
Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters	
Α	4.32	109.8	
В	2.21	56.1	
С	0.71 18.0		
D	3.70±0.02 94.0±0.5		
E	2.026	51.46	
F	3.17	80.5	
G	1.96	49.8	
Н	1.00	25.5	
K	0.87	22.0	
L	0.266	6.75	
М	0.26	6.5	
N	0.59	15.0	
Р	0.586	14.89	

Dimensions	Inches	Millimeters
Q	0.449	11.40
R	0.885	22.49
S	1.047	26.6
Т	0.15	3.80
U	0.16	4.0
V	0.30	7.5
W	0.045	1.15
Χ	0.03	0.8
Υ	0.16	4.0
Z	0.47	12.1
AA	0.17 Dia. 4.3 Dia	
AB	0.10 Dia.	2.5 Dia.
AC	0.08 Dia.	2.1 Dia.

Description:

Powerex IGBT Modules are designed for use in high frequency applications; upwards of 30 kHz for hard switching applications and 80 kHz for soft switching applications. Each module consists of two IGBT Transistors with each transistor having a reverse-connected super-fast recovery free-wheel silicon carbide Schottky diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- ☐ Low EsW(off)
- □ Aluminum Nitride Isolation
- □ Discrete Super-Fast Recovery Free-Wheel Silicon Carbide Schottky Diode
- □ Low Internal Inductance
- ☐ 2 Individual Switches per Module
- ☐ Isolated Baseplate for Easy Heat Sinking
- □ Copper Baseplate
- □ RoHS Compliant

Applications:

- Energy Saving PowerSystems such as:Fans; Pumps; Consumer
 - Fans; Pumps; Consumer Appliances
- ☐ High Frequency Type Power
 Systems such as:

 LIPS: High Speed Motor Prive
 - UPS; High Speed Motor Drives; Induction Heating; Welder; Robotics
- ☐ High Temperature Power
 Systems such as:
 Power Electronics in Electric
 Vehicle and Aviation Systems

QID1210007 Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

Absolute Maximum Ratings, $T_j = 25^{\circ}\text{C}$ unless otherwise specified

Ratings	Symbol	QID1210007	Units
Junction Temperature	Тј	-40 to 150	°C
Storage Temperature	T _{stg}	-40 to 150	°C
Collector-Emitter Voltage (G-E Short)	VCES	1200	Volts
Gate-Emitter Voltage (C-E Short)	V _{GES}	±20	Volts
Collector Current (T _C = 25°C)	IC	100*	Amperes
Peak Collector Current	ICM	200*	Amperes
Emitter Current** (T _C = 25°C)	lΕ	75*	Amperes
Repetitive Peak Emitter Current (T _C = 25°C)**	IEM	150 *	Amperes
Maximum Collector Dissipation ($T_C = 25^{\circ}C, T_j \le 150^{\circ}C$)	PC	730	Watts
Mounting Torque, M6 Mounting	_	40	in-lb
Weight	_	270	Grams
Isolation Voltage (Main Terminal to Baseplate, AC 1 min.)	V _{ISO}	2500	Volts

