- Optimized for Off-Line and dc-to-dc Converters
- Low Start-Up Current (<1 mA)
- Automatic Feed-Forward Compensation
- Pulse-by-Pulse Current Limiting
- Enhanced Load-Response Characteristics
- Undervoltage Lockout With Hysteresis
- Double-Pulse Suppression
- High-Current Totem-Pole Output
- Internally Trimmed Bandgap Reference
- 500-kHz Operation
- Error Amplifier With Low Output Resistance
- Designed to Be Interchangeable With UC2842 and UC3842 Series

D PACKAGE (TOP VIEW) сомрГ Π REF 14 □ NC NC 2 13 VFB∏3 12 | V_{CC} NC 4 11 U VC ISENSE [] 5 10 NC 6 9 **[**] GND RT/CT 8 POWER GROUND

NC - No internal connection

description/ordering information

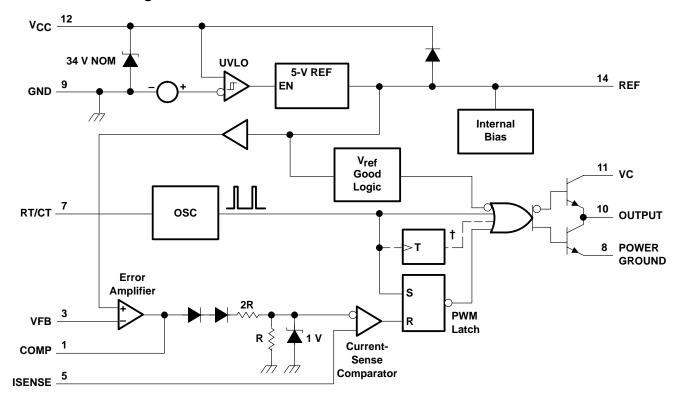
The TL284x and TL384x series of control integrated circuits provide the features that are

necessary to implement off-line or dc-to-dc fixed-frequency current-mode control schemes, with a minimum number of external components. Some of the internally implemented circuits are an undervoltage lockout (UVLO), featuring a start-up current of less than 1 mA, and a precision reference trimmed for accuracy at the error amplifier input. Other internal circuits include logic to ensure latched operation, a pulse-width modulation (PWM) comparator (that also provides current-limit control), and a totem-pole output stage designed to source or sink high-peak current. The output stage, suitable for driving N-channel MOSFETs, is low when it is in the off state.

Major differences between members of these series are the UVLO thresholds and maximum duty-cycle ranges. Typical UVLO thresholds of 16 V (on) and 10 V (off) on the TLx842 and TLx844 devices make them ideally suited to off-line applications. The corresponding typical thresholds for the TLx843 and TLx845 devices are 8.4 V (on) and 7.6 V (off). The TLx842 and TLx843 devices can operate to duty cycles approaching 100%. A duty-cycle range of 0 to 50% is obtained by the TLx844 and TLx845 by the addition of an internal toggle flip-flop, which blanks the output off every other clock cycle.

The TL284x-series devices are characterized for operation from -40° C to 85° C. The TL384x-series devices are characterized for operation from 0° C to 70° C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


