

**DUAL HIGH SPEED, MEDIUM POWER, NPN
SWITCHING TRANSISTOR IN A
HERMETICALLY SEALED
CERAMIC SURFACE MOUNT PACKAGE**

MECHANICAL DATA

Dimensions in mm (inches)

**LCC2 PACKAGE
Underside View**

PAD 1 – Collector 1	PAD 4 – Collector 2
PAD 2 – Base 1	PAD 5 – Emitter 2
PAD 3 – Base 2	PAD 6 – Emitter 1

FEATURES

- DUAL SILICON PLANAR EPITAXIAL DUAL NPN TRANSISTOR
- HERMETIC CERAMIC SURFACE MOUNT PACKAGE
- SCREENING OPTIONS AVAILABLE

APPLICATIONS:

Hermetically sealed dual surface mount dual version of the popular 2N2369A for high reliability / space applications requiring small size and low weight devices.

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^\circ\text{C}$ unless otherwise stated)

		PER SIDE	TOTAL DEVICE
V_{CBO}	Collector – Base Voltage	40V	
V_{CEO}	Collector – Emitter Voltage	15V	
V_{EBO}	Emitter – Base Voltage	4.5V	
I_C	Collector Current	200mA	
P_D	Total Device Dissipation @ $T_A = 25^\circ\text{C}$	360mW	500mW
	Derate above 25°C	2.06mW / °C	2.85mW / °C
P_D	Total Device Dissipation @ $T_C = 25^\circ\text{C}$	680mW/°C	800mW/°C
	Derate above 25°C	3.88mW/°C	4.57mW/°C
T_{STG}, T_J	Operating and Storage Temperature Range	–65 to +200°C	

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise stated)

Parameter	Test Conditions		Min.	Typ.	Max.	Unit
$V_{(\text{BR})\text{CEO}}^*$	Collector – Emitter Breakdown Voltage	$I_C = 10\text{mA}$	$I_B = 0$	15		V
$V_{(\text{BR})\text{CBO}}$	Collector – Base Breakdown Voltage	$I_C = 10\mu\text{A}$	$I_E = 0$	40		V
$V_{(\text{BR})\text{EBO}}$	Emitter – Base Breakdown Voltage	$I_E = 10\mu\text{A}$	$I_C = 0$	4.5		V
I_{CES}	Collector – Emitter Cut-off Current	$V_{\text{CE}} = 20\text{V}$	$V_{\text{BE}} = 0$		0.40	μA
I_{CBO}	Collector – Base Cut-off Current	$V_{\text{CB}} = 20\text{V}$	$T_A = +150^\circ\text{C}$		30	
$V_{\text{CE}(\text{sat})}^*$	Collector – Emitter Saturation Voltage	$I_C = 10\text{mA}$	$I_B = 1\text{mA}$		0.20	V
			$T_A = +125^\circ\text{C}$		0.30	
		$I_C = 30\text{mA}$	$I_B = 3\text{mA}$		0.25	
		$I_C = 100\text{mA}$	$I_B = 10\text{mA}$		0.50	
$V_{\text{BE}(\text{sat})}^*$	Base – Emitter Saturation Voltage	$I_C = 10\text{mA}$	$T_A = +25^\circ\text{C}$	0.70	0.85	V
		$I_B = 1\text{mA}$	$T_A = +125^\circ\text{C}$	0.59		
			$T_A = -55^\circ\text{C}$		1.02	
		$I_C = 30\text{mA}$	$I_B = 3\text{mA}$		1.15	
		$I_C = 100\text{mA}$	$I_B = 10\text{mA}$		1.60	
h_{FE}^*	Current Gain	$I_C = 10\text{mA}$	$V_{\text{CE}} = 0.35\text{V}$	40		—
			$T_A = -55^\circ\text{C}$	20		
		$I_C = 30\text{mA}$	$V_{\text{CE}} = 0.4\text{V}$	30		
		$I_C = 10\text{mA}$	$V_{\text{CE}} = 1.0\text{V}$		120	
		$I_C = 100\text{mA}$	$V_{\text{CE}} = 1\text{V}$	20		
f_T	Transition Frequency	$I_C = 10\text{mA}$	$V_{\text{CE}} = 10\text{V}$		500	MHz
C_{ob}	Output Capacitance	$V_{\text{CB}} = 5\text{V}$	$I_E = 0$		4	pF
t_s	Storage Time	$f = 140\text{kHz}$				
t_{on}	Turn-On Time	$I_C = 10\text{mA}$	$V_{\text{CC}} = 3\text{V}$		12	ns
t_{off}	Turn-Off Time	$I_{\text{B1}} = 3\text{mA}$	$I_{\text{B2}} = 1.5\text{mA}$		18	

* Pulse Test: $t_p \leq 300\mu\text{s}$, $\delta \leq 2\%$.

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.