IGBT Electrical Characteristics, $T_j = 25$ °C unless otherwise specified

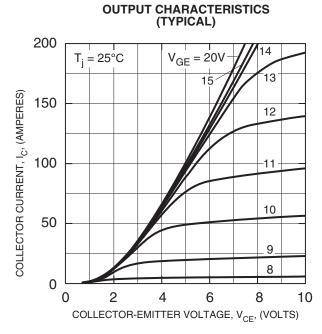
Characteristics		Symbol	Test Conditions	Min.	Тур.	Max.	Units
Collector-Cutof	f Current	ICES	V _{CE} = V _{CES} , V _{GE} = 0V	_	_	1.0	mA
Gate Leakage	Current	IGES	V _{GE} = V _{GES} , V _{CE} = 0V	_	_	0.5	μΑ
Gate-Emitter Th	hreshold Voltage	VGE(th)	I _C = 10mA, V _{CE} = 10V	4.5	6.0	7.5	Volts
Collector-Emitter Saturation Voltage		VCE(sat)	I _C = 100A, V _{GE} = 15V, T _j = 25°C	_	5.0	6.5	Volts
			I _C = 100A, V _{GE} = 15V, T _j = 125°C	_	5.0	_	Volts
Total Gate Cha	rge	QG	V _{CC} = 600V, I _C = 100A, V _{GE} = 15V	_	450	_	nC
Input Capacitar	nce	C _{ies}		_	_	16	nf
Output Capacit	ance	C _{oes}	$V_{CE} = 10V, V_{GE} = 0V$	_	_	1.3	nf
Reverse Transf	er Capacitance	C _{res}	_	_	_	0.3	nf
Inductive	Turn-on Delay Time	^t d(on)	$V_{CC} = 600V, I_{C} = 100A,$	_	_	TBD	ns
Load	Rise Time	t _r	$V_{GE1} = V_{GE2} = 15V,$	_	_	TBD	ns
Switch	Turn-off Delay Time	t _d (off)	$R_G = 3.1\Omega$,	_	_	TBD	ns
	TimeFall Time	tf	Inductive Load Switching Operation	_	_	TBD	ns

^{*} Pulse width and repetition rate should be such that device junction temperature (Tj) does not exceed Tj(max) rating. **Represents characteristics of the anti-parallel, emitter-to-collector silicon carbide Schottky diode (FWDi).

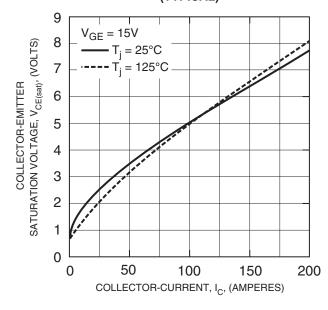
QID1210007 Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

Reverse Schottky Diode Characteristics, T_{j} = 25 °C unless otherwise specified

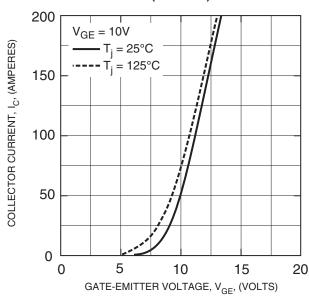
Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Diode Forward Voltage	VFM	IF = 75A, VGE = -5V	_	1.45	1.75	Volts
		$I_F = 75A$, $V_{GE} = -5V$, $T_j = 175$ °C	_	1.95	2.35	Volts
Diode Reverse Current	I _R	V _R = 1200V	_	0.9	5.0	mA
		V _R = 1200, T _j = 175°C	_	6.0	33.3	mA
Diode Capacitive Charge	QC	V _R = 1200V, I _F = 75A, di/dt = 1100A/μs	_	300	_	nC

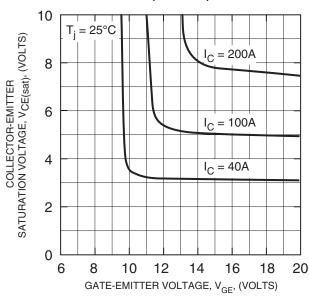

Thermal and Mechanical Characteristics, T_i = 25 °C unless otherwise specified

		-				
Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)} Q	Per IGBT 1/2 Module,	_	_	0.17	°C/W
		T _C Reference Point Under Chips				
Thermal Resistance, Junction to Case	R _{th(j-c)} D	Per FWDi 1/2 Module, T _C Reference	_	_	0.50	°C/W
		T _C Reference Point Under Chips				
Contact Thermal Resistance	Rth(c-f)	Per 1/2 Module, Thermal Grease Applied	_	0.04	_	°C/W
External Gate Resistance	RG		3.1	_	31	Ω
Internal Inductance	L _{int}	IGBT Part	_	10	_	nH

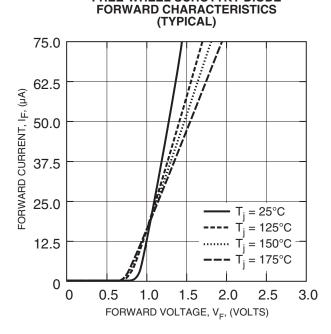


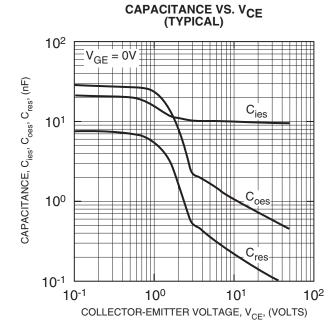
QID1210007 Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

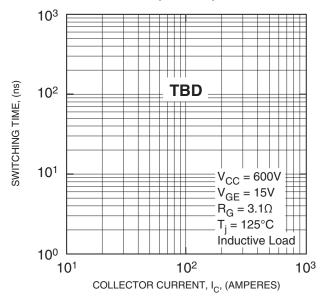

OUTDUT CHADACTEDISTICS


COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

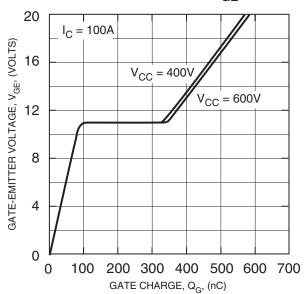
TRANSFER CHARACTERISTICS (TYPICAL)


COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)

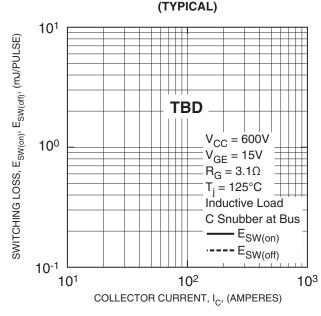


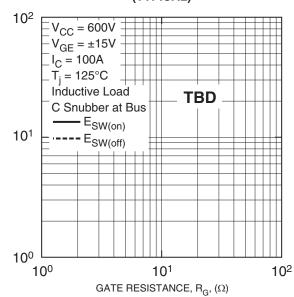

QID1210007 Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

FREE-WHEEL SCHOTTKY DIODE

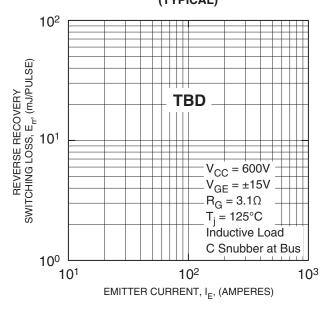


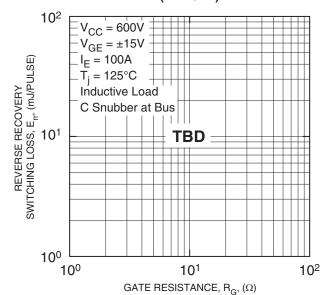
HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL)


GATE CHARGE VS. VGF

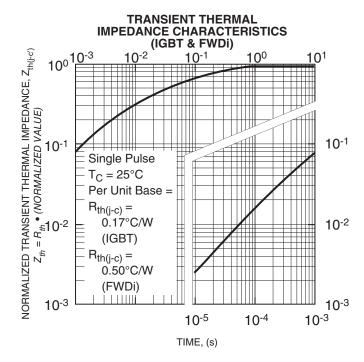


QID1210007 Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts




SWITCHING LOSS VS. GATE RESISTANCE (TYPICAL)

REVERSE RECOVERY SWITCHING LOSS VS. EMITTER CURRENT (TYPICAL)


REVERSE RECOVERY SWITCHING LOSS VS. GATE RESISTANCE (TYPICAL)

 ${\rm SWITCHING\ LOSS,\ E_{\rm SW(on)},\ E_{\rm SW(off)},\ (mJ/PULSE)}$

QID1210007 Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