ORDERING INFORMATION

TA	PACKA	GE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
			TL3842P	TL3842P
	PDIP (P)	Tuba at 50	TL3843P	TL3843P
	(8 pin)	Tube of 50	TL3844P	TL3844P
			TL3845P	TL3845P
		Tube of 75	TL3842D-8	TI 2040
		Reel of 2500	TL3842DR-8	TL3842
		Tube of 75	TL3843D-8	TI 2040
	SOIC (D)	Reel of 2500	TL3843DR-8	TL3843
	(8 pin)	Tube of 75	TL3844D-8	TI 2044
0°C to 70°C		Reel of 2500	TL3844DR-8	TL3844
0-0 10 70-0		Tube of 75	TL3845D-8	TI 2045
		Reel of 2500	TL3845DR-8	TL3845
		Tube of 50	TL3842D	TI 2042
		Reel of 2500	TL3842DR	TL3842
		Tube of 50	TL3843D	TI 2042
	SOIC (D)	Reel of 2500	TL3843DR	TL3843
	(14 pin)	Tube of 50	TL3844D	TI 2044
		Reel of 2500	TL3844DR	TL3844
		Tube of 50	TL3845D	TI 0045
		Reel of 2500	TL3845DR	TL3845
			TL2842P	TL2842P
	PDIP (P)	Tuba at 50	TL2843P	TL2843P
	(8 pin)	Tube of 50	TL2844P	TL2844P
			TL2845P	TL2845P
		Tube of 75	TL2842D-8	TI 0040
		Reel of 2500	TL2842DR-8	TL2842
		Tube of 75	TL2843D-8	TI 0040
	SOIC (D)	Reel of 2500	TL2843DR-8	TL2843
	(8 pin) ´	Tube of 75	TL2844D-8	TI 0044
4000 1- 0500		Reel of 2500	TL2844DR-8	TL2844
–40°C to 85°C		Tube of 75	TL2845D-8	TLOOAE
		Reel of 2500	TL2845DR-8	TL2845
		Tube of 50	TL2842D	TI 00.40
		Reel of 2500	TL2842DR	TL2842
		Tube of 50	TL2843D	TI 0040
	SOIC (D)	Reel of 2500	TL2843DR	TL2843
	(14 pin)	Tube of 50	TL2844D	TI 0044
		Reel of 2500	TL2844DR	TL2844
		Tube of 50	TL2845D	TI 00.45
		Reel of 2500	TL2845DR	TL2845

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional block diagram

 $\mbox{$^{\dag}$}$ The toggle flip-flop is present only in TL2844, TL2845, TL3844, and TL3845. Pin numbers shown are for the D (14-pin) package.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage (see Note 1) (I _{CC} < 30 mA)		Self limiting
Analog input voltage range, V _I (VFB and ISENSE)		-0.3 V to 6.3 V
Output voltage, VO (OUTPUT)		35 V
Input voltage, V _I , (VC, D package only)		35 V
Supply current, I _{CC}		30 mA
Output current, I _O		±1 A
Error amplifier output sink current		
Package thermal impedance, θ_{JA} (see Notes 2 and 3):	D package	86°C/W
	D-8 package	97°C/W
	P package	85°C/W
Virtual junction temperature, T _J		150°C
Output energy (capacitive load)		5 μJ
Lead temperature, 1,6 mm (1/16 inch) from case for 10	seconds	260°C
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltages are with respect to the device GND terminal.
 - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can impact reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

			MIN	NOM	MAX	UNIT
V _{CC} and VC [‡]	Supply voltage				30	V
V _I , RT/CT	Input voltage		0		5.5	V
V _I , VFB and ISENSE	Input voltage		0		5.5	V
V _O , OUTPUT	Output voltage		0		30	V
V _O , POWER GROUND‡	ND [‡] Output voltage		-0.1		1	V
Icc	Supply current, externally limited				25	mA
lo	Average output current				200	mA
I _{O(ref)}	Reference output current				-20	mA
fosc	Oscillator frequency			100	500	kHz
_	One retire free cir temperature	TL284x	-40		85	
TA	Operating free-air temperature	TL384x	0		70	°C

[‡] These recommended voltages for VC and POWER GROUND apply only to the D package.

