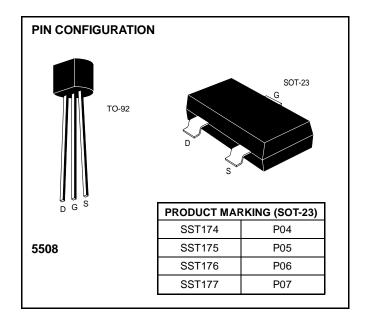
P-Channel JFET Switch


J174 - J177 / SST174 - SST177

FEATURES

- Low Insertion Loss
- No Offset or Error Generated By Closed Switch
 - Purely Resistive
 - High Isolation Resistance From Driver
- Short Sample and Hold Aperture Time
- Fast Switching

APPLICATIONS

- Analog Switches
- Choppers
- Commutators

ABSOLUTE MAXIMUM RATINGS

 $(T_A = 25^{\circ}C \text{ unless otherwise specified})$

Gate-Drain or Gate-Source Voltage)V
Gate Current 50m	
Storage Temperature Range55°C to +150°	C,
Operating Temperature Range55°C to +135°	C,
Lead Temperature (Soldering, 10sec) 300 ^c	
Power Dissipation	
Derate above 25°C	C,

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING INFORMATION

Part	Package	Temperature Range			
J174-J177	Plastic TO-92	-55°C to +135°C			
SST174-SST177	Plastic SOT-23	-55°C to +135°C			
For Sorted Chins in	Carriers see 2N51	14 series			

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

SYMBOL	PARAMETER	J174			J175			J176			J177			UNITS	TEST CONDITIONS			
STWIBOL PARAWETE		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		TEST CONDITIONS			
I _{GSS}	Gate Reverse Current (Note 1)			1			1			1			1	nA	V _{DS} = 0, V _{GS} = 20V			
V _{GS(off)}	Gate Source Cutoff Voltage	5		10	3		6	1		4	0.8		2.25		V _{DS} = -15V, I _D = -10nA			
BV _{GSS}	Gate Source Breakdown Voltage	30			30			30			30			V	$V_{DS} = 0$, $I_{G} = 1\mu A$			
I _{DSS}	Drain Saturation Current (Note 2)	-20		-135	-7		-70	-2		-35	-1.5		-20	mA	V _{DS} = -15V, V _{GS} = 0			
I _{D(off)}	Drain Cutoff Current (Note 1)			-1			-1			-1			-1	nA	V _{DS} = -15V, V _{GS} = 10V			
r _{DS(on)}	Drain-Source ON Resistance			85			125			250			300	Ω	V _{GS} = 0, V _{DS} = -0.1V			
C _{dg(off)}	Drain-Gate OFF Capacitance		5.5			5.5			5.5			5.5			V _{DS} = 0,	f = 1MHz (Note 3)		
C _{sg(off)}	Source-Gate OFF Capacitance		5.5			5.5			5.5			5.5		pF	V _{GS} = 10V			
C _{dg(on)} + C _{sg(on)}	Drain-Gate Plus Source Gate ON Capacitance		32			32			32			32			$V_{DS} = V_{GS} = 0$			
t _{d(on)}	Turn On Delay Time		2			5			15			20		ns	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
t _r	Rise Time		5			10			20			25						
t _{d(off)}	Turn Off Delay Time		5			10			15			20						
t _f	Fall Time		10			20			20			25						

NOTES: 1. Approximately doubles for every 10°C increase in T_A.
2. Pulse test duration -300μs; duty cycle ≤3%.
3. For design reference only, not 100% tested.