

SN74AVCH1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Level-Shifting, Voltage Translation, and 3-State Outputs

1 Features

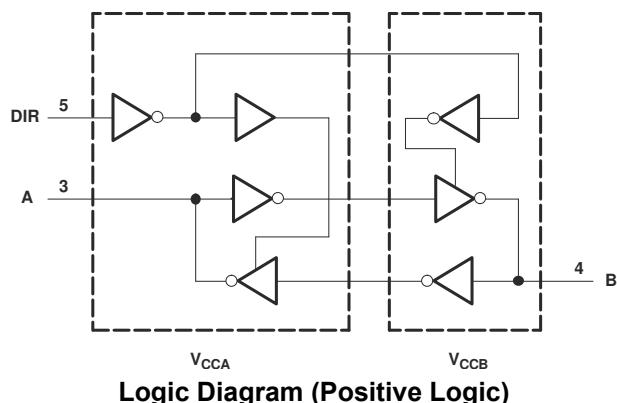
- Available in Texas Instruments' NanoStar™ integrated circuit package
- Available in Texas Instruments' NanoFree™ package
- Control inputs (DIR) V_{IH} and V_{IL} levels are referenced to V_{CCA} voltage
- Bus hold on data inputs eliminates the need for external pullup and pulldown resistors
- V_{CC} isolation
- Fully configurable dual-rail design
- I/Os are 4.6V tolerant
- I_{off} supports partial-power-down mode operation
- Typical max data rates
 - 500Mbps (1.8V to 3.3V translation)
 - 320Mbps (<1.8V to 3.3V translation)
 - 320Mbps (translate to 2.5V or 1.8V)
 - 280Mbps (translate to 1.5V)
 - 240Mbps (translate to 1.2V)
- Latch-up performance exceeds 100mA per JESD 78, class II
- ESD protection exceeds JESD 22
 - Human-Body Model (A114-A): 2000V
 - Machine Model (A115-A): 200V
 - Charged-Device Model (C101): 1000V

2 Applications

- Personal electronics
- Industrial
- Enterprise
- Telecommunications

3 Description

The SN74AVCH1T45 is a single-bit noninverting bus transceiver that uses two separate configurable power-supply rails. The A port is designed to track V_{CCA} , which accepts any supply voltage from 1.2V to 3.6V. The B port is designed to track V_{CCB} , which accepts any supply voltage from 1.2V to 3.6V. This feature allows for universal low-voltage, bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V voltage nodes.


The SN74AVCH1T45 is designed for asynchronous communication between two data buses. The device transmits data from either the A bus to the B bus, or from the B bus to the A bus, depending upon the logic level at the direction-control (DIR) input.

The SN74AVCH1T45 is designed so that the DIR input is referenced to V_{CCA} .

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
SN74AVCH1T45	DCK (SC70, 6)	2.00mm × 1.25mm
	DBV (SOT-23, 6)	2.90mm × 1.60mm
	YZP (DSBGA, 6)	1.50mm × 0.90mm

(1) For all available packages, see [Section 14](#).

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features	1	8.2 Functional Block Diagram.....	18
2 Applications	1	8.3 Feature Description.....	18
3 Description	1	8.4 Device Functional Modes.....	19
4 Description (continued)	3	9 Application and Implementation	20
5 Pin Configuration and Functions	3	9.1 Application Information.....	20
6 Specifications	4	9.2 Typical Applications.....	20
6.1 Absolute Maximum Ratings.....	4	10 Power Supply Recommendations	24
6.2 ESD Ratings.....	4	11 Layout	25
6.3 Recommended Operating Conditions.....	4	11.1 Layout Guidelines.....	25
6.4 Thermal Information.....	5	11.2 Layout Example.....	25
6.5 Electrical Characteristics.....	6	12 Device and Documentation Support	26
6.6 Switching Characteristics, $V_{CCA} = 1.2V$	8	12.1 Documentation Support.....	26
6.7 Switching Characteristics, $V_{CCA} = 1.5V \pm 0.1V$	9	12.2 Receiving Notification of Documentation Updates.....	26
6.8 Switching Characteristics, $V_{CCA} = 1.8V \pm 0.15V$	10	12.3 Support Resources.....	26
6.9 Switching Characteristics, $V_{CCA} = 2.5V \pm 0.2V$	11	12.4 Trademarks.....	26
6.10 Switching Characteristics, $V_{CCA} = 3.3V \pm 0.3V$	12	12.5 Electrostatic Discharge Caution.....	26
6.11 Operating Characteristics.....	13	12.6 Glossary.....	26
6.12 Typical Characteristics.....	14	13 Revision History	26
7 Parameter Measurement Information	17	14 Mechanical, Packaging, and Orderable Information	27
8 Detailed Description	18		
8.1 Overview.....	18		

4 Description (continued)

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. TI does not recommend the use of pullup or pulldown resistors with bus-hold circuitry.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device.

The V_{CC} isolation feature places the outputs in the high-impedance state if either V_{CCA} or V_{CCB} is at GND. The bus-hold circuitry on the powered-up side always stays active.

NanoFree package technology is a major breakthrough in IC packaging concepts, using the die as the package.

5 Pin Configuration and Functions

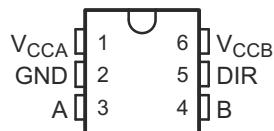


Figure 5-1. DBV or DCK Package 6-Pin SOT-23 or SC70 Top View

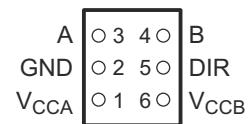


Figure 5-2. YZP Package 6-Pin DSBGA Bottom View

Table 5-1. Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.		
A	3	I/O	Input/output A. Referenced to V_{CCA}
B	4	I/O	Input/output B. Referenced to V_{CCB}
DIR	5	I	Direction control signal. Referenced to V_{CCA}
GND	2	—	Ground
V_{CCA}	1	—	A-port supply voltage. $1.2 \text{ V} \leq V_{CCA} \leq 3.6 \text{ V}$
V_{CCB}	6	—	B-port supply voltage. $1.2 \text{ V} \leq V_{CCB} \leq 3.6 \text{ V}$

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Supply voltage	V_{CCA} and V_{CCB}	-0.5	4.6	V
Input voltage ⁽²⁾	I/O ports (A port)	-0.5	4.6	V
	I/O ports (B port)	-0.5	4.6	
	Control inputs	-0.5	4.6	
Voltage applied to any output in the high-impedance or power-off state ⁽²⁾	A port	-0.5	4.6	V
	B port	-0.5	4.6	
Voltage applied to any output in the high or low state ^{(2) (3)}	A port	-0.5	$V_{CCA} + 0.5$	V
	B port	-0.5	$V_{CCB} + 0.5$	
Input clamp current	$V_I < 0$		-50	mA
Output clamp current	$V_O < 0$		-50	mA
Continuous output current			±50	mA
Continuous through current	V_{CCA} , V_{CCB} , or GND		±100	mA
Junction temperature, T_J		-40	150	°C
Storage temperature, T_{stg}		-65	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
(3) The output positive-voltage rating may be exceeded up to 4.6V maximum if the output current rating is observed.

6.2 ESD Ratings

		VALUE	UNIT
$V_{(ESD)}$	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	
	Machine model, per A115-A	±200	

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

see [\(1\)](#) [\(2\)](#) [\(3\)](#) [\(4\)](#) [\(5\)](#)

			MIN	MAX	UNIT
V_{CCA}	Supply voltage		1.2	3.6	V
V_{CCB}	Supply voltage		1.2	3.6	V
V_{IH}	High-level input voltage ⁽¹⁾	Data inputs ⁽⁴⁾	$V_{CCI} = 1.2 \text{ V to } 1.95 \text{ V}$	$V_{CCI} \times 0.65$	V
			$V_{CCI} = 1.95 \text{ V to } 2.7 \text{ V}$	1.6	
			$V_{CCI} = 2.7 \text{ V to } 3.6 \text{ V}$	2	
V_{IL}	Low-level input voltage ⁽¹⁾	Data inputs ⁽⁴⁾	$V_{CCI} = 1.2 \text{ V to } 1.95 \text{ V}$	$V_{CCI} \times 0.35$	V
			$V_{CCI} = 1.95 \text{ V to } 2.7 \text{ V}$	0.7	
			$V_{CCI} = 2.7 \text{ V to } 3.6 \text{ V}$	0.8	
V_{IH}	High-level input voltage	DIR (referenced to V_{CCA}) ⁽⁵⁾	$V_{CCI} = 1.2 \text{ V to } 1.95 \text{ V}$	$V_{CCA} \times 0.65$	V
			$V_{CCI} = 1.95 \text{ V to } 2.7 \text{ V}$	1.6	
			$V_{CCI} = 2.7 \text{ V to } 3.6 \text{ V}$	2	

6.3 Recommended Operating Conditions (continued)

see (1) (2) (3) (4) (5)

			MIN	MAX	UNIT
V_{IL}	Low-level input voltage	DIR (referenced to V_{CCA}) ⁽⁵⁾	$V_{CCI} = 1.2 \text{ V to } 1.95 \text{ V}$	$V_{CCA} \times 0.35$	V
			$V_{CCI} = 1.95 \text{ V to } 2.7 \text{ V}$	0.7	
			$V_{CCI} = 2.7 \text{ V to } 3.6 \text{ V}$	0.8	
V_I	Input voltage	Control Inputs ⁽³⁾		0	3.6
V_O	Output voltage ⁽²⁾	Active state		0	V_{CCO}
		3-state		0	3.6
I_{OH}	High-level output current		$V_{CCO} = 1.2 \text{ V}$	-3	mA
			$V_{CCO} = 1.4 \text{ V to } 1.6 \text{ V}$	-6	
			$V_{CCO} = 1.65 \text{ V to } 1.95 \text{ V}$	-8	
			$V_{CCO} = 2.3 \text{ V to } 2.7 \text{ V}$	-9	
			$V_{CCO} = 3 \text{ V to } 3.6 \text{ V}$	-12	
I_{OL}	Low-level output current		$V_{CCO} = 1.2 \text{ V}$	3	mA
			$V_{CCO} = 1.4 \text{ V to } 1.6 \text{ V}$	6	
			$V_{CCO} = 1.65 \text{ V to } 1.95 \text{ V}$	8	
			$V_{CCO} = 2.3 \text{ V to } 2.7 \text{ V}$	9	
			$V_{CCO} = 3 \text{ V to } 3.6 \text{ V}$	12	
$\Delta t/\Delta v$	Input transition rise or fall rate				5 ns/V
T_A	Operating free-air temperature				-40 to 85 °C

(1) V_{CCI} is the V_{CC} associated with the input port.

(2) V_{CCO} is the V_{CC} associated with the output port.

(3) All unused control inputs of the device must be held at V_{CCI} or GND for proper device operation.

(4) For V_{CCI} values not specified in the data sheet, V_{IH} min = $V_{CCI} \times 0.7\text{V}$, V_{IL} max = $V_{CCI} \times 0.3\text{V}$.

(5) For V_{CCI} values not specified in the data sheet, V_{IH} min = $V_{CCA} \times 0.7\text{V}$, V_{IL} max = $V_{CCA} \times 0.3\text{V}$.

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾	SN74AVCH1T45			UNIT
	DBV (SOT-23)	DCK (SC70)	YZP (DSBGA)	
	6 PINS	6 PINS	6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance ⁽²⁾	210.5	239.9	130 °C/W
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	130.6	175.0	54 °C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	93.3	94.4	51 °C/W
Ψ_{JT}	Junction-to-top characterization parameter	69.0	75.6	1 °C/W
Ψ_{JB}	Junction-to-board characterization parameter	N/A	93.9	50 °C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application note.