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 15 V (see Note 4), R_T = 10 k Ω , C_T = 3.3 nF (unless otherwise specified)

reference section

DADAMETED	TEOT 0.0	NDITIONS		TL284x			TL384x		LIAUT
PARAMETER	1551 CC	ONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
Output voltage	$I_O = 1 \text{ mA},$	T _A = 25°C	4.95	5	5.05	4.9	5	5.1	V
Line regulation	V _{CC} = 12 V to 25 V			6	20		6	20	mV
Load regulation	$I_O = 1 \text{ mA to } 20 \text{ mA}$			6	25		6	25	mV
Temperature coefficient of output voltage				0.2	0.4		0.2	0.4	mV/°C
Output voltage with worst-case variation	V _{CC} = 12 V to 25 V,	I _O = 1 mA to 20 mA	4.9		5.1	4.82		5.18	V
Output noise voltage	f = 10 Hz to 10 kHz,	T _A = 25°C		50			50		μV
Output-voltage long-term drift	After 1000 h at T _A = 2	25°C		5	25		5	25	mV
Short-circuit output current			-30	-100	-180	-30	-100	-180	mA

 $[\]uparrow$ All typical values are at T_A = 25°C.

NOTE 4: Adjust VCC above the start threshold before setting it to 15 V.

oscillator section

PARAMETER	TEST CONDITIONS		TL284x		TL384x			UNIT
PARAMETER		MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	ONIT
Oscillator frequency (see Note 5)	T _A = 25°C	47	52	57	47	52	57	kHz
Frequency change with supply voltage	V _{CC} = 12 V to 25 V		2	10		2	10	Hz/kHz
Frequency change with temperature			50			50		Hz/kHz
Peak-to-peak amplitude at RT/CT			1.7			1.7		V

[†] All typical values are at $T_A = 25$ °C.

NOTES: 4. Adjust V_{CC} above the start threshold before setting it to 15 V.

5. Output frequency equals oscillator frequency for the TLx842 and TLx843. Output frequency is one-half the oscillator frequency for the TLx844 and TLx845.

error-amplifier section

DADAMETED	TE07	TEST CONDITIONS		TL284x			TL384x			
PARAMETER	1531			TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
Feedback input voltage	COMP at 2.5 V		2.45	2.50	2.55	2.42	2.50	2.58	V	
Input bias current				-0.3	-1		-0.3	-2	μΑ	
Open-loop voltage amplification	V _O = 2 V to 4 V		65	90		65	90		dB	
Gain-bandwidth product			0.7	1		0.7	1		MHz	
Supply-voltage rejection ratio	$V_{CC} = 12 \text{ V to } 2$	25 V	60	70		60	70		dB	
Output sink current	VFB at 2.7 V,	COMP at 1.1 V	2	6		2	6		mA	
Output source current	VFB at 2.3 V,	COMP at 5 V	-0.5	-0.8		-0.5	-0.8		mA	
High-level output voltage	VFB at 2.3 V,	$R_L = 15 \text{ k}\Omega \text{ to GND}$	5	6		5	6		V	
Low-level output voltage	VFB at 2.7 V,	$R_L = 15 \text{ k}\Omega \text{ to GND}$		0.7	1.1		0.7	1.1	V	

 † All typical values are at T_A = 25°C. NOTE 4: Adjust V_{CC} above the start threshold before setting it to 15 V.

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 15 \text{ V}$ (see Note 4), $R_T = 10 \text{ k}\Omega$, $C_T = 3.3 \text{ nF}$ (unless otherwise specified) (continued)

current-sense section

PARAMETER	TEST CONDITIONS			TL284x			UNIT		
PARAMETER			MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
Voltage amplification	See Notes 6 and 7		2.85	3	3.13	2.85	3	3.15	V/V
Current-sense comparator threshold	COMP at 5 V,	See Note 6	0.9	1	1.1	0.9	1	1.1	V
Supply-voltage rejection ratio	$V_{CC} = 12 \text{ V to } 25 \text{ V},$	See Note 6		70			70		dB
Input bias current				-2	-10		-2	-10	μΑ
Delay time to output				150	300		150	300	ns

[†] All typical values are at $T_A = 25$ °C.

NOTES: 4. Adjust V_{CC} above the start threshold before setting it to 15 V.

