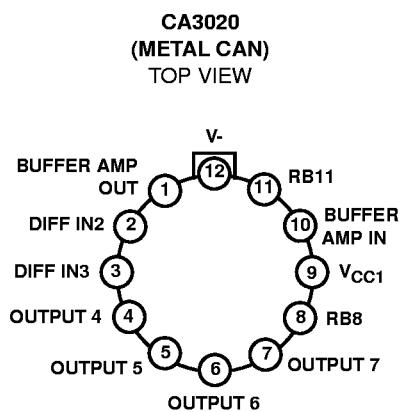
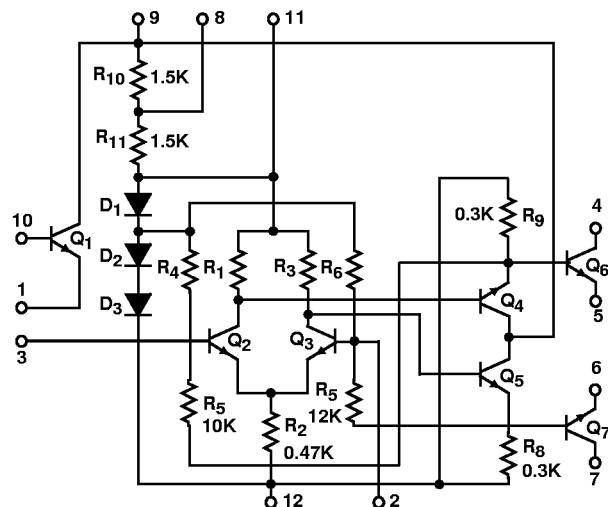


April 1997


Features

- High Power Output Class B Amplifier
 - CA3020 0.5W (Typ) at $V_{CC} = 9V$
 - CA3020A 1.0W (Typ) at $V_{CC} = 12V$
- Wide Frequency Range ... Up to 8MHz with Resistive Loads
- High Power Gain 75dB (Typ)
- Single Power Supply For Class B Operation With Transformer
 - CA3020 3V to 9V
 - CA3020A 3V to 12V
- Built-In Temperature-Tracking Voltage Regulator Provides Stable Operation Over $-55^{\circ}C$ to $125^{\circ}C$ Temperature Range


Applications

- AF Power Amplifiers For Portable and Fixed Sound and Communications Systems
- Servo-Control Amplifiers
- Wide-Band Linear Mixers
- Video Power Amplifiers
- Transmission-Line Driver Amplifiers (Balanced and Unbalanced)
- Fan-In and Fan-Out Amplifiers For Computer Logic Circuits
- Lamp-Control Amplifiers
- Motor-Control Amplifiers
- Power Multivibrators
- Power Switches

Pinout

Schematic Diagram

The resistance values included on the schematic diagram have been supplied as a convenience to assist Equipment Manufacturers in optimizing the selection of "outboard" components of equipment designs. The values shown may vary as much as 30%.

Harris reserves the right to make any changes in the Resistance Values provided such changes do not adversely affect the published performance characteristics of the device.

Absolute Maximum Ratings

Maximum Pin 9 Supply Voltage, V_{CC1} (Note 1)	
CA3020.....	10V
CA3020A.....	12V
Maximum Pin 9 Supply Current, I_{CC1}	20mA
Maximum Pin 11 Sink Current, I_{11}	20mA
Output Voltage, V_4 and V_7 (Note 1)	
CA3020.....	25V
CA3020A.....	18V
Output Current, I_O	300mA
Input Voltage Range, V_2 , V_3	-2V to 2V
Maximum Input Voltage, V_{10} (Ref to Pin 1)	-3V
Maximum Source Current, V_1	1mA

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. The voltage ratings for Pin 9, Pin 4 and Pin 7 are referenced to the V- (Pin 12). A normal bias configuration for Pin 8 and Pin 11 is shown in Figure 1B. Refer to Application Note AN5766 for other options.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $T_A = 25^\circ\text{C}$

PARAMETER	SYMBOL	TEST CONDITIONS			CA3020			CA3020A			UNITS	
		FIGURE	CIRCUIT AND PROCEDURE		DC SUPPLY VOLTAGE	MIN	TYP	MAX	MIN	TYP	MAX	
			V _{CC1}	V _{CC2}								
Collector-to-Emitter Breakdown Voltage, Q_6 and Q_7 at 10mA	$V_{(BR)CER}$	1A	-	-	18	-	-	25	-	-	V	
Collector-to-Emitter Breakdown Voltage, Q_1 at 0.1mA	$V_{(BR)CEO}$	-	-	-	10	-	-	10	-	-	V	
Idle Currents, Q_6 and Q_7	I_4 IDLE I_7 IDLE	7	9.0	2.0	-	5.5	-	-	5.5	-	mA	
Peak Output Currents, Q_6 and Q_7	I_4 PK I_7 PK	7	9.0	2.0	140	-	-	180	-	-	mA	
Cutoff Currents, Q_6 and Q_7	I_4 CUTOFF I_7 CUTOFF	7	9.0	2.0	-	-	1.0	-	-	1.0	mA	
Differential Amplifier Current Drain	I_{CC1}	7	9.0	9.0	6.3	9.4	12.5	6.3	9.4	12.5	mA	
Total Current Drain	$I_{CC1} + I_{CC2}$	7	9.0	9.0	8.0	21.5	35.0	14.0	21.5	30.0	mA	
Differential Amplifier Input Terminal Voltages	V_2 V_3	7	9.0	2.0	-	1.11	-	-	1.11	-	V	
Regulator Terminal Voltage	V_{11}	7	9.0	2.0	-	2.35	-	-	2.35	-	V	
Q_1 Cutoff (Leakage) Currents: Collector-to-Emitter	I_{CEO}	-	10.0	-	-	-	100	-	-	100	μA	
Emitter-to-Base	I_{EBO}		3.0	-	-	-	0.1	-	-	0.1	μA	
Collector-to-Base	I_{CBO}		3.0	-	-	-	0.1	-	-	0.1	μA	
Forward Current Transfer Ratio, Q_1 at 3mA	h_{FE1}	-	6.0	-	30	75	-	30	75	-		
Bandwidth at -3dB Point	BW	8	6.0	6.0	-	8	-	-	8	-	MHz	
Maximum Power Output for $R_{CC} = 130\Omega$	$P_{O(\text{MAX})}$	9	6.0	6.0	200	300	-	200	300	-	mW	
Maximum Power Output for $R_{CC} = 200\Omega$		9	9.0	9.0	400	550	-	400	550	-	mW	
Sensitivity for $P_{OUT} = 400\text{mW}$, $R_{CC} = 130\Omega$	e_{IN}	9	9.0	9.0	-	35	55	-	-	-	mV	
Sensitivity for $P_{OUT} = 800\text{mW}$, $R_{CC} = 200\Omega$	e_{IN}	9	9.0	12.0	-	-	-	-	50	100	mV	
Input Resistance - Terminal 3 to Ground	R_{IN3}	10	6.0	6.0	-	1000	-	-	1000	-	Ω	

Operating Conditions

Temperature Range -55°C to 125°C

Thermal Information

Thermal Resistance (Typical, Note 2) θ_{JA} (°C/W) θ_{JC} (°C/W)

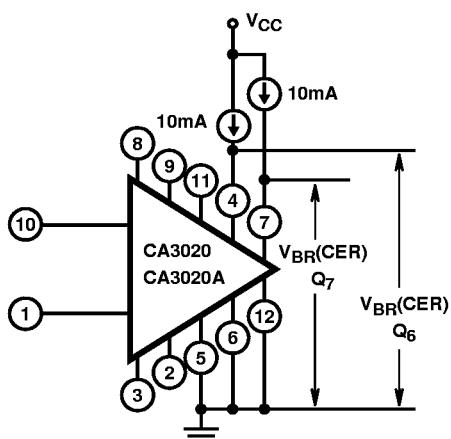
Metal Can Package 165 80

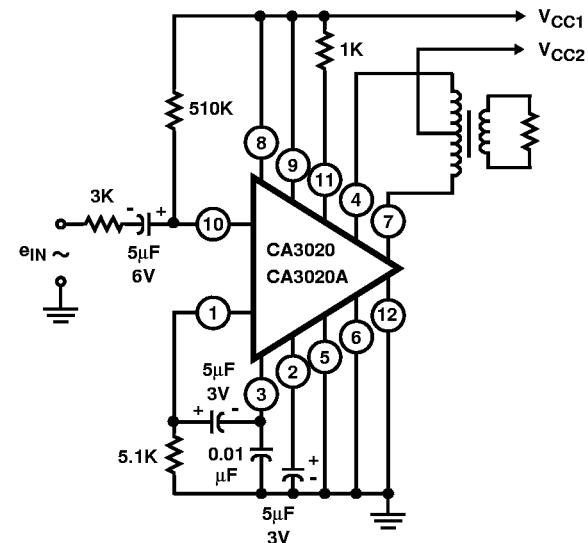
Maximum Junction Temperature (Metal Can Package) 175°C

Maximum Storage Temperature Range -65°C to 150°C

Maximum Lead Temperature (Soldering 10s) 300°C

Typical Performance Data (Note 3) A heat sink is recommended for high ambient temperature operation.


PARAMETER	SYMBOL	CA3020	CA3020A	UNITS
Power Supply Voltage	V_{CC1}	9.0	9.0	V
	V_{CC2}	9.0	12.0	V
Zero Signal Current	Differential Amplifier	I_{CC1}	15	mA
	Output Amplifier	I_{CC2}	24	mA
Maximum Signal Current	Differential Amplifier	I_{CC1}	16	mA
	Output Amplifier	I_{CC2}	125	mA
Maximum Power Output at THD = 10%	P_O	550	1000	mW
Sensitivity	e_{IN}	35	45	mV
Power Gain	G_P	75	75	dB
Input Resistance	R_{IN}	55	55	k Ω
Efficiency	η	45	55	%
Signal-to-Noise Ratio	S/N	70	66	dB
THD at 150mW Level		3.1	3.3	%
Test Signal Frequency from 600 Ω Generator		1000	1000	Hz
Equivalent Collector-to-Collector Load Resistance	R_{CC}	130	200	Ω


NOTE:

3. Refer to Figures 7 through 11 for measurement and symbol information.

Test Circuits and Waveforms

FIGURE 1A. COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (Q_6 AND Q_7) CIRCUIT

FIGURE 1B. TYPICAL AUDIO AMPLIFIER CIRCUIT UTILIZING THE CA3020 OR CA3020A AS AN AUDIO PREAMPLIFIER AND CLASS B POWER AMPLIFIER

FIGURE 1.

Test Circuits and Waveforms (Continued)

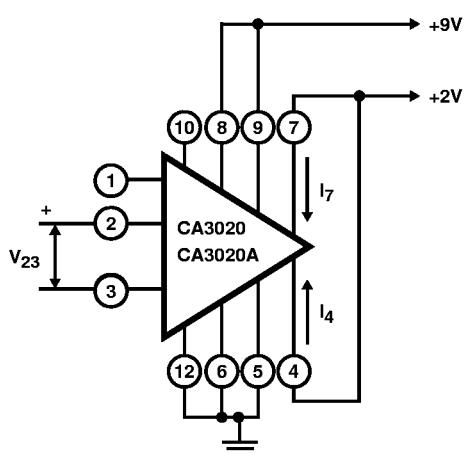


FIGURE 2A. TEST SETUP

FIGURE 2. TYPICAL TRANSFER CHARACTERISTICS

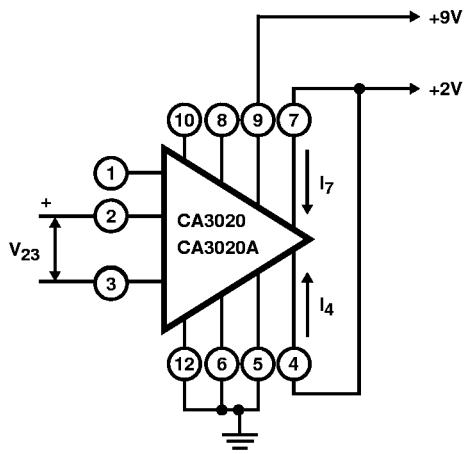
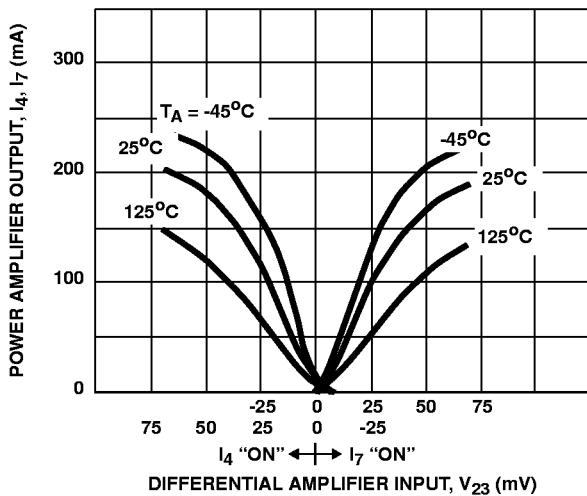



FIGURE 3A. TEST SETUP

FIGURE 3. TYPICAL TRANSFER CHARACTERISTICS

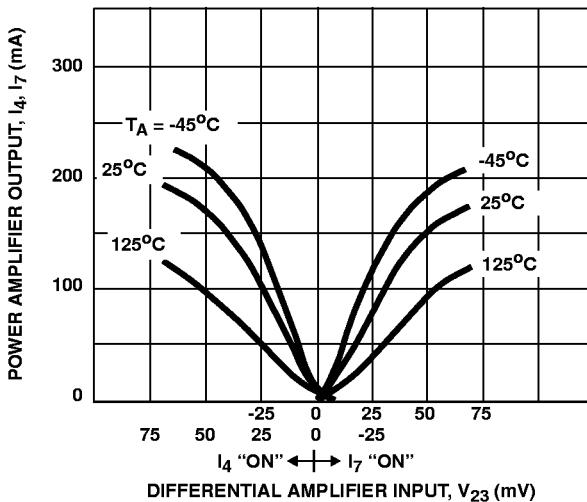
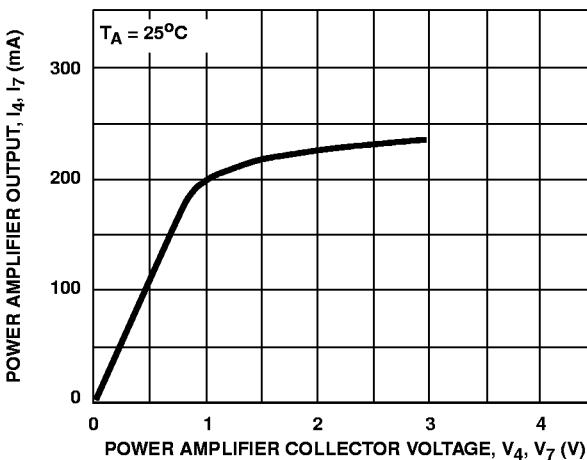



FIGURE 4A. TEST SETUP

FIGURE 4. "MINIMUM DRIVE" TYPICAL CURRENT-VOLTAGE SATURATION CURVE

Test Circuits and Waveforms (Continued)

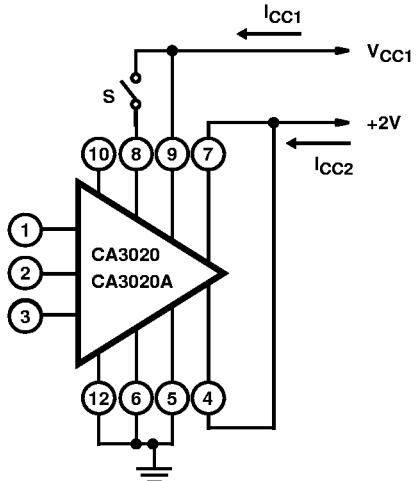


FIGURE 5A. TEST SETUP

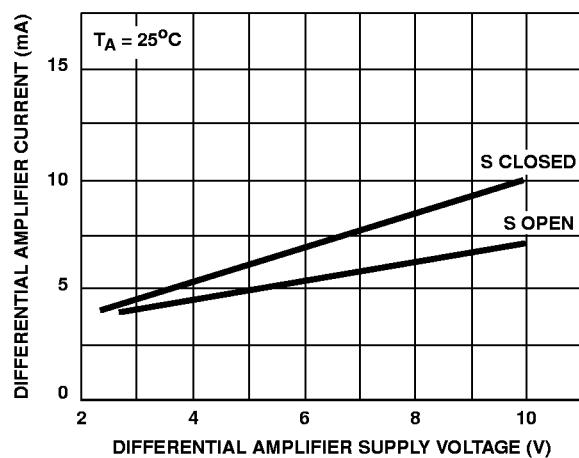


FIGURE 5B. DIFFERENTIAL AMPLIFIER CHARACTERISTICS OF I_{CC1} CURRENT vs V_{CC1} VOLTAGE

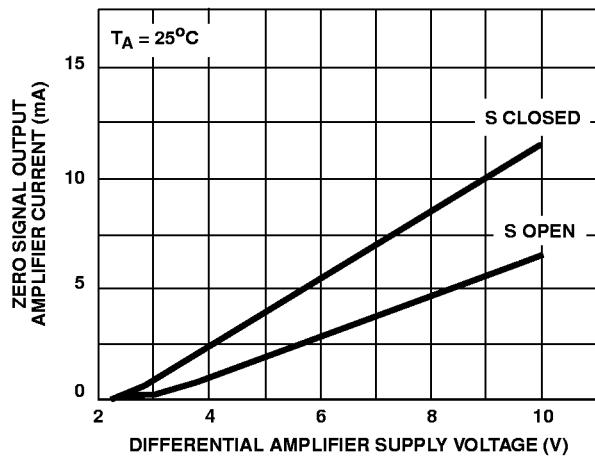


FIGURE 5C. OUTPUT AMPLIFIER CHARACTERISTICS OF I_{CC2} CURRENT vs V_{CC1} VOLTAGE

FIGURE 5. ZERO SIGNAL AMPLIFIER CURRENT vs DIFFERENTIAL AMPLIFIER SUPPLY VOLTAGE

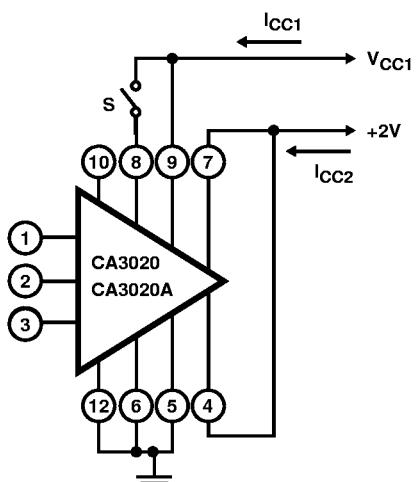


FIGURE 6A. TEST SETUP

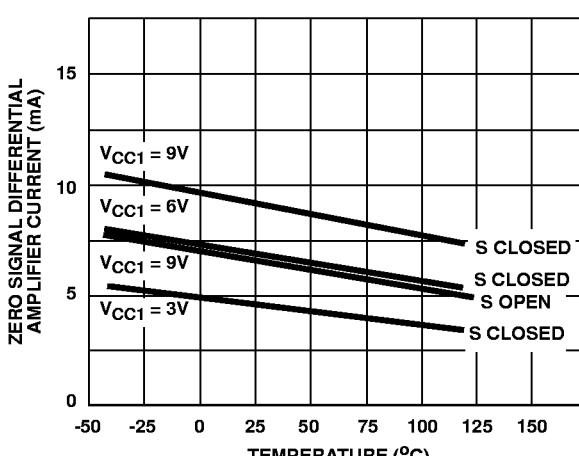


FIGURE 6B. DIFFERENTIAL AMPLIFIER CHARACTERISTICS OF I_{CC1} CURRENT vs AMBIENT TEMPERATURE

FIGURE 6. ZERO SIGNAL AMPLIFIER CURRENT vs AMBIENT TEMPERATURE

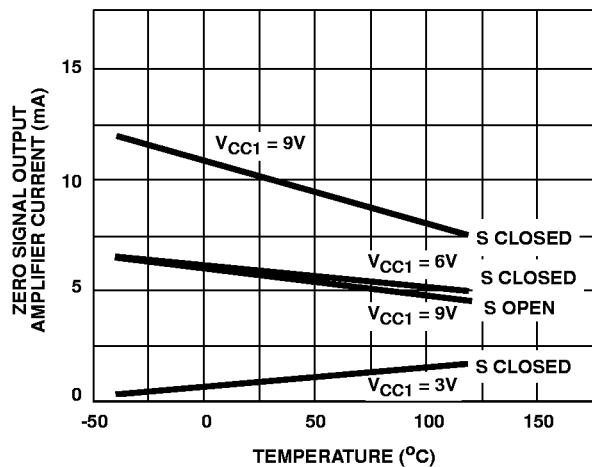
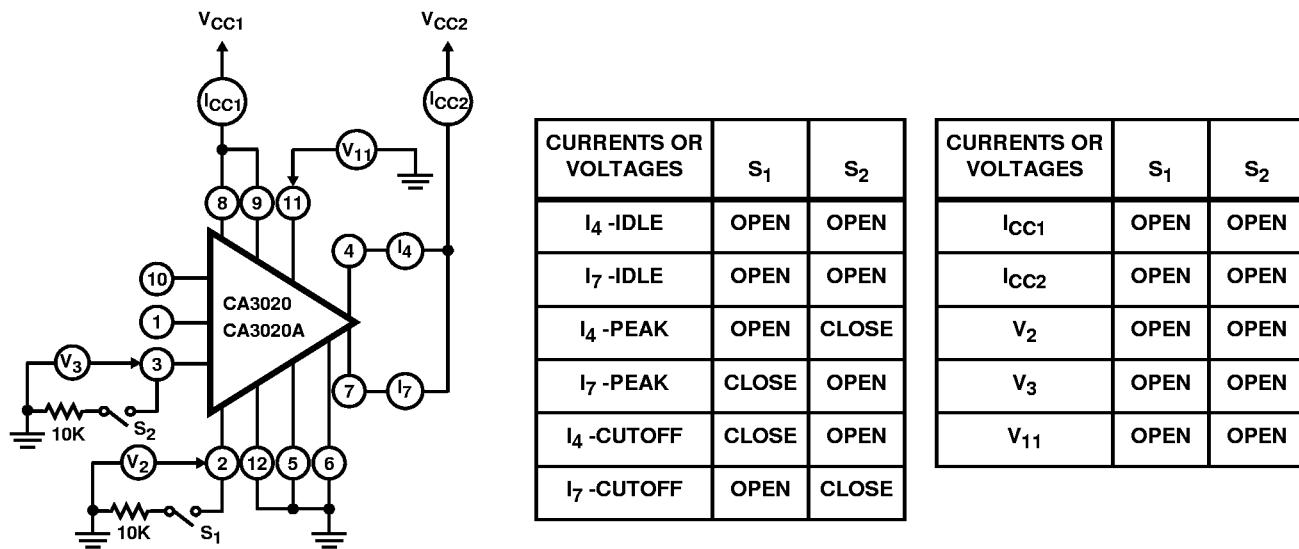
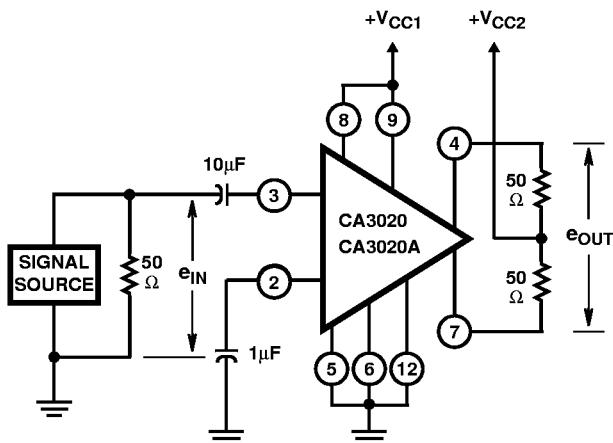
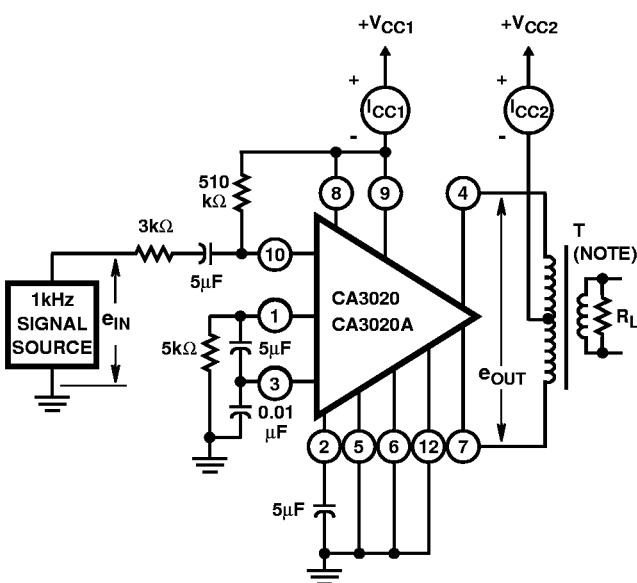

Test Circuits and Waveforms (Continued)

FIGURE 6C. OUTPUT AMPLIFIER CHARACTERISTICS OF I_{CC2} CURRENT vs AMBIENT TEMPERATURE
 FIGURE 6. ZERO SIGNAL AMPLIFIER CURRENT vs AMBIENT TEMPERATURE


FIGURE 7. STATIC CURRENT AND VOLTAGE TEST CIRCUIT

PROCEDURES:

1. Apply desired value of V_{CC1} and V_{CC2} .
2. Apply 1kHz input signal and adjust for $e_{IN} = 5\text{mV}_{\text{RMS}}$.
3. Record the resulting value of e_{OUT} in dB (reference value).
4. Vary input-signal frequency, keeping e_{IN} constant at 5mV, and record frequencies above and below 1kHz at which e_{OUT} decreases 3dB below reference value.
5. Record bandwidth as frequency range between -3dB points.

FIGURE 8. MEASUREMENT OF BANDWIDTH AT -3dB POINTS

NOTE: Push-pull output transformer; load resistance (R_L) should be selected to provide indicated collector-to-collector load impedance (R_{CC}).

PROCEDURES:

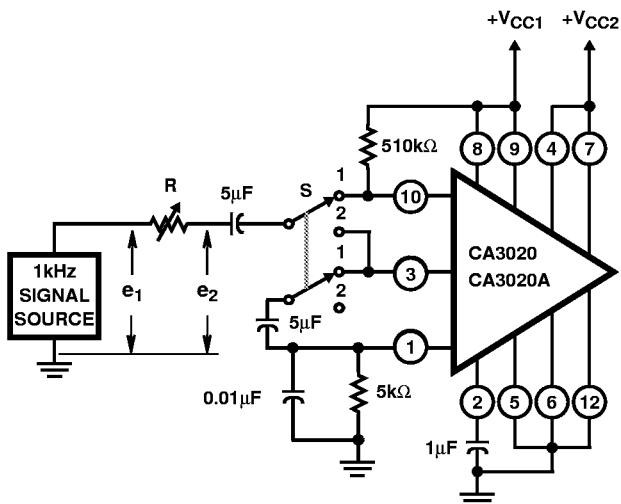
1. Apply desired value of V_{CC1} and V_{CC2} and reduce e_{IN} to 0V.
2. Record resulting values of I_{CC1} and I_{CC2} in mA as Zero-Signal DC Current Drain.
3. Apply desired value of V_{CC1} and V_{CC2} and adjust e_{IN} to the value at which the Total Harmonic Distortion in the output of the amplifier = 10%.
4. Record resulting value of I_{CC1} and I_{CC2} in mA as Maximum Signal DC Current Drain.
5. Determine resulting amplifier power output in watts and record as Maximum Power Output (P_{OUT}).
6. Calculate Circuit Efficiency (η) in % as follows:

$$\eta = 100 \frac{P_{OUT}}{V_{CC1}I_{CC1} + V_{CC2}I_{CC2}} \text{.}$$

where P_{OUT} is in watts, V_{CC1} and V_{CC2} are in volts, and I_{CC1} and I_{CC2} are in amperes.

7. Record value of e_{IN} in mV_{RMS} required in Step 3 as Sensitivity (e_{IN}).
8. Calculate Transducer Power Gain (G_p) in dB as follows:

$$G_p = 10 \log_{10} \frac{P_{OUT}}{P_{IN}}$$


$$\text{where } P_{IN} (\text{in mW}) = \frac{e_{IN}^2}{3000 + R_{IN}(10) \text{ (Note 4)}}$$

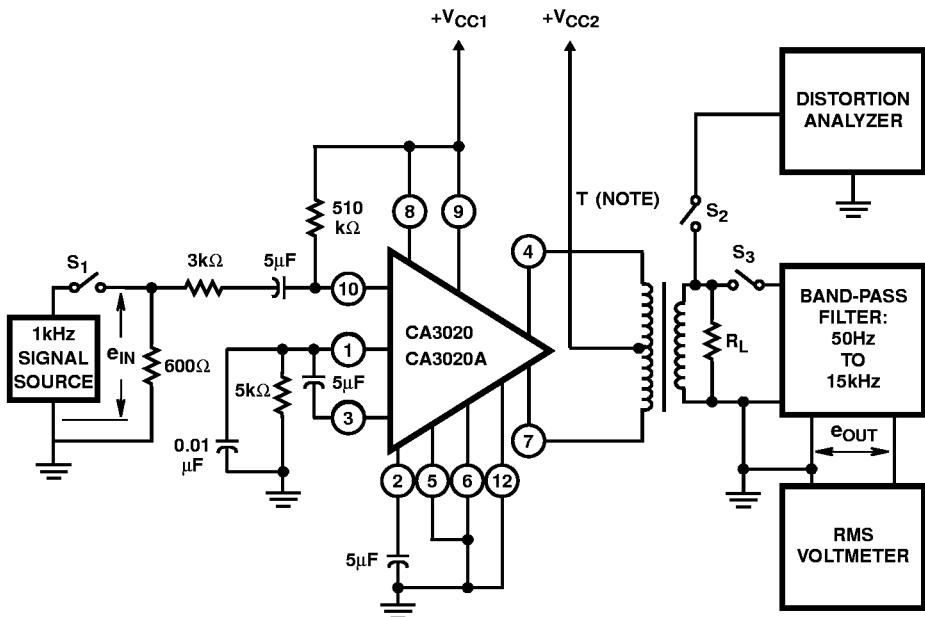
NOTE:

4. See Figure 10 for definition of $R_{IN}(10)$.

FIGURE 9. MEASUREMENTS OF ZERO-SIGNAL DC CURRENT DRAIN, MAXIMUM-SIGNAL DC CURRENT DRAIN, MAXIMUM POWER OUTPUT, CIRCUIT EFFICIENCY, SENSITIVITY, AND TRANSDUCER POWER GAIN

CA3020, CA3020A

PROCEDURES:


Input Resistance Terminal 10 to Ground (R_{IN10}).

1. Apply desired value of V_{CC1} and V_{CC2} and set S in Position 1.
2. Adjust 1kHz input for desired signal level of measurement
3. Adjust R for $e_2 = e_1/2$.
4. Record resulting value of R as R_{IN10} .

Input Resistance Terminal 3 to Ground (R_{IN3}).

1. Apply desired value of V_{CC1} and V_{CC2} and set S in Position 2.
2. Adjust 1kHz input for desired signal level of measurement
3. Adjust R for $e_2 = e_1/2$.
4. Record resulting value of R as R_{IN3} .

FIGURE 10. MEASUREMENT OF INPUT RESISTANCE

NOTE: Push-pull output transformer; load resistance (R_L) should be selected to provide indicated collector-to-collector load impedance (R_{CC}).

PROCEDURES:

Signal-to-Noise Ratio

1. Close S_1 and S_3 ; open S_2 .
2. Apply desired values of V_{CC1} and V_{CC2} .
3. Adjust e_{IN} for an amplifier output of 150mW and record resulting value of E_{OUT} in dB as e_{OUT1} (reference value).
4. Open S_1 and record resulting value of e_{OUT} in dB as e_{OUT2}
5. Signal-to-Noise Ratio (S/N) = $20 \log_{10} \frac{e_{OUT1}}{e_{OUT2}}$.

Total Harmonic Distortion

1. Close S_1 and S_2 ; open S_3 .
2. Apply desired values of V_{CC1} and V_{CC2} .
3. Adjust e_{IN} for desired level amplifier output power.
4. Record Total Harmonic Distortion (THD) in %.

FIGURE 11. MEASUREMENT OF SIGNAL-TO-NOISE RATIO AND TOTAL HARMONIC DISTORTION