16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS

SCAS257 - JANUARY 1993 - REVISED MARCH 1994

	SCAS297 - JANUARY 1993 - REVISED MARCE
 Member of the Texas Instruments Widebus™ Family 	DGG OR DL PACKAGE (TOP VIEW)
 EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process 	10E 1 48 1LE
Designed to Facilitate Incident-Wave	1Q1 []2 47 [] 1D1
Switching for Line Impedances of 50 Ω or	1Q2 3 46 1D2
Greater	GND 4 45 GND
 Typical V_{OLP} (Output Ground Bounce) 	1Q3 05 44 0 1D3
< 0.8 V at V _{CC} = 3.3 V, T _A = 25°C	1Q4 [6 43] 1D4
Typical V _{OHV} (Output V _{OH} Undershoot)	V _{CC} 7 42 V _{CC}
> 2 V at V _{CC} = 3.3 V, T _A = 25°C	1Q5 08 41 105
Bus-Hold On Data Inputs Eliminates the	1Q6
Need for External Pullup/Pulldown	1Q7 11 38 1D7
Resistors	1Q8 1 12 37 1 1D8
Package Options Include Plastic 300-mil	2Q1 (13 36) 2D1
Shrink Small-Outline (DL) and Thin Shrink	2Q2 (14 35) 2D2
Small-Outline (DGG) Packages	GND 15 34 GND
oman outino (Dud) i donagoo	2Q3 [16 33] 2D3
description	2Q4 [17 32] 2D4
•	V _{CC} 18 31 V _{CC}
This 16-bit transparent D-type latch is designed	205 19 30 205
for 2.7-V to 3.6-V V _{CC} operation.	2Q6 [20 29] 2D6
The SN74ALVC16373 is particularly suitable for	GND 21 28 GND
implementing buffer registers, I/O ports,	2Q7 🛛 22 27 🗓 2D7
bidirectional bus drivers, and working registers. It	2Q8 🛛 23 26 🗓 2D8
can be used as two 8-bit latches or one 16-bit	20E [24 25] 2LE
latch. When the latch-enable (LE) input is high, the	
Q outputs follow the data (D) inputs. When LE is	
taken low, the Q outputs are latched at the levels	
set up at the D inputs.	

A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components.

The output-enable (OE) input does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN74ALVC16373 is available in TI's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN74ALVC16373 is characterized for operation from -40°C to 85°C.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

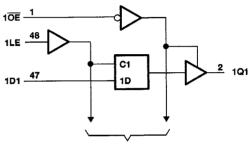
PRODUCT PREVIEW Information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas instruments reserves the right to change or discontinue these products without notice.

Copyright @ 1994, Texas Instruments Incorporated

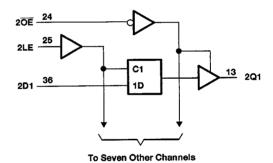
9-45

FUNCTION TABLE (each 8-bit section)

	INPUTS		OUTPUT
ŌĒ	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Х	Q ₀
н	Х	Χ	z


logic symbol[†]

PRODUCT PREVIEW


- 5	•			
10E	1	1EN		
1LE	48	СЗ		
20E	24	2EN		
2LE	25	C4		
		Γ.	لے	
1D1	47	3D 1	▼	2 1Q1
1D2	46			3 1Q2
	44			5 1Q3
1D3	43		_	6
1D4	41		_	1Q4 8
1D5	40		4	9 1Q5
1D6	38		_	1Q6
1D7	37			1Q7 12 1Q8
1D8	36	1 		13 2Q1
2D1	35	4D 2	▼	14 2Q2
2D2	33			16 2Q3
2D3	32			17 2Q4
2D4	30]		19 2Q5
2D5	29	<u> </u>		20 20 206
2D6	27			22 2Q7
2D7	26		_	23 2Q8
2D8		L		200

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

8961723 0100675 019

POST OFFICE BOX 655303 ● DALLAS, TEXAS 75265

SN74ALVC16373 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS

SCAS257 - JANUARY 1993 - REVISED MARCH 1994

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V ₁ (see Note 1)	0.5 V to 4.6 V
Output voltage range, V _O (see Notes 1 and 2)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, $I_{ K }(V_1 < 0)$	-50 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±50 mA
Continuous current through V _{CC} or GND	+100 mA
Maximum power dissipation at T _A = 55°C (in still air) (see Note 3): DGG package	0.85 W
DL package	1.2 W
Storage temperature range	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

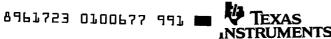
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This value is limited to 4.6 V maximum.

The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.
 For more information, refer to the Package Thermal Considerations application note.

recommended operating conditions

			MIN	MAX	UNIT
Vcc	Supply voltage		2.7	3.6	٧
۷ін	High-level input voltage	V _{CC} = 2.7 V to 3.6 V	2		٧
V _{IL}	Low-level input voltage	V _{CC} = 2.7 V to 3.6 V		0.8	V
٧į	Input voltage		0	Vcc	V
Vo	Output voltage		0	Vcc	٧
ĮОН	High-level output current	V _{CC} = 2.7 V		-12	mA
ЮП		V _{CC} = 3 V		-24	
loi	OL Low-level output current	V _{CC} = 2.7 V		12	
·OL		V _{CC} = 3 V		24	mA
Δt/Δν	Input transition rise or fall rate		0	10	ns/V
TA	Operating free-air temperature		-40	85	ů


9-47

SN74ALVC16373 **16-BIT TRANSPARENT D-TYPE LATCH** WITH 3-STATE OUTPUTS SCAS257 - JANUARY 1993 - REVISED MARCH 1994

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	vcct	MIN	MAX	UNIT
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I _{OH} = -100 μA	MIN to MAX	V _{CC} -0.2	2	
		2.7 V	2.2		v
VOH	I _{OH} = -12 mA	3 V	2.4		
	I _{OH} = -24 mA	3 V	2		
	I _{OL} = 100 μA	MIN to MAX	0.2		
VOL	I _{OL} = 12 mA	2.7 V		0.4	v
-01	I _{OL} = 24 mA	3 V		0.55	
li .	V _I = V _{CC} or GND	3.6 V		±5	μА
.,	V _I = 0.8 V	3 V	75		μА
l(hold)	V _I = 2 V	3 V	75		
loz	V _O = V _{CC} or GND	3.6 V		±10	μА
Icc	$V_1 = V_{CC}$ or GND, $I_0 = 0$	3.6 V		40	μА
ΔICC	V _{CC} = 3 V to 3.6 V, One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND			750	μА
Ci	V _I = V _{CC} or GND	3.3 V			рF
Co	VO = VCC or GND	3.3 V			pF

[†] For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions.

9-48

POST OFFICE BOX 655303 ● DALLAS, TEXAS 75265