- 6. These parameters are measured at the trip point of the latch, with VFB at 0 V.
- 7. Voltage amplification is measured between ISENSE and COMP, with the input changing from 0 V to 0.8 V.

output section

PARAMETER	TEST CONDITIONS	TL284x				UNIT		
PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	MIN	TYP [†]	MAX	UNIT
High level output voltage	I _{OH} = -20 mA	13	13.5		13	13.5		V
High-level output voltage	I _{OH} = -200 mA	12	13.5		12	13.5		V
Low-level output voltage	I _{OL} = 20 mA		0.1	0.4		0.1	0.4	V
Low-level output voltage	I _{OL} = 200 mA		1.5	2.2		1.5	2.2	V
Rise time	$C_L = 1 \text{ nF}, \qquad T_A = 25^{\circ}C$		50	150		50	150	ns
Fall time	$C_L = 1 \text{ nF}, \qquad T_A = 25^{\circ}\text{C}$		50	150		50	150	ns

[†] All typical values are at $T_A = 25$ °C.

NOTE 4: Adjust V_{CC} above the start threshold before setting it to 15 V.

undervoltage-lockout section

PARAMETER		TL284x				UNIT		
TANAMETEN		MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT
Start threshold voltage	TLx842, TLx844	15	16	17	14.5	16	17.5	V
	TLx843, TLx845	7.8	8.4	9	7.8	8.4	9	V
Minimum operating valtage ofter startus	TLx842, TLx844	9	10	11	8.5	10	11.5	V
Minimum operating voltage after startup	TLx843, TLx845	7	7.6	8.2	7	7.6	8.2	V

[†] All typical values are at $T_A = 25$ °C.

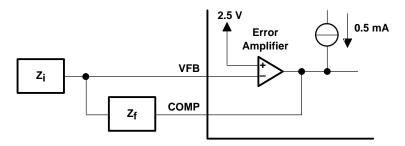
NOTE 4: Adjust V_{CC} above the start threshold before setting it to 15 V.

pulse-width-modulator section

PARAMETER			TL284x			TL384x			
PARAMETER		MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT	
Maximum duty cycle	TLx842, TLx843	95	97	100	95	97	100		
	TLx844, TLx845	46	48	50	46	48	50	%	
Minimum duty cycle	-			0			0		

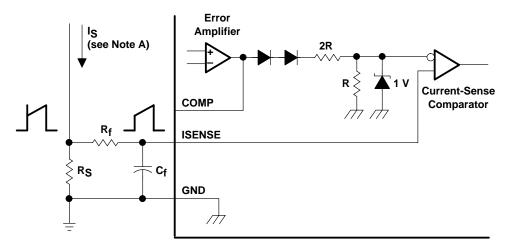
[†] All typical values are at $T_A = 25$ °C.

NOTE 4: Adjust V_{CC} above the start threshold before setting it to 15 V.


electrical characteristics over recommended operating free-air temperature range, V_{CC} = 15 V (see Note 4), R_T = 10 k Ω , C_T = 3.3 nF (unless otherwise specified) (continued)

supply voltage

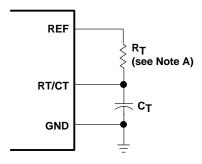
PARAMETER	TEST CONDITIONS		TL284x		TL384x			UNIT
	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP [†]	MAX	UNII
Start-up current			0.5	1		0.5	1	mA
Operating supply current	VFB and ISENSE at 0 V		11	17		11	17	mA
Limiting voltage	I _{CC} = 25 mA		34			34		V


† All typical values are at $T_A = 25^{\circ}C$. NOTE 4: Adjust V_{CC} above the start threshold before setting it to 15 V.

APPLICATION INFORMATION

NOTE A: Error amplifier can source or sink up to 0.5 mA.