(2) The package thermal impedance is calculated in accordance with JESD 51-7.

6.5 Electrical Characteristics

All typical limits apply over $T_A = 25^\circ\text{C}$, and all maximum and minimum limits apply over $T_A = -40^\circ\text{C}$ to 85°C (unless otherwise noted).^{(1) (2) (5) (6)}

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT		
V_{OH}	$I_{OH} = -100 \mu\text{A}$, $V_I = V_{IH}$	$V_{CCA} = V_{CCB} = 1.2 \text{ V to } 3.6 \text{ V}$	$V_{CCO} = 0.2 \text{ V}$			V		
	$I_{OH} = -3 \text{ mA}$, $V_I = V_{IH}$	$V_{CCA} = V_{CCB} = 1.2 \text{ V}$	0.95					
	$I_{OH} = -6 \text{ mA}$, $V_I = V_{IH}$	$V_{CCA} = V_{CCB} = 1.4 \text{ V}$	1.05					
	$I_{OH} = -8 \text{ mA}$, $V_I = V_{IH}$	$V_{CCA} = V_{CCB} = 1.65 \text{ V}$	1.2					
	$I_{OH} = -9 \text{ mA}$, $V_I = V_{IH}$	$V_{CCA} = V_{CCB} = 2.3 \text{ V}$	1.75					
	$I_{OH} = -12 \text{ mA}$, $V_I = V_{IH}$	$V_{CCA} = V_{CCB} = 3 \text{ V}$	2.3					
V_{OL}	$I_{OL} = 100 \mu\text{A}$, $V_I = V_{IL}$	$V_{CCA} = V_{CCB} = 1.2 \text{ V to } 3.6 \text{ V}$	0.2			V		
	$I_{OL} = 3 \text{ mA}$, $V_I = V_{IL}$	$V_{CCA} = V_{CCB} = 1.2 \text{ V}$	0.15					
	$I_{OL} = 6 \text{ mA}$, $V_I = V_{IL}$	$V_{CCA} = V_{CCB} = 1.4 \text{ V}$	0.35					
	$I_{OL} = 8 \text{ mA}$, $V_I = V_{IL}$	$V_{CCA} = V_{CCB} = 1.65 \text{ V}$	0.45					
	$I_{OL} = 9 \text{ mA}$, $V_I = V_{IL}$	$V_{CCA} = V_{CCB} = 2.3 \text{ V}$	0.55					
	$I_{OL} = 12 \text{ mA}$, $V_I = V_{IL}$	$V_{CCA} = V_{CCB} = 3 \text{ V}$	0.7					
I_I	Control Input (DIR)	$V_I = V_{CCA}$ or GND	$V_{CCA} = V_{CCB} = 1.2 \text{ V to } 3.6 \text{ V}$	± 0.025		μA		
I_{BHL}	Bus-hold low sustaining current ⁽³⁾	$V_I = 0.42 \text{ V}$	$V_{CCA} = V_{CCB} = 1.2 \text{ V}$	25		μA		
		$V_I = 0.49 \text{ V}$	$V_{CCA} = V_{CCB} = 1.4 \text{ V}$	15				
		$V_I = 0.58 \text{ V}$	$V_{CCA} = V_{CCB} = 1.65 \text{ V}$	25				
		$V_I = 0.7 \text{ V}$	$V_{CCA} = V_{CCB} = 2.3 \text{ V}$	45				
		$V_I = 0.8 \text{ V}$	$V_{CCA} = V_{CCB} = 3.3 \text{ V}$	100				
I_{BHH}	Bus-hold high sustaining current ⁽⁴⁾	$V_I = 0.78 \text{ V}$	$V_{CCA} = V_{CCB} = 1.2 \text{ V}$	-25		μA		
		$V_I = 0.91 \text{ V}$	$V_{CCA} = V_{CCB} = 1.4 \text{ V}$	-15				
		$V_I = 1.07 \text{ V}$	$V_{CCA} = V_{CCB} = 1.65 \text{ V}$	-25				
		$V_I = 1.6 \text{ V}$	$V_{CCA} = V_{CCB} = 2.3 \text{ V}$	-45				
		$V_I = 2 \text{ V}$	$V_{CCA} = V_{CCB} = 3.3 \text{ V}$	-100				
I_{BHLO}	Bus-hold low overdrive current ⁽⁵⁾	$V_I = 0 \text{ to } V_{CC}$	$V_{CCA} = V_{CCB} = 1.2 \text{ V}$	50		μA		
			$V_{CCA} = V_{CCB} = 1.6 \text{ V}$	125				
			$V_{CCA} = V_{CCB} = 1.95 \text{ V}$	200				
			$V_{CCA} = V_{CCB} = 2.7 \text{ V}$	300				
			$V_{CCA} = V_{CCB} = 3.6 \text{ V}$	500				
I_{BHHO}	Bus-hold high overdrive current ⁽⁶⁾	$V_I = 0 \text{ to } V_{CC}$	$V_{CCA} = V_{CCB} = 1.2 \text{ V}$	-50		μA		
			$V_{CCA} = V_{CCB} = 1.6 \text{ V}$	-125				
			$V_{CCA} = V_{CCB} = 1.95 \text{ V}$	-200				
			$V_{CCA} = V_{CCB} = 2.7 \text{ V}$	-300				
			$V_{CCA} = V_{CCB} = 3.6 \text{ V}$	-500				
I_{off}	Input and output Power-off leakage current	$V_I = 0 \text{ V to } 3.6 \text{ V}$, $V_O = 0 \text{ V to } 3.6 \text{ V}$	$V_{CCA} = 0 \text{ V}$, $V_{CCB} = 0 \text{ V to } 3.6 \text{ V}$	± 0.1		μA		
			$V_{CCA} = 0 \text{ V to } 3.6 \text{ V}$, $V_{CCB} = 0 \text{ V}$	± 0.1				
I_{OZ}	Off-state output current ⁽⁷⁾	$V_I = V_{CC1}$ or GND, $V_O = V_{CC0}$ or GND	$V_{CCA} = 0 \text{ V}$, $V_{CCB} = 3.6 \text{ V}$	± 0.5		μA		
			$V_{CCA} = 3.6 \text{ V}$, $V_{CCB} = 0 \text{ V}$	± 0.5				
I_{CCA}	Supply current A port	$V_I = V_{CC1}$ or GND, $I_O = 0$	$V_{CCA} = V_{CCB} = 1.2 \text{ V to } 3.6 \text{ V}$	10		μA		
			$V_{CCA} = 0 \text{ V}$, $V_{CCB} = 3.6 \text{ V}$	-2				
			$V_{CCA} = 3.6 \text{ V}$, $V_{CCB} = 0 \text{ V}$	10				

6.5 Electrical Characteristics (continued)

All typical limits apply over $T_A = 25^\circ\text{C}$, and all maximum and minimum limits apply over $T_A = -40^\circ\text{C}$ to 85°C (unless otherwise noted). (1) (2) (5) (6)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I_{CCB} Supply current B port	$V_I = V_{CCI}$ or GND, $I_O = 0$	$V_{CCA} = V_{CCB} = 1.2\text{ V}$ to 3.6 V		10	μA
		$V_{CCA} = 0\text{ V}$, $V_{CCB} = 3.6\text{ V}$		10	
		$V_{CCA} = 3.6\text{ V}$, $V_{CCB} = 0\text{ V}$		-2	
$I_{CCA} + I_{CCB}$	Combined supply current	$V_I = V_{CCI}$ or GND, $I_O = 0$	$V_{CCA} = V_{CCB} = 1.2\text{ V}$ to 3.6 V	20	μA
C_i	Input capacitance control pin (DIR)	$V_I = 3.3\text{ V}$ or GND	$V_{CCA} = V_{CCB} = 3.3\text{ V}$	2.5	pF
C_{io}	Input and output capacitance A or B port	$V_O = 3.3\text{ V}$ or GND	$V_{CCA} = V_{CCB} = 3.3\text{ V}$	6	pF

- (1) V_{CCO} is the V_{CC} associated with the output port.
- (2) V_{CCI} is the V_{CC} associated with the input port.
- (3) The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. Measure I_{BHL} after lowering V_{IN} to GND and then raising it to V_{IL} max.
- (4) The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. Measure I_{BHH} after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.
- (5) An external driver must source at least I_{BHO} to switch this node from low to high.
- (6) An external driver must sink at least I_{BHO} to switch this node from high to low.
- (7) For I/O ports, the parameter I_{OZ} includes the input leakage current.

6.6 Switching Characteristics, $V_{CCA} = 1.2V$

$T_A = 25^\circ C$ (see Figure 7-1).

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL} Propagation delay time: low-to-high-level output and high-to-low level output	A	B	$V_{CCB} = 1.2 V$	3.3			ns
			$V_{CCB} = 1.5 V$	2.7			
			$V_{CCB} = 1.8 V$	2.4			
			$V_{CCB} = 2.5 V$	2.3			
			$V_{CCB} = 3.3 V$	2.4			
t_{PLH}, t_{PHL} Propagation delay time: low-to-high-level output and high-to-low level output	B	A	$V_{CCB} = 1.2 V$	3.3			ns
			$V_{CCB} = 1.5 V$	3.1			
			$V_{CCB} = 1.8 V$	2.9			
			$V_{CCB} = 2.5 V$	2.8			
			$V_{CCB} = 3.3 V$	2.7			
t_{PZH}, t_{PZL} Enable time: to high level ⁽¹⁾ and to low level ⁽¹⁾	DIR	A	$V_{CCB} = 1.2 V$	5.1			ns
			$V_{CCB} = 1.5 V$	5.2			
			$V_{CCB} = 1.8 V$	5.3			
			$V_{CCB} = 2.5 V$	5.2			
			$V_{CCB} = 3.3 V$	3.7			
t_{PZH}, t_{PZL} Enable time: to high level ⁽¹⁾ and to low level ⁽¹⁾	DIR	B	$V_{CCB} = 1.2 V$	5.3			ns
			$V_{CCB} = 1.5 V$	4.3			
			$V_{CCB} = 1.8 V$	4			
			$V_{CCB} = 2.5 V$	3.3			
			$V_{CCB} = 3.3 V$	3.7			
t_{PHZ}, t_{PLZ} Disable time: from high level and from low level	DIR	A	$V_{CCB} = 1.2 V$	8.5			ns
			$V_{CCB} = 1.5 V$	6.9			
			$V_{CCB} = 1.8 V$	6.4			
			$V_{CCB} = 2.5 V$	5.5			
			$V_{CCB} = 3.3 V$	6.1			
t_{PHZ}, t_{PLZ} Disable time: from high level and from low level	DIR	B	$V_{CCB} = 1.2 V$	8.3			ns
			$V_{CCB} = 1.5 V$	7.8			
			$V_{CCB} = 1.8 V$	7.7			
			$V_{CCB} = 2.5 V$	7.5			
			$V_{CCB} = 3.3 V$	5.9			

(1) The enable time is a calculated value, derived using the formula shown in [Enable Times](#).

6.7 Switching Characteristics, $V_{CCA} = 1.5V \pm 0.1V$

All typical limits apply over $T_A = 25^\circ\text{C}$, and all maximum and minimum limits apply over $T_A = -40^\circ\text{C}$ to 85°C (unless otherwise noted) (see [Figure 7-1](#)).

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL} Propagation delay time: low-to-high-level output and high-to-low level output	A	B	$V_{CCB} = 1.2 \text{ V}$		2.9		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$	0.7	5.6		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$	0.6	4.2		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0.5	4.2		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.5	3.8		
t_{PLH}, t_{PHL} Propagation delay time: low-to-high-level output and high-to-low level output	B	A	$V_{CCB} = 1.2 \text{ V}$		2.6		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$	0.6	5.5		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$	0.4	5.3		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0.3	4.9		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.3	4.8		
t_{PZH}, t_{PZL} Enable time: to high level ⁽¹⁾ and to low level ⁽¹⁾	DIR	A	$V_{CCB} = 1.2 \text{ V}$		3.8		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$	1.6	6.7		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$	1.5	6.8		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0.3	6.9		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.9	6.9		
t_{PZH}, t_{PZL} Enable time: to high level ⁽¹⁾ and to low level ⁽¹⁾	DIR	B	$V_{CCB} = 1.2 \text{ V}$		5.1		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$	1.8	8.1		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$	1.6	7.1		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	1.1	4.7		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.4	4.5		
t_{PHZ}, t_{PLZ} Disable time: from high level and from low level	DIR	A	$V_{CCB} = 1.2 \text{ V}$		7.7		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$		13.6		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$		12.4		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		9.6		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		9.3		
t_{PHZ}, t_{PLZ} Disable time: from high level and from low level	DIR	B	$V_{CCB} = 1.2 \text{ V}$		6.7		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$		12.3		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$		12		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		11.1		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10.7		

(1) The enable time is a calculated value, derived using the formula shown in [Enable Times](#).

6.8 Switching Characteristics, $V_{CCA} = 1.8V \pm 0.15V$

All typical limits apply over $T_A = 25^\circ\text{C}$, and all maximum and minimum limits apply over $T_A = -40^\circ\text{C}$ to 85°C (unless otherwise noted) (see [Figure 7-1](#)).

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL} Propagation delay time: low-to-high-level output and high-to-low level output	A	B	$V_{CCB} = 1.2\text{ V}$		2.8		ns
			$V_{CCB} = 1.5\text{ V} \pm 0.1\text{ V}$	0.6		5.3	
			$V_{CCB} = 1.8\text{ V} \pm 0.15\text{ V}$	0.5		5	
			$V_{CCB} = 2.5\text{ V} \pm 0.2\text{ V}$	0.4		3.9	
			$V_{CCB} = 3.3\text{ V} \pm 0.3\text{ V}$	0.4		3.4	
t_{PLH}, t_{PHL} Propagation delay time: low-to-high-level output and high-to-low level output	B	A	$V_{CCB} = 1.2\text{ V}$		2.3		ns
			$V_{CCB} = 1.5\text{ V} \pm 0.1\text{ V}$	0.5		5.2	
			$V_{CCB} = 1.8\text{ V} \pm 0.15\text{ V}$	0.4		5	
			$V_{CCB} = 2.5\text{ V} \pm 0.2\text{ V}$	0.3		4.6	
			$V_{CCB} = 3.3\text{ V} \pm 0.3\text{ V}$	0.2		4.4	
t_{PZH}, t_{PZL} Enable time: to high level ⁽¹⁾ and to low level ⁽¹⁾	DIR	A	$V_{CCB} = 1.2\text{ V}$		3.8		ns
			$V_{CCB} = 1.5\text{ V} \pm 0.1\text{ V}$	1.6		5.9	
			$V_{CCB} = 1.8\text{ V} \pm 0.15\text{ V}$	1.6		5.9	
			$V_{CCB} = 2.5\text{ V} \pm 0.2\text{ V}$	1.6		5.9	
			$V_{CCB} = 3.3\text{ V} \pm 0.3\text{ V}$	0.5		6	
t_{PZH}, t_{PZL} Enable time: to high level ⁽¹⁾ and to low level ⁽¹⁾	DIR	B	$V_{CCB} = 1.2\text{ V}$		5		ns
			$V_{CCB} = 1.5\text{ V} \pm 0.1\text{ V}$	1.8		7.7	
			$V_{CCB} = 1.8\text{ V} \pm 0.15\text{ V}$	1.4		6.8	
			$V_{CCB} = 2.5\text{ V} \pm 0.2\text{ V}$	1		4.4	
			$V_{CCB} = 3.3\text{ V} \pm 0.3\text{ V}$	1.4		4.3	
t_{PHZ}, t_{PLZ} Disable time: from high level and from low level	DIR	A	$V_{CCB} = 1.2\text{ V}$		7.3		ns
			$V_{CCB} = 1.5\text{ V} \pm 0.1\text{ V}$			12.9	
			$V_{CCB} = 1.8\text{ V} \pm 0.15\text{ V}$			11.8	
			$V_{CCB} = 2.5\text{ V} \pm 0.2\text{ V}$			9	
			$V_{CCB} = 3.3\text{ V} \pm 0.3\text{ V}$			8.7	
t_{PHZ}, t_{PLZ} Disable time: from high level and from low level	DIR	B	$V_{CCB} = 1.2\text{ V}$		6.5		ns
			$V_{CCB} = 1.5\text{ V} \pm 0.1\text{ V}$			11.2	
			$V_{CCB} = 1.8\text{ V} \pm 0.15\text{ V}$			10.9	
			$V_{CCB} = 2.5\text{ V} \pm 0.2\text{ V}$			9.8	
			$V_{CCB} = 3.3\text{ V} \pm 0.3\text{ V}$			9.4	

(1) The enable time is a calculated value, derived using the formula shown in [Enable Times](#).

6.9 Switching Characteristics, $V_{CCA} = 2.5V \pm 0.2V$

All typical limits apply over $T_A = 25^\circ\text{C}$, and all maximum and minimum limits apply over $T_A = -40^\circ\text{C}$ to 85°C (unless otherwise noted) (see [Figure 7-1](#)).

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL} Propagation delay time: low-to-high-level output and high-to-low level output	A	B	$V_{CCB} = 1.2 \text{ V}$		2.6		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$	0.5	4.9		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$	0.4	4.6		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0.3	3.4		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.3	3		
t_{PLH}, t_{PHL} Propagation delay time: low-to-high-level output and high-to-low level output	B	A	$V_{CCB} = 1.2 \text{ V}$		2.2		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$	0.4	4.2		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$	0.3	3.8		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0.2	3.4		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.2	3.3		
t_{PZH}, t_{PZL} Enable time: to high level ⁽¹⁾ and to low level ⁽¹⁾	DIR	A	$V_{CCB} = 1.2 \text{ V}$		2.8		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$	0.3	3.8		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$	0.8	3.8		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0.4	3.8		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.5	3.8		
t_{PZH}, t_{PZL} Enable time: to high level ⁽¹⁾ and to low level ⁽¹⁾	DIR	B	$V_{CCB} = 1.2 \text{ V}$		4.9		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$	2	7.6		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$	1.5	6.5		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0.6	4.1		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1	4		
t_{PHZ}, t_{PLZ} Disable time: from high level and from low level	DIR	A	$V_{CCB} = 1.2 \text{ V}$		7.1		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$		11.8		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$		10.3		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		7.5		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		7.3		
t_{PHZ}, t_{PLZ} Disable time: from high level and from low level	DIR	B	$V_{CCB} = 1.2 \text{ V}$		5.4		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$		8.6		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$		8.1		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		7		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		6.6		

(1) The enable time is a calculated value, derived using the formula shown in [Enable Times](#).

6.10 Switching Characteristics, $V_{CCA} = 3.3V \pm 0.3V$

All typical limits apply over $T_A = 25^\circ\text{C}$, and all maximum and minimum limits apply over $T_A = -40^\circ\text{C}$ to 85°C (unless otherwise noted) (see [Figure 7-1](#)).

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL} Propagation delay time: low-to-high-level output and high-to-low level output	A	B	$V_{CCB} = 1.2 \text{ V}$		2.6		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$	0.4	4.7		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$	0.3	4.4		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0.2	3.3		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.2	2.8		
t_{PLH}, t_{PHL} Propagation delay time: low-to-high-level output and high-to-low level output	B	A	$V_{CCB} = 1.2 \text{ V}$		2.2		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$	0.4	3.8		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$	0.3	3.4		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0.2	3		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.1	2.8		
t_{PZH}, t_{PZL} Enable time: to high level ⁽¹⁾ and to low level ⁽¹⁾	DIR	A	$V_{CCB} = 1.2 \text{ V}$		3.1		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$	1.3	4.3		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$	1.3	4.3		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	1.3	4.3		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.3	4.3		
t_{PZH}, t_{PZL} Enable time: to high level ⁽¹⁾ and to low level ⁽¹⁾	DIR	B	$V_{CCB} = 1.2 \text{ V}$		4		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$	0.7	7.4		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$	0.6	6.5		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0.7	4		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	3.9		
t_{PHZ}, t_{PLZ} Disable time: from high level and from low level	DIR	A	$V_{CCB} = 1.2 \text{ V}$		6.2		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$		11.2		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$		9.9		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		7		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		6.7		
t_{PHZ}, t_{PLZ} Disable time: from high level and from low level	DIR	B	$V_{CCB} = 1.2 \text{ V}$		5.7		ns
			$V_{CCB} = 1.5 \text{ V} \pm 0.1 \text{ V}$		8.9		
			$V_{CCB} = 1.8 \text{ V} \pm 0.15 \text{ V}$		8.5		
			$V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$		7.2		
			$V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$		6.8		

(1) The enable time is a calculated value, derived using the formula shown in [Enable Times](#).

6.11 Operating Characteristics

$T_A = 25^\circ\text{C}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	TYP	UNIT	
C_{pdA} Power dissipation capacitance per transceiver ⁽¹⁾ port A	A	B	$C_L = 0 \text{ pF}$, $f = 10 \text{ MHz}$, $t_r = t_f = 1 \text{ ns}$	$V_{CCA} = V_{CCB} = 1.2 \text{ V}$	3	
				$V_{CCA} = V_{CCB} = 1.5 \text{ V}$	3	
				$V_{CCA} = V_{CCB} = 1.8 \text{ V}$	3	
				$V_{CCA} = V_{CCB} = 2.5 \text{ V}$	3	
				$V_{CCA} = V_{CCB} = 3.3 \text{ V}$	4	
	B	A		$V_{CCA} = V_{CCB} = 1.2 \text{ V}$	14	
				$V_{CCA} = V_{CCB} = 1.5 \text{ V}$	14	
				$V_{CCA} = V_{CCB} = 1.8 \text{ V}$	14	
				$V_{CCA} = V_{CCB} = 2.5 \text{ V}$	15	
				$V_{CCA} = V_{CCB} = 3.3 \text{ V}$	16	
C_{pdB} Power dissipation capacitance per transceiver ⁽¹⁾ port B	A	B	$C_L = 0 \text{ pF}$, $f = 10 \text{ MHz}$, $t_r = t_f = 1 \text{ ns}$	$V_{CCA} = V_{CCB} = 1.2 \text{ V}$	14	
				$V_{CCA} = V_{CCB} = 1.5 \text{ V}$	14	
				$V_{CCA} = V_{CCB} = 1.8 \text{ V}$	14	
				$V_{CCA} = V_{CCB} = 2.5 \text{ V}$	15	
				$V_{CCA} = V_{CCB} = 3.3 \text{ V}$	16	
	B	A		$V_{CCA} = V_{CCB} = 1.2 \text{ V}$	3	
				$V_{CCA} = V_{CCB} = 1.5 \text{ V}$	3	
				$V_{CCA} = V_{CCB} = 1.8 \text{ V}$	3	
				$V_{CCA} = V_{CCB} = 2.5 \text{ V}$	3	
				$V_{CCA} = V_{CCB} = 3.3 \text{ V}$	4	

(1) See [CMOS Power Consumption and Cpd Calculation](#).

6.12 Typical Characteristics

$T_A = 25^\circ\text{C}$

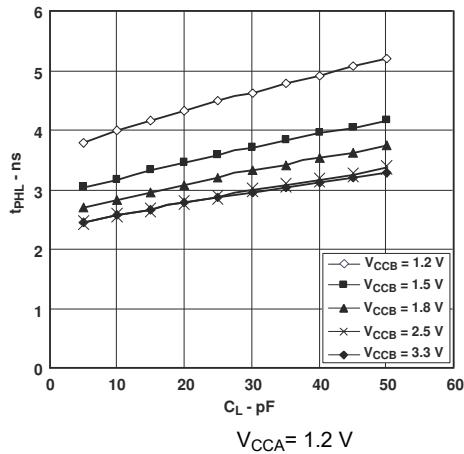


Figure 6-1. Typical Propagation Delay (A to B) vs Load Capacitance

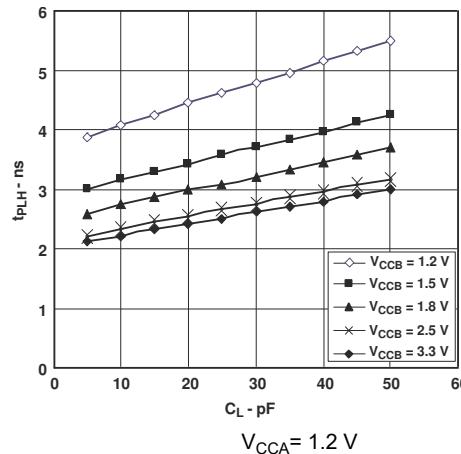


Figure 6-2. Typical Propagation Delay (A to B) vs Load Capacitance

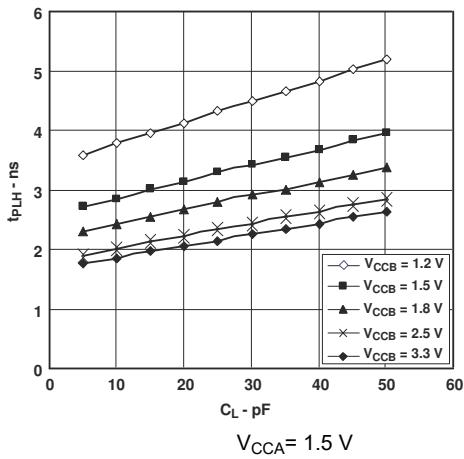


Figure 6-3. Typical Propagation Delay (A to B) vs Load Capacitance

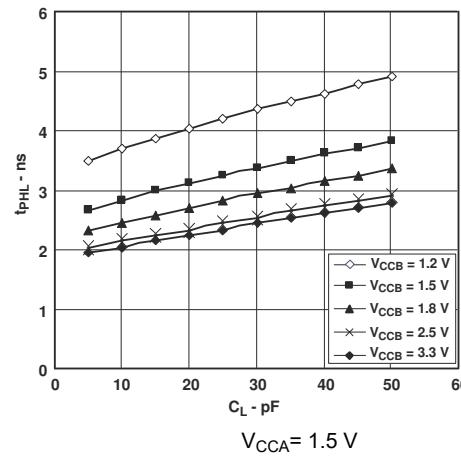


Figure 6-4. Typical Propagation Delay (A to B) vs Load Capacitance

6.12 Typical Characteristics (continued)

$T_A = 25^\circ\text{C}$

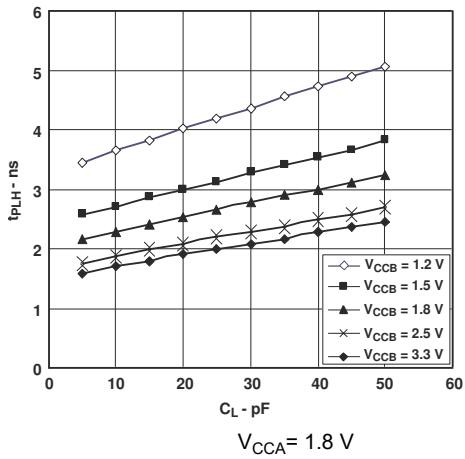


Figure 6-5. Typical Propagation Delay (A to B) vs Load Capacitance



Figure 6-6. Typical Propagation Delay (A to B) vs Load Capacitance

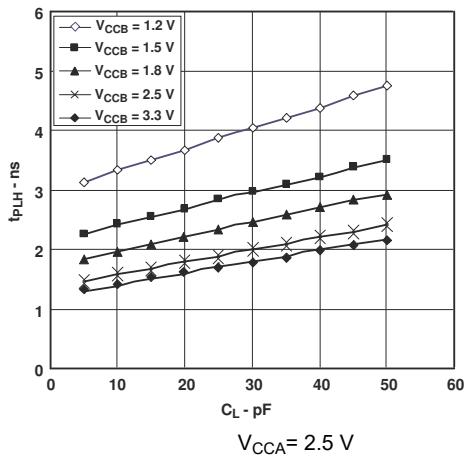


Figure 6-7. Typical Propagation Delay (A to B) vs Load Capacitance

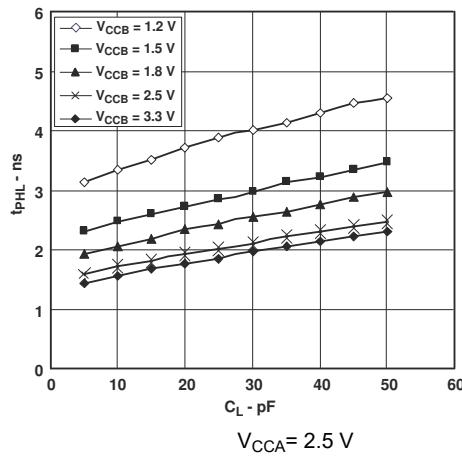


Figure 6-8. Typical Propagation Delay (A to B) vs Load Capacitance

6.12 Typical Characteristics (continued)

$T_A = 25^\circ\text{C}$

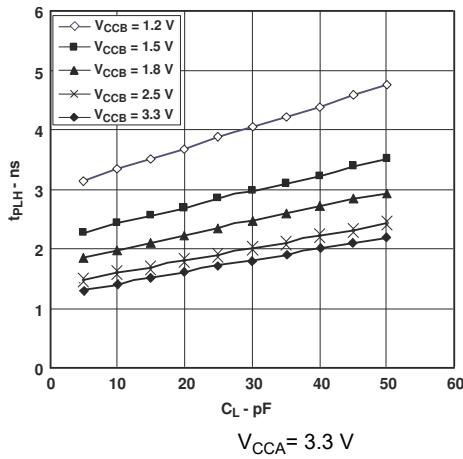
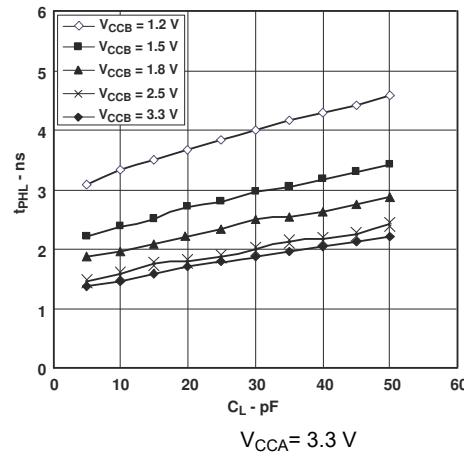
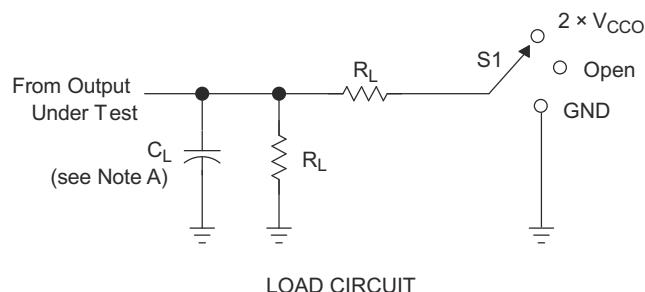
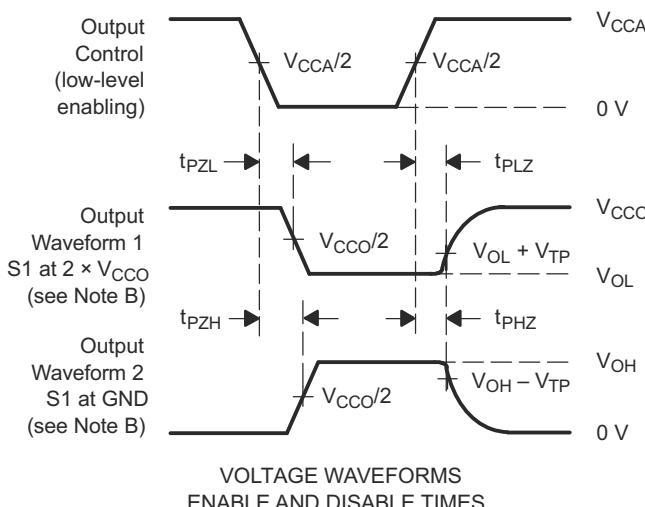
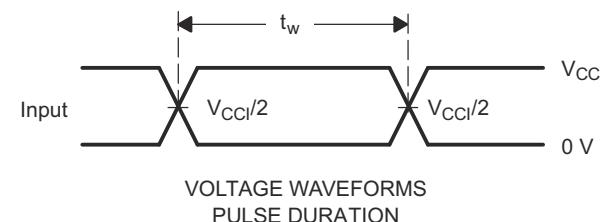
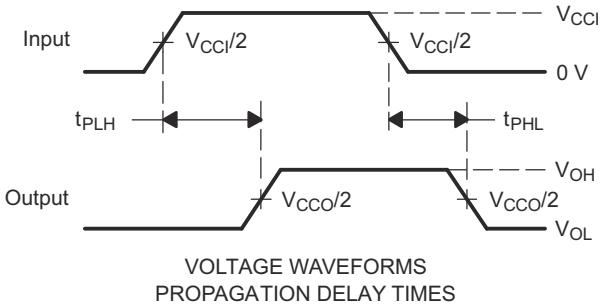


Figure 6-9. Typical Propagation Delay (A to B) vs Load Capacitance

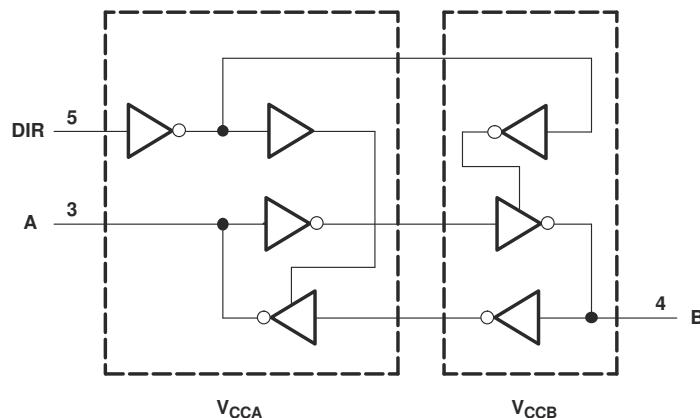



Figure 6-10. Typical Propagation Delay (A to B) vs Load Capacitance

7 Parameter Measurement Information

TEST	S1
t_{pd}	Open
t_{PLZ}/t_{PZL}	$2 \times V_{CCO}$
t_{PHZ}/t_{PZH}	GND

V_{CCO}	C_L	R_L	V_{TP}
1.2 V	15 pF	2 kW	0.1 V
$1.5 V \pm 0.1 V$	15 pF	2 kW	0.1 V
$1.8 V \pm 0.15 V$	15 pF	2 kW	0.15 V
$2.5 V \pm 0.2 V$	15 pF	2 kW	0.15 V
$3.3 V \pm 0.3 V$	15 pF	2 kW	0.3 V

- NOTES: A. C_L includes probe and jig capacitance.
 B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, $Z_O = 50 \Omega$, $dv/dt \geq 1 \text{ V/ns}$.
 D. The outputs are measured one at a time, with one transition per measurement.
 E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 F. t_{PZL} and t_{PZH} are the same as t_{en} .
 G. t_{PLH} and t_{PHL} are the same as t_{pd} .
 H. V_{CCI} is the V_{CC} associated with the input port.
 I. V_{CCO} is the V_{CC} associated with the output port.


Figure 7-1. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

The SN74AVCH1T45 is a single-bit, dual-supply, noninverting voltage level translator. Pins A and DIR are referenced to V_{CCA} , while pin B is referenced to V_{CCB} . Both the A port and B port can accept I/O voltages ranging from 1.2V to 3.6V. The high on DIR allows data transmission from Port A to Port B and a low on DIR allows data transmission from Port B to Port A. See application report, [AVC Logic Family Technology and Applications](#), for more information.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Fully Configurable Dual-Rail Design

Both V_{CCA} and V_{CCB} can be supplied at any voltage from 1.2V to 3.6V, making the device an excellent choice for translating between any of the voltage nodes (1.2V, 1.8V, 2.5V and 3.3V).

8.3.2 Supports High-Speed Translation

SN74AVCH1T45 can support high data rate applications, which can be calculated from the maximum propagation delay. This support is dependent on output load. For example, a 1.8V to 3.3V conversion yields a maximum data rate of 500Mbps.

8.3.3 Partial-Power-Down Mode Operation

I_{off} circuitry disables the outputs, preventing damaging current backflow through the SN74AVCH1T45 when the device is powered down. This event can occur in applications where subsections of a system are powered down (partial-power-down) to reduce power consumption.

8.3.4 Active Bus-Hold Circuitry

Active bus-hold circuitry holds unused or undriven data inputs at a valid logic state, which helps with board space savings and reduced component costs. TI does not recommend using pullup or pulldown resistors with bus-hold circuitry. See applications report, [Bus-Hold Circuit](#), for more information.

8.3.5 V_{CC} Isolation

The V_{CC} isolation feature places both ports in a high-impedance state (I_{OZ} as shown in [Electrical Characteristics](#)) if either V_{CCA} or V_{CCB} are at GND (or $< 0.4V$). This feature prevents false logic levels from being presented to either bus.

8.4 Device Functional Modes

Table 8-1 lists the functional modes of the SN74AVCH1T45.

Table 8-1. Function Table

DIR	OPERATION
L	B data to A bus
H	A data to B bus

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The SN74AVCH1T45 device can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The maximum data rate can be up to 500Mbps when the device translate signal is from 1.8V to 3.3V.

9.2 Typical Applications

9.2.1 Unidirectional Logic Level-Shifting Application

Figure 9-1 shows an example of the SN74AVCH1T45 being used in a unidirectional logic level-shifting application.

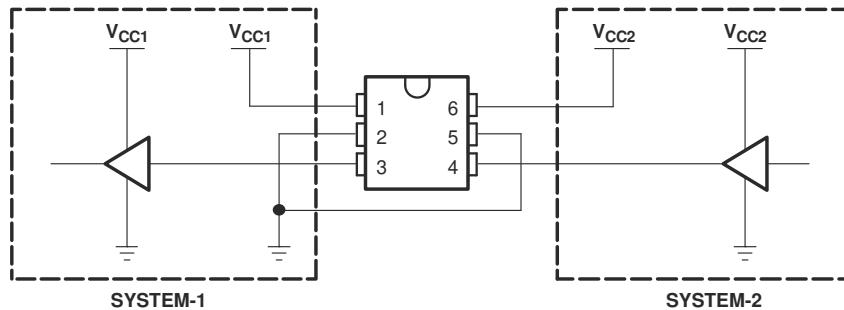


Figure 9-1. Unidirectional Logic Level-Shifting Application Diagram

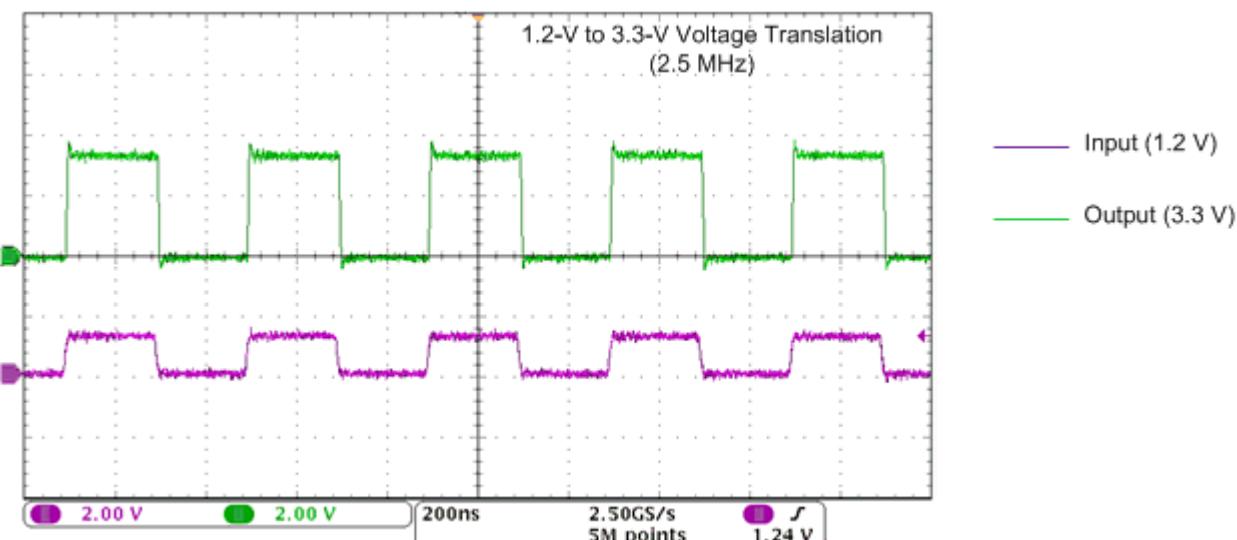
Table 9-1. Data Transmission: SYSTEM-1 and SYSTEM-2

PIN	NAME	FUNCTION	DESCRIPTION
1	V _{CCA}	V _{CC1}	SYSTEM-1 supply voltage (1.2V to 3.6V)
2	GND	GND	Device GND
3	A	OUT	Output level depends on V _{CC1} voltage.
4	B	IN	Input threshold value depends on V _{CC2} voltage.
5	DIR	DIR	GND (low level) determines B-port to A-port direction.
6	V _{CCB}	V _{CC2}	SYSTEM-2 supply voltage (1.2V to 3.6V)

9.2.1.1 Design Requirements

For this design example, use the parameters listed in [Table 9-2](#).

Table 9-2. Design Parameters


DESIGN PARAMETERS	EXAMPLE VALUES
Input voltage	1.2V to 3.6V
Output voltage	1.2V to 3.6V

9.2.1.2 Detailed Design Procedure

To begin the design process, determine the following:

- Input voltage range
 - Use the supply voltage of the device that is driving the SN74AVCH1T45 device to determine the input voltage range. For a valid logic-high, the value must exceed the V_{IH} of the input port. For a valid logic low, the value must be less than the V_{IL} of the input port.
- Output voltage range
 - Use the supply voltage of the device that the SN74AVCH1T45 device is driving to determine the output voltage range.

9.2.1.3 Application Curve

Figure 9-2. Translation Up (1.2V to 3.3V) at 2.5MHz

9.2.2 Bidirectional Logic Level-Shifting Application

Figure 9-3 shows the SN74AVCH1T45 being used in a bidirectional logic level-shifting application. Take precautions to avoid bus contention between SYSTEM-1 and SYSTEM-2 when changing directions because the SN74AVCH1T45 does not have an output-enable (OE) pin.

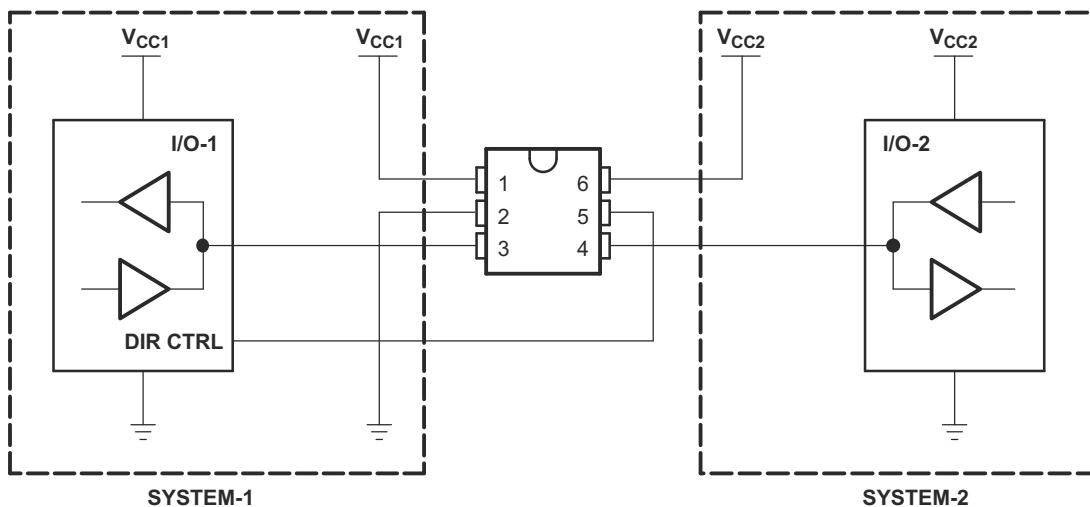


Figure 9-3. Bidirectional Logic Level-Shifting Application Diagram

The following table shows data transmission from SYSTEM-1 to SYSTEM-2 and then from SYSTEM-2 to SYSTEM-1.

Table 9-3. Data Transmission: SYSTEM-1 and SYSTEM-2

STATE	DIR CTRL	I/O-1	I/O-2	DESCRIPTION
1	H	Out	In	SYSTEM-1 data to SYSTEM-2
2	H	Hi-Z	Hi-Z	SYSTEM-2 is getting ready to send data to SYSTEM-1. I/O-1 and I/O-2 are disabled.
3	L	Hi-Z	Hi-Z	DIR bit is flipped. I/O-1 and I/O-2 still are disabled.
4	L	In	Out	SYSTEM-2 data to SYSTEM-1

9.2.2.1 Design Requirements

Refer to [Design Requirements](#) found in [Unidirectional Logic Level-Shifting Application](#).

9.2.2.2 Detailed Design Procedure

9.2.2.2.1 Enable Times

Calculate the enable times for the SN74AVCH1T45 using the following formulas:

- $t_{PZH}(\text{DIR to A}) = t_{PLZ}(\text{DIR to B}) + t_{PLH}(\text{B to A})$
- $t_{PZL}(\text{DIR to A}) = t_{PHZ}(\text{DIR to B}) + t_{PHL}(\text{B to A})$
- $t_{PZH}(\text{DIR to B}) = t_{PLZ}(\text{DIR to A}) + t_{PLH}(\text{A to B})$
- $t_{PZL}(\text{DIR to B}) = t_{PHZ}(\text{DIR to A}) + t_{PHL}(\text{A to B})$

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the SN74AVCH1T45 initially is transmitting from A to B, then the DIR bit is switched; the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

9.2.2.3 Application Curve

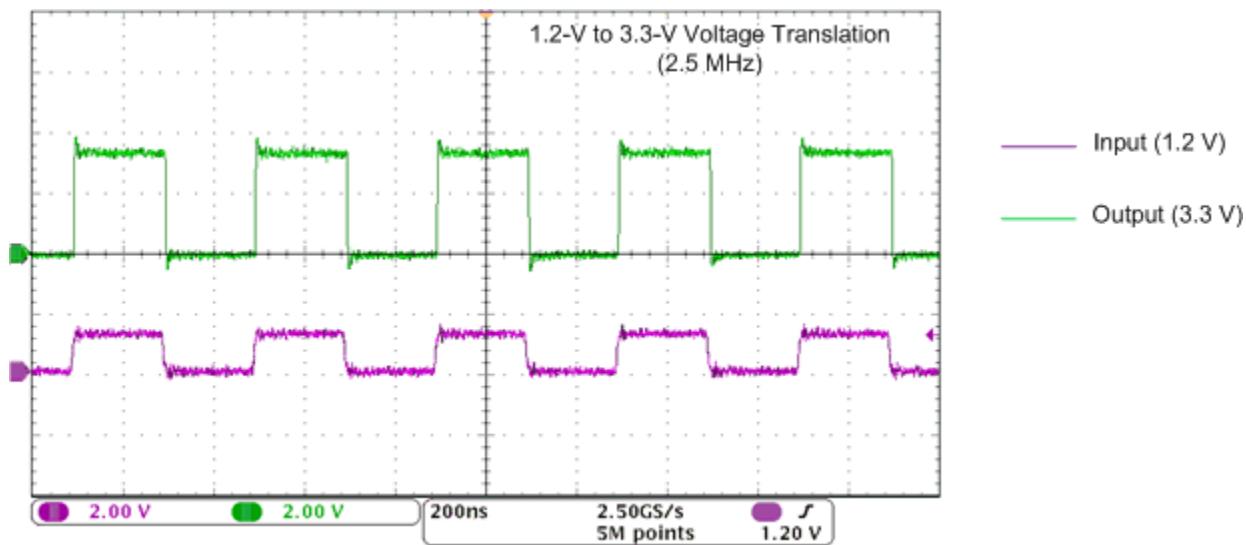


Figure 9-4. Translation Up (1.2V to 3.3V) at 2.5MHz

10 Power Supply Recommendations

A proper power-up sequence must be followed to avoid excessive supply current, bus contention, oscillations, or other anomalies. To guard against such power-up problems, take the following precautions:

1. Connect ground before any supply voltage is applied.
2. Power up V_{CCA} .
3. V_{CCB} can be ramped up along with or after V_{CCA} .

Table 10-1. Typical Total Static Power Consumption ($I_{CCA} + I_{CCB}$)

V_{CCB}	V_{CCA}						UNIT
	0V	1.2V	1.5V	1.8V	2.5V	3.3V	
0V	0	<0.5	<0.5	<0.5	<0.5	<0.5	μA
1.2V	<0.5	<1	<1	<1	<1	1	
1.5V	<0.5	<1	<1	<1	<1	1	
1.8V	<0.5	<1	<1	<1	<1	<1	
2.5V	<0.5	1	<1	<1	<1	<1	
3.3V	<0.5	1	<1	<1	<1	<1	

11 Layout

11.1 Layout Guidelines

TI recommends following common printed-circuit board layout guidelines for better device reliability.

- Use bypass capacitors on power supplies.
- Use short trace lengths to avoid excessive loading.
- Place pads on the signal paths for loading capacitors, or pullup resistors, to help adjust rise and fall times of signals depending on the system requirements.

11.2 Layout Example

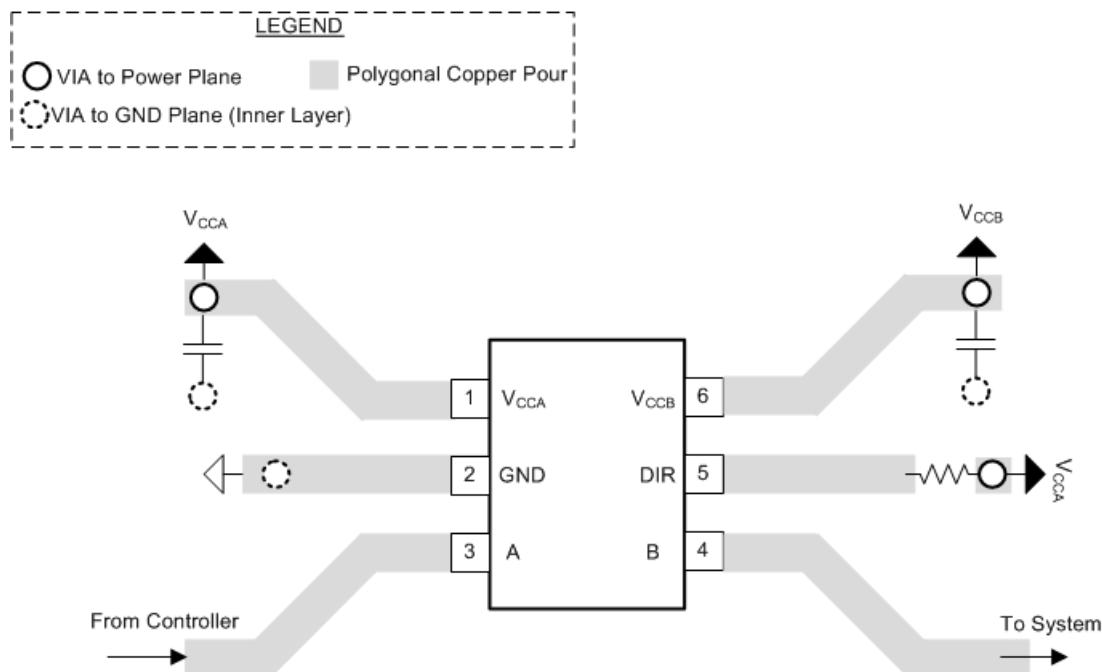


Figure 11-1. PCB Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

- [Designing with SN74LVCXT245 and SN74LVCHXT245 Family of Direction Controlled Voltage Translators/Level-Shifters](#), application report
- [Bus-Hold Circuit](#), application report
- [AVC Logic Family Technology and Applications](#)

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on [ti.com](#). Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Support Resources

[TI E2E™ support forums](#) are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

12.4 Trademarks

NanoStar™, NanoFree™, and TI E2E™ are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

[TI Glossary](#) This glossary lists and explains terms, acronyms, and definitions.

13 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision E (March 2016) to Revision F (April 2024)	Page
• Updated the numbering format for tables, figures, and cross-references throughout the document.....	1
• Updated DBV and DCK thermal information.....	5

Changes from Revision D (January 2008) to Revision E (March 2016)	Page
• Added <i>ESD Ratings</i> table, <i>Feature Description</i> section, <i>Device Functional Modes</i> , <i>Application and Implementation</i> section, <i>Power Supply Recommendations</i> section, <i>Layout</i> section, <i>Device and Documentation Support</i> section, and <i>Mechanical, Packaging, and Orderable Information</i> section.....	1

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

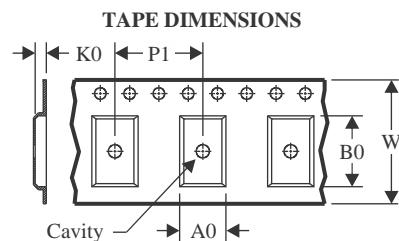
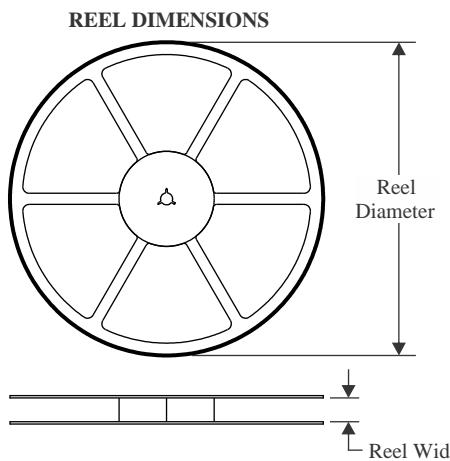
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
74AVCH1T45DBVRE4	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(ET1F, ET1R)
74AVCH1T45DBVRG4	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(ET1F, ET1R)
74AVCH1T45DCKRE4	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	Call TI	Level-1-260C-UNLIM	-40 to 85	(TFF, TFR)
74AVCH1T45DCKRG4	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	Call TI	Level-1-260C-UNLIM	-40 to 85	(TFF, TFR)
SN74AVCH1T45DBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(ET1F, ET1R)
SN74AVCH1T45DBVR.A	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(ET1F, ET1R)
SN74AVCH1T45DBVR.B	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(ET1F, ET1R)
SN74AVCH1T45DBVRG4	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(ET1F, ET1R)
SN74AVCH1T45DBVRG4.A	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(ET1F, ET1R)
SN74AVCH1T45DBVRG4.B	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(ET1F, ET1R)
SN74AVCH1T45DBVT	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(ET1F, ET1R)
SN74AVCH1T45DBVT.B	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(ET1F, ET1R)
SN74AVCH1T45DCKR	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(TFF, TFR)
SN74AVCH1T45DCKR.A	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(TFF, TFR)
SN74AVCH1T45DCKR.B	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(TFF, TFR)
SN74AVCH1T45DCKRG4	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	Call TI Nipdau	Level-1-260C-UNLIM	-40 to 85	(TFF, TFR)
SN74AVCH1T45DCKRG4.A	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	Call TI	Level-1-260C-UNLIM	-40 to 85	(TFF, TFR)
SN74AVCH1T45DCKRG4.B	Active	Production	SC70 (DCK) 6	3000 LARGE T&R	Yes	Call TI	Level-1-260C-UNLIM	-40 to 85	(TFF, TFR)
SN74AVCH1T45DCKT	Active	Production	SC70 (DCK) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(TFF, TFR)
SN74AVCH1T45DCKT.B	Active	Production	SC70 (DCK) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(TFF, TFR)
SN74AVCH1T45DCKTG4	Active	Production	SC70 (DCK) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TFR
SN74AVCH1T45DCKTG4.B	Active	Production	SC70 (DCK) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TFR
SN74AVCH1T45YZPR	Active	Production	DSBGA (YZP) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(TE2, TEN)
SN74AVCH1T45YZPR.B	Active	Production	DSBGA (YZP) 6	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(TE2, TEN)

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

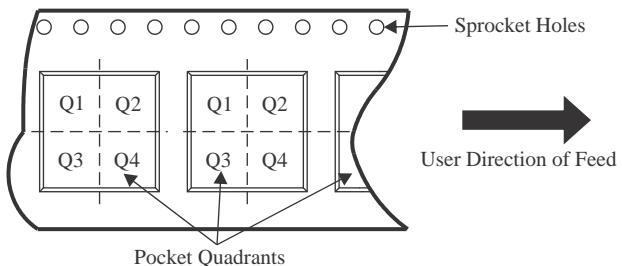
⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.



⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

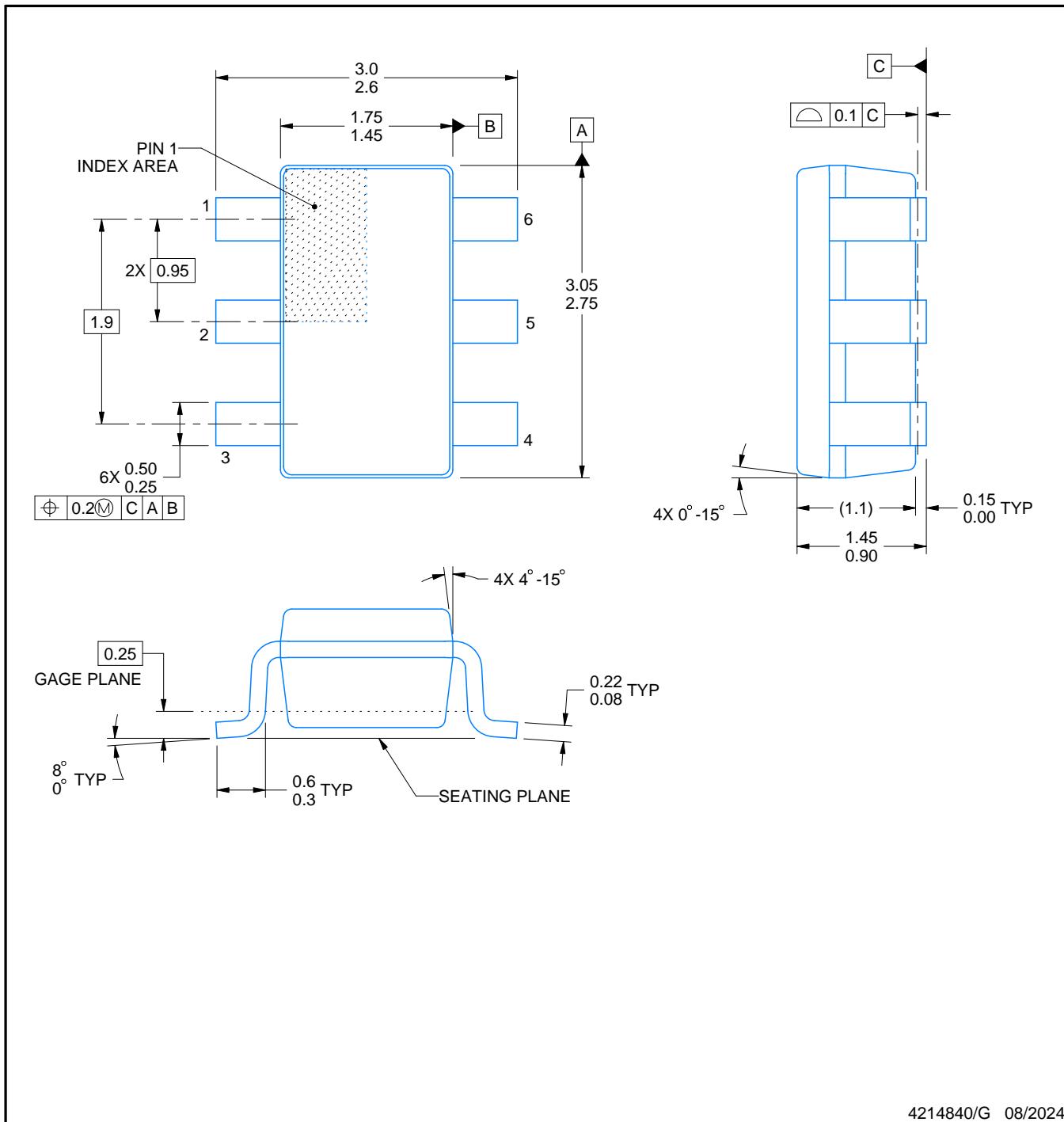
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AVCH1T45DBVR	SOT-23	DBV	6	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74AVCH1T45DBVRG4	SOT-23	DBV	6	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74AVCH1T45DBVT	SOT-23	DBV	6	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74AVCH1T45DCKR	SC70	DCK	6	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
SN74AVCH1T45DCKRG4	SC70	DCK	6	3000	180.0	8.4	2.3	2.52	1.2	4.0	8.0	Q3
SN74AVCH1T45DCKRG4	SC70	DCK	6	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
SN74AVCH1T45DCKT	SC70	DCK	6	250	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
SN74AVCH1T45DCKTG4	SC70	DCK	6	250	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
SN74AVCH1T45YZPR	DSBGA	YZP	6	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AVCH1T45DBVR	SOT-23	DBV	6	3000	202.0	201.0	28.0
SN74AVCH1T45DBVRG4	SOT-23	DBV	6	3000	202.0	201.0	28.0
SN74AVCH1T45DBVT	SOT-23	DBV	6	250	202.0	201.0	28.0
SN74AVCH1T45DCKR	SC70	DCK	6	3000	202.0	201.0	28.0
SN74AVCH1T45DCKRG4	SC70	DCK	6	3000	214.0	199.0	55.0
SN74AVCH1T45DCKRG4	SC70	DCK	6	3000	202.0	201.0	28.0
SN74AVCH1T45DCKT	SC70	DCK	6	250	202.0	201.0	28.0
SN74AVCH1T45DCKTG4	SC70	DCK	6	250	202.0	201.0	28.0
SN74AVCH1T45YZPR	DSBGA	YZP	6	3000	220.0	220.0	35.0


PACKAGE OUTLINE

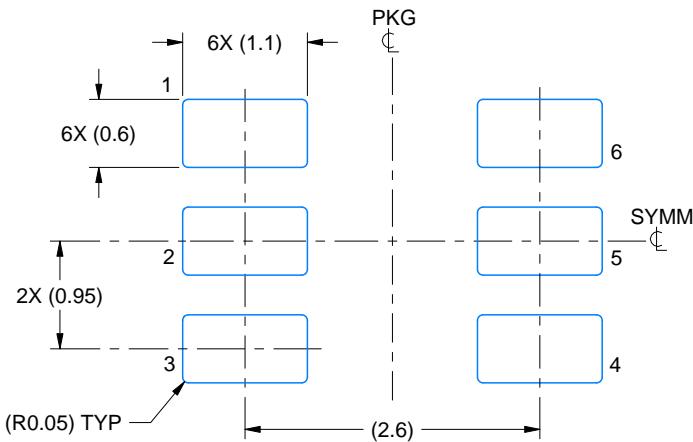
DBV0006A

SOT-23 - 1.45 mm max height

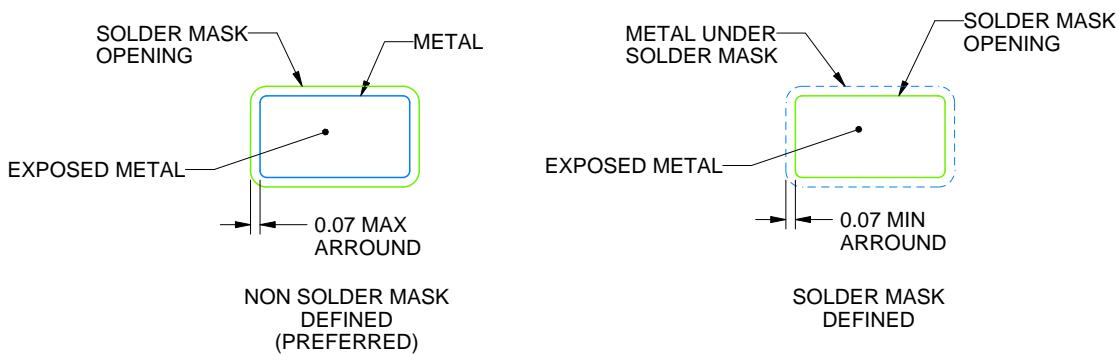
SMALL OUTLINE TRANSISTOR

4214840/G 08/2024

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
5. Reference JEDEC MO-178.

EXAMPLE BOARD LAYOUT


DBV0006A

SOT-23 - 1.45 mm max height

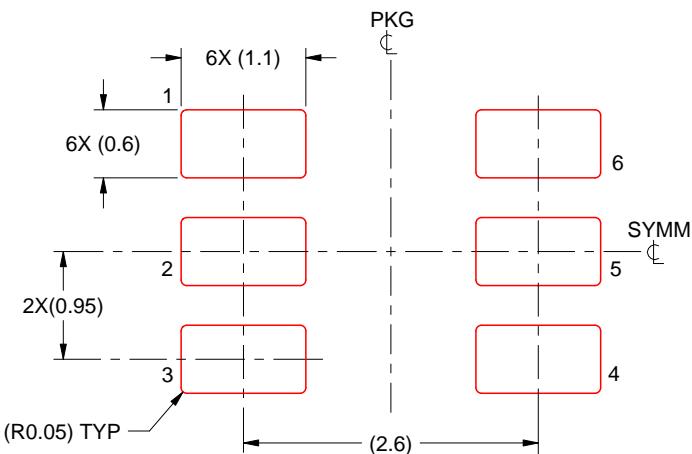
SMALL OUTLINE TRANSISTOR

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:15X

SOLDER MASK DETAILS

4214840/G 08/2024

NOTES: (continued)

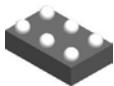

6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DBV0006A

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

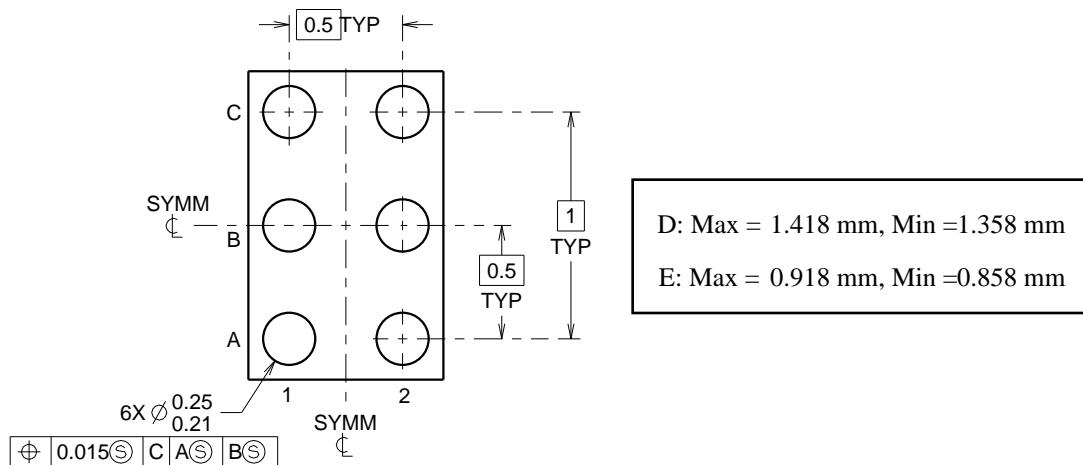
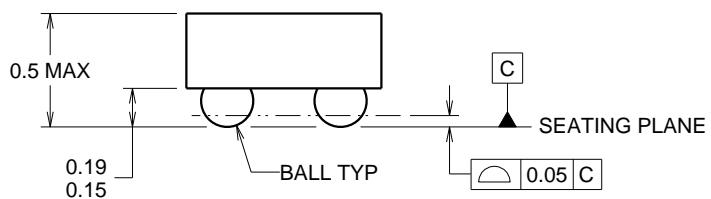
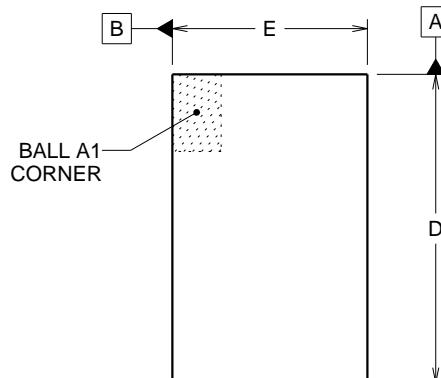


SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:15X

4214840/G 08/2024

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

PACKAGE OUTLINE

YZP0006

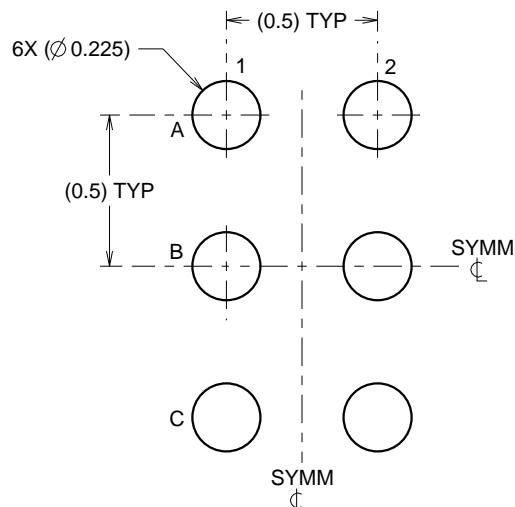
DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

4219524/A 06/2014

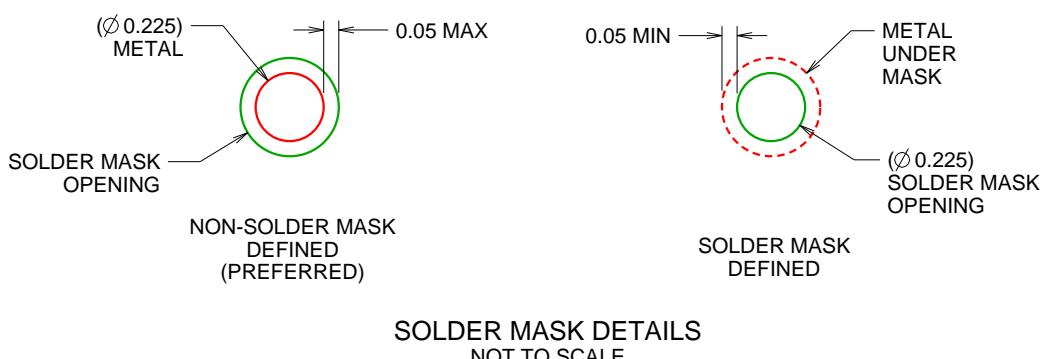
NOTES:

NanoFree is a trademark of Texas Instruments.


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. NanoFree™ package configuration.

EXAMPLE BOARD LAYOUT

YZP0006


DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

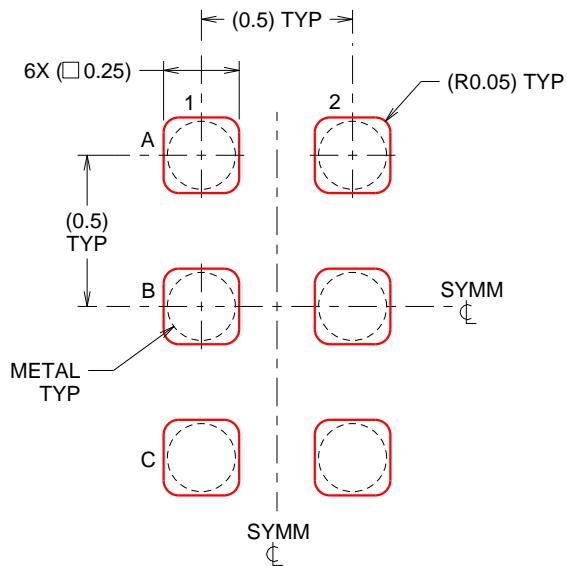
LAND PATTERN EXAMPLE

SCALE:40X

SOLDER MASK DETAILS
NOT TO SCALE

4219524/A 06/2014

NOTES: (continued)


4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).

EXAMPLE STENCIL DESIGN

YZP0006

DSBGA - 0.5 mm max height

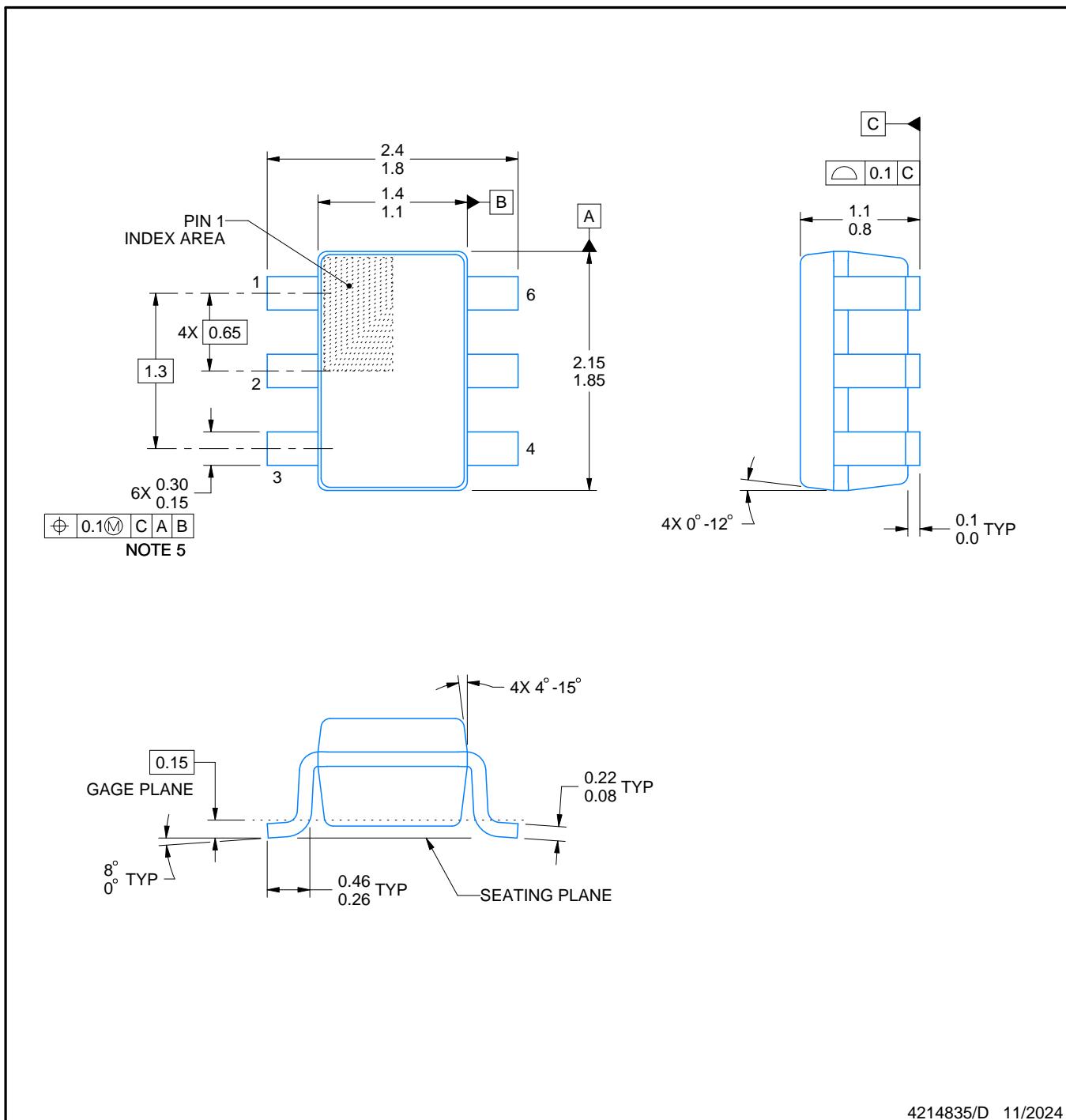
DIE SIZE BALL GRID ARRAY

SOLDER PASTE EXAMPLE
BASED ON 0.1 mm THICK STENCIL
SCALE:40X

4219524/A 06/2014

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

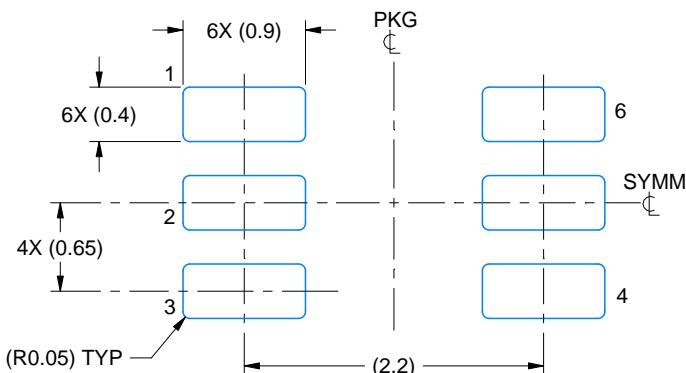

PACKAGE OUTLINE

DCK0006A

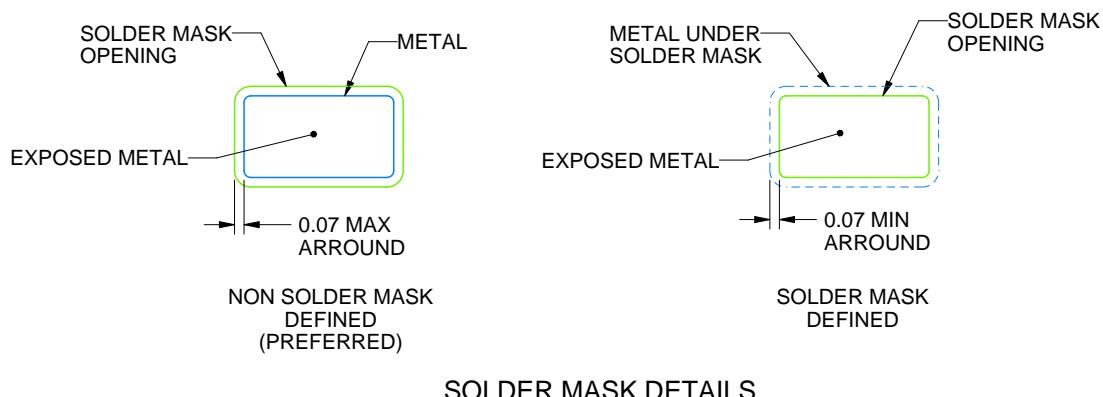
SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
4. Falls within JEDEC MO-203 variation AB.

EXAMPLE BOARD LAYOUT


DCK0006A

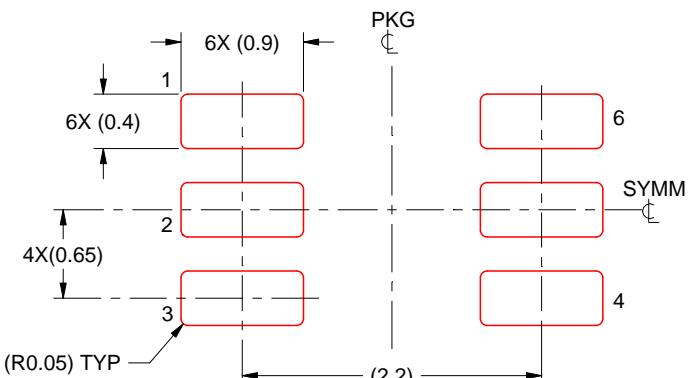
SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:18X

4214835/D 11/2024

NOTES: (continued)


5. Publication IPC-7351 may have alternate designs.
 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DCK0006A

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

SOLDER PASTE EXAMPLE
BASED ON 0.125 THICK STENCIL
SCALE:18X

4214835/D 11/2024

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#) or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated