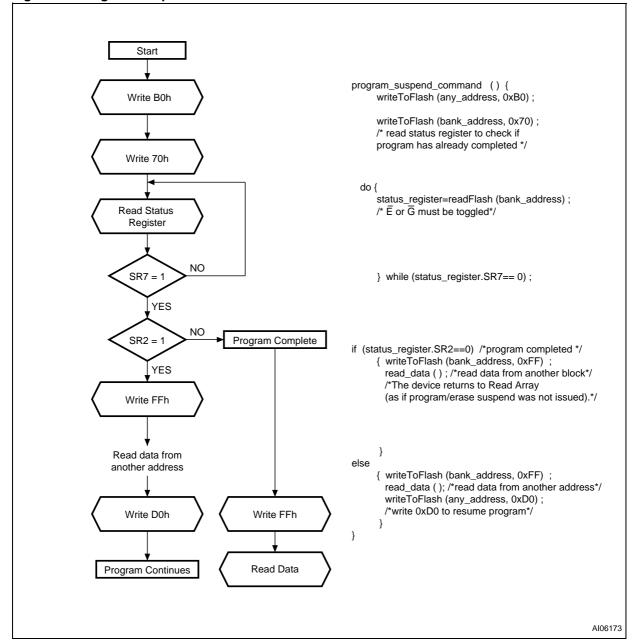
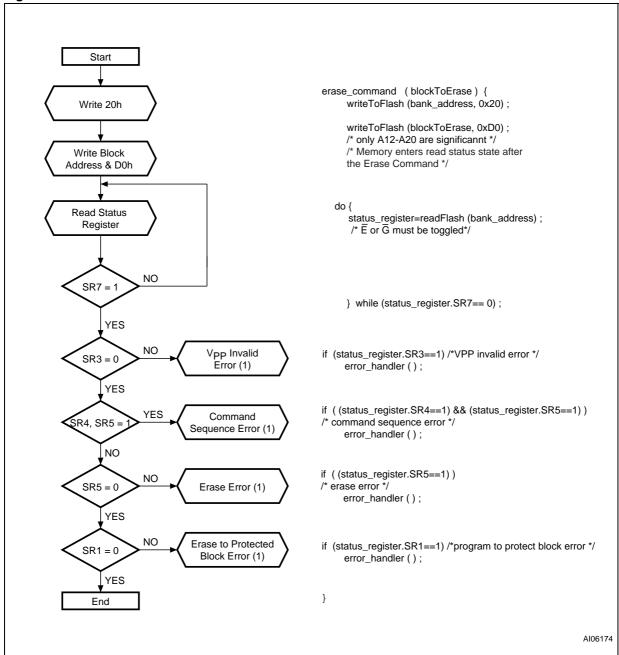



Figure 21. Program Suspend & Resume Flowchart and Pseudo Code

57

Figure 22. Block Erase Flowchart and Pseudo Code

Note: If an error is found, the Status Register must be cleared before further Program/Erase operations.

Figure 23. Erase Suspend & Resume Flowchart and Pseudo Code

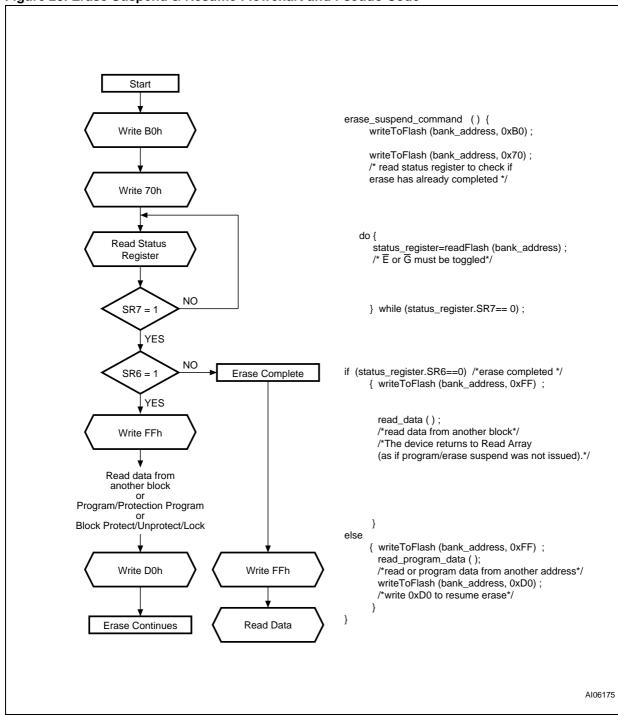
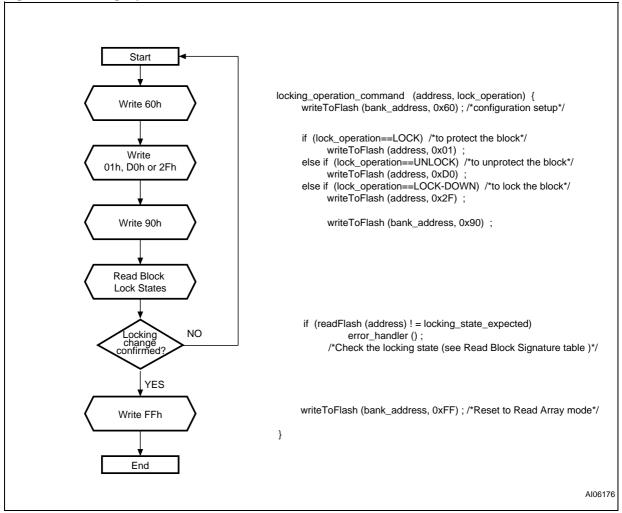



Figure 24. Locking Operations Flowchart and Pseudo Code

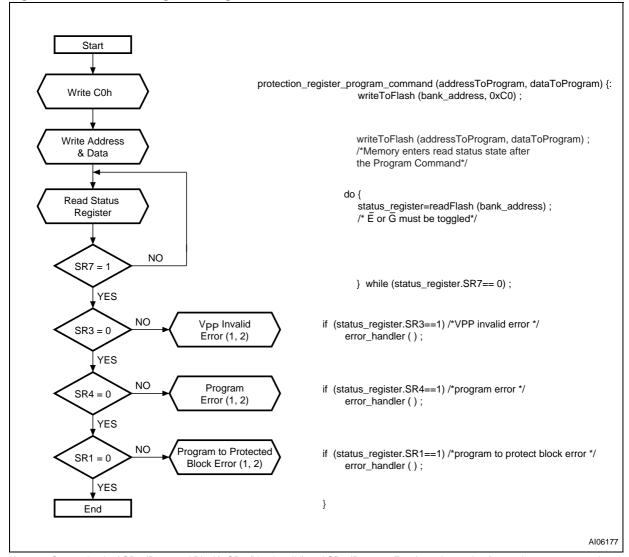


Figure 25. Protection Register Program Flowchart and Pseudo Code

Note: 1. Status check of SR1 (Protected Block), SR3 (V_{PP} Invalid) and SR4 (Program Error) can be made after each program operation or after a sequence.

If an error is found, the Status Register must be cleared before further Program/Erase Controller operations.

APPENDIX D. COMMAND INTERFACE STATE TABLES

Table 36. Command Interface States - Lock table

	Current State of the Current Bank		Command Input to the Current Bank (and Next State of the Current Bank)										
Current State of Other Bank	Mode	State	Others	Read Array (FFH)	Erase Confirm P/E Resume Unlock Confirm (D0h)	Read Status Register (70h)	Clear Status Register (50h)	Read Electronic Signature (90h)	Read CFI Query (98h)	Block Lock Unlock Lock-Down setup Set CR setup (60h)	Block lock Confirm (01h)	Block Lock- Down Confirm (2Fh)	Set CR Confirm (03h)
Any State	Read	Array CFI Electronic Signature Status	SEE MODIFY TABLE	Read Array	Read Array	Read Status Register	Read Array	Read Elect. Sign.	Read CFI	Block Lock, Unlock, Lock-Down, Set CR Setup	Read Array	Read Array	Read Array
Any State	Lock Unlock Lock-Down CR	Setup	Block Lock Unlock Lock-Down Error, Set CR Error	Block lock Unlock Lock-Down Error, Set CR Error	Block Lock Unlock Lock-Down Block	Block Lock Unlock Lock-Down Error, Set CR Error	Block Lock Unlock Lock-Down Block	Block Lock Unlock Lock-Down Block	Set CR				
		Error Lock Unlock Lock-Down Block Set CR	SEE MODIFY TABLE	Read Array	Read Array	Read Status Register	Read Array	Read Elect. Sign.	Read CFI	Block LocK Unlock Lock-Down Setup, Set CR Setup	Read Array	Read Array	Read Array
Any State	Protection Register	Done	SEE MODIFY TABLE	Read Array	Read Array	Read Status Register	Read Array	Read Elect. Sign.	Read CFI	Block LocK Unlock Lock-Down Setup, Set CR Setup	Read Array	Read Array	Read Array
Any State	Program- Double/ Quadruple Program	Done	SEE MODIFY TABLE	Read Array	Read Array	Read Status Register	Read Array	Read Elect. Sign.	Read CFI	Block LocK Unlock Lock-Down Setup, Set CR Setup	Read Array	Read Array	Read Array
Setup Idle Erase Suspend	Program Suspend	Read Array, CFI, Elect. Sign., Status	SEE MODIFY TABLE	PS Read Array	Program (Busy)	PS Read Status Register	PS Read Array	PS Read Elect. Sign.	PS Read CFI	PS Read Array	PS Read Array	PS Read Array	PS Read Array
Idle		Setup	Erase Error	Erase Error	Erase (Busy)	Erase Error	Erase Error	Erase Error	Erase Error	Erase Error	Erase Error	Erase Error	Erase Error
Any State	Block/ Bank Erase	Error	SEE MODIFY TABLE	Read Array	Read Array	Read Status Register	Read Array	Read Elect. Sign.	Read CFI	Block LocK Unlock Lock-Down Setup, Set CR Setup	Read Array	Read Array	Read Array
Setup	Erase Suspend			, ES Read Array	Erase (Busy) ES Read Array Erase (Busy) ES Read Array	ES Read Status Register	ES Read Array	ES Read Elect. Sign.	ES Read CFI	Block Lock Unlock Lock-Down Setup, Set CR Setup	ES Read Array	ES Read Array	ES Read Array
Busy													
Idle Program Suspend													
Juspeniu		<u> </u>	l	<u> </u>	ruray				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

Note: PS = Program Suspend, ES = Erase Suspend.

Table 37. Command Interface States - Modify Table

Command Of at	Current State Ba	of the Current nk	Command Input to the Current Bank (and Next State of the Current Bank)							
Current State of the Other Bank	Mode	State	Others	Program Setup (10h/40h)	Block Erase Setup (20h)	Program-Erase Suspend (B0h)	Protection Register Program Setup (C0h)	Double/ Quadruple Program Setup (30h/55h)	Bank Erase Setup (80h)	
Setup		Array, CFI, Electronic Signature, Status Register	SEE LOCK TABLE	Read Array	Read Array		Read Array	Read Array	Read Array	
Busy	Read			Program setup	Block Erase Setup	Read Array	Protection Register Setup	Double/ Quadruple	Bank Erase Setup	
Erase Suspend Program				Read Array	Read Array	·	Read Array	Program Setup Read Array	Read Array	
Suspend Setup Busy		Error, Lock Unlock Lock-Down Block, Set CR	SEE LOCK TABLE	Read Array	Read Array		Read Array	Read Array	Read Array	
Idle	Lock Unlock Lock-Down CR			Program setup	Block Erase Setup	Read Array	Protection Register Setup	Double/ Quadruple Program Setup	Bank Erase Setup	
Erase Suspend Program Suspend				Read Array	Read Array		Read Array	Read Array	Read Array	
Idle Setup		Setup Busy	Protection Register (Busy)	Protection Register (Busy)	Protection Register (Busy)	Protection Register (Busy)	Protection Register (Busy)	Protection Register (Busy)	Protection Register (Busy)	
Busy		Done	SEE LOCK TABLE	Read Array	Read Array		Read Array	Read Array	Read Array	
Idle	Protection Register			Program Setup	Block Erase Setup	Read Array	Protection Register Setup	Double/ Quadruple Program Setup	Bank Erase Setup	
Program Suspend				Read Array	Read Array		Read Array	Read Array	Read Array	
Any State Idle		Setup Busy	Program (Busy)	Program (Busy)	Program (Busy)	Program (Busy) PS Read Status Register	Program (Busy)	Program (Busy)	Program (Busy)	
Setup Busy	Program Double/	Done	SEE LOCK TABLE	Read Array	Read Array		Read Array	Read Array	Read Array	
Idle	Quadruple Word Program			Program Setup	Block Erase Setup	Read Array	Protection Register Setup	Double/ Quadruple	Bank Erase Setup	
Program Suspend				Read Array	Read Array		Read Array	Program Setup Read Array	Read Array	
Setup Idle	Program Suspend	Read Array, CFI, Elect. Sign., Status	SEE LOCK TABLE	PS Read Array	PS Read Array	PS Read Array	PS Read Array	PS Read Array	PS Read Array	
Erase Suspend	Diagle/ Deale	Register Setup	SEE LOCK TABLE	Erase Error	Erase Error	Erase Error	Erase Error	Erase Error	Erase Error	
Idle	Block/ Bank Erase	Busy	Erase (Busy)	Erase (Busy)	Erase (Busy)	ES Read Status Register	Erase (Busy)	Erase (Busy)	Erase (Busy)	
Setup Busy		Read Array, CFI, Elect. Sign., Status Register	SEE LOCK TABLE	ES Read Array		ES Read Array	ES Read Array	ES Read Array		
ldle	Erase Suspend			Program Setup	ES Read Array			Double/ Quadruple Program Setup	ES Read Array	
Program Suspend		-		ES Read Array				ES Read Array		

Note: PS = Program Suspend, ES = Erase Suspend.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong
India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

www.st.com