Figure 1. Error-Amplifier Configuration

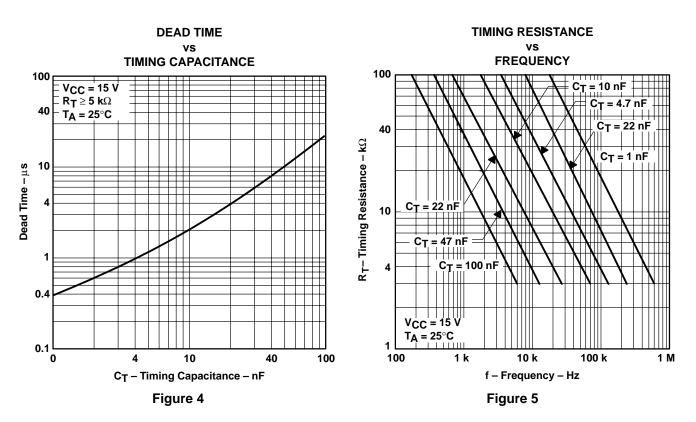


NOTE A: Peak current (Is) is determined by the formula:

$$I_{S(max)} = \frac{1 \text{ V}}{R_S}$$

$$\begin{split} I_{S(max)} &= \frac{1}{R_S} V \\ \text{A small RC filter formed by resistor } R_f \text{ and capacitor } C_f \text{ may be required to suppress switch transients.} \end{split}$$

Figure 2. Current-Sense Circuit



NOTE A: For RT > 5 k\Omega: $f \approx \frac{1.72}{R_T C_T}$

Figure 3. Oscillator Section

APPLICATION INFORMATION

open-loop laboratory test fixture

In the open-loop laboratory test fixture (see Figure 6), high peak currents associated with loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to the GND terminal in a single-point ground. The transistor and 5-k Ω potentiometer sample the oscillator waveform and apply an adjustable ramp to the ISENSE terminal.

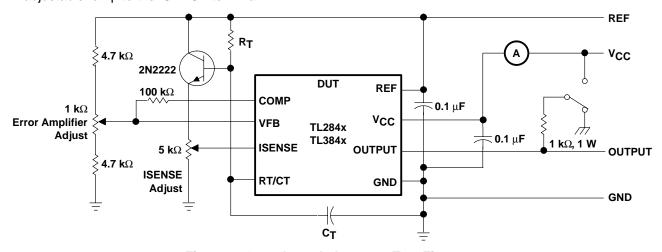


Figure 6. Open-Loop Laboratory Test Fixture

APPLICATION INFORMATION

shutdown technique

The PWM controller (see Figure 7) can be shut down by two methods: either raise the voltage at ISENSE above 1 V or pull the COMP terminal below a voltage two diode drops above ground. Either method causes the output of the PWM comparator to be high (refer to block diagram). The PWM latch is reset dominant so that the output remains low until the next clock cycle after the shutdown condition at the COMP or ISENSE terminal is removed. In one example, an externally latched shutdown can be accomplished by adding an SCR that resets by cycling V_{CC} below the lower UVLO threshold. At this point, the reference turns off, allowing the SCR to reset.

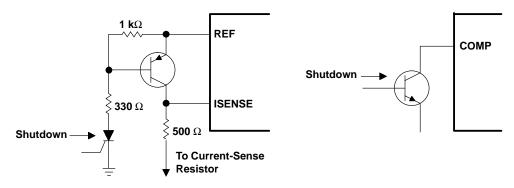


Figure 7. Shutdown Techniques

A fraction of the oscillator ramp can be summed resistively with the current-sense signal to provide slope compensation for converters requiring duty cycles over 50% (see Figure 8). Note that capacitor C forms a filter with R2 to suppress the leading-edge switch spikes.

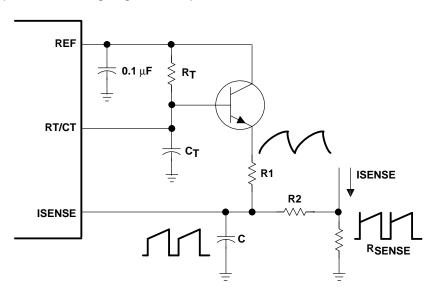


Figure 8. Slope Compensation

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated