THYRISTORS

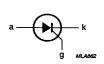
Glass-passivated thyristors in TO-220AB envelopes, which are particularly suitable in situations creating high fatigue stresses involved in thermal cycling and repeated switching. Applications include temperature control, motor control, regulators in transformerless power supply applications, relay and coil pulsing and power supply crowbar protection circuits.

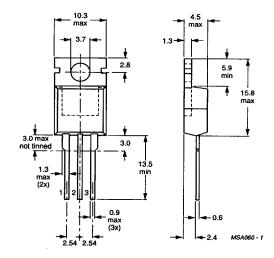
QUICK REFERENCE DATA

		BT152	2-400R	600R	800R	
Repetitive peak voltages	V_{DRM}/V_{RRM}	max.	400	600	800	V
Average on-state current	IT(AV)	max.		13		Α
R.M.S. on-state current	IT(RMS)	max.		20		Α
Non-repetitive peak on-state current	ITSM	max.		200		Α

MECHANICAL DATA

Dimensions in mm


Fig.1 TO-220AB


Pinning:

1 = Cathode

2 = Anode

3 = Gate

Net mass: 2 g

Note: The exposed metal mounting base is directly connected to the

anode

Accessories supplied on request: see data sheets Mounting instructions and accessories for TO-220 envelopes.

Qualification approved to CECC 50 011-011.

March 1993

221

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Anode to cathode		BT152-	-400R	60	0R	800R	
Non-repetitive peak voltages	V _{DSM} /V _{RSM}	max.	450	65	0	850	٧
Repetitive peak voltages	V _{DRM} /V _{RRM}	max.	400	60	0	800	V
Crest working voltages	v_{DWM}/v_{RWM}	max.	400	40	0	400	٧
Average on-state current (averaged ov any 20 ms period) up to T _{mb} = 93		^I T(AV)	ma	ax.	13	3	Α
R.M.S. on-state current		T(RMS) ma	ax.	20	0	Α
Repetitive peak on-state current		ITRM	ma	ax.	200	0	Α
Non-repetitive peak on-state current; half sine-wave; T _i = 115 °C prior							_
with reapplied VRWMmax		^I TSM	m	ax.	200	-	A
I^2 t for fusing (t = 10 ms)		l² t	m	ax.	200	0	A ² s
Rate of rise of on-state current after the with $I_G = 160$ mA to $I_T = 50$ A; displaying the state of the		d I T/dt	ma	ax.	20	D	A/μs
Gate to cathode							
Reverse peak voltage		v_{RGM}	m	ax.	ļ	5	٧
Average power dissipation (averaged over any 20 ms period)		PG(AV)	m	ax.	0.	5	W
Peak power dissipation; $t \le 10 \mu s$		P_{GM}	m	ax.	2	0	W
Temperature							
Storage temperature		T_{stg}		40 to	+15	0	oC
Junction temperature		Τį	m	ax.	11	5	oC

THERMAL RESISTANCE

From junction to mounting base	R _{th j-mb}	= 1.1	K/W
Transient thermal impedance; t = 1 ms	Z _{th j-mb}	= 0.12	K/W

Influence of mounting method

1. Heatsink mounted with clip (see mounting instructions)

Thermal resistance from mounting base to heatsink

The state of the s				
a. with heatsink compound	R _{th mb-h}	=	0.3	K/W
b. with heatsink compound and 0.06 mm maximum mica in	sulator R _{th mb-h}	=	1.4	K/W
c. with heatsink compound and 0.1 mm maximum mica insu	ulator (56369) R _{th mb-h}	=	2.2	K/W
d. with heatsink compound and 0.25 mm max, alumina insu	lator (56367) Rth mb-h	=	8.0	K/W
e. without heatsink compound	Rth mb-h	=	1.4	K/W

2. Free-air operation

The quoted values of $R_{\mbox{th j-a}}$ should be used only when no leads of other dissipating components run to the same tie-point.

Thermal resistance from junction to ambient in free air: mounted on a printed-circuit board at a = any lead length and with copper laminate

R_{th j-a} 60 K/W

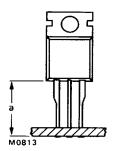


Fig. 2.

CHARACTERISTICS

Anode to cathode

On-state voltage	(measured under	pulse conditions)
$I_{T} = 40 \text{ A; T}_{i}$	= 25 °C	

that will not trigger any device

Reverse current

$$V_R = V_{RWMmax}$$
; $T_j = 115 \, ^{\circ}C$

Latching current;
$$T_j = 25$$
 °C
Holding current; $T_i = 25$ °C

Gate to cathode

Voltage that will trigger all devices

$$V_D = 12 \text{ V}; T_j = -40 \text{ }^{\circ}\text{C}$$

 $V_D = 12 \text{ V}; T_j = 25 \text{ }^{\circ}\text{C}$

Voltage that will not trigger any device

$$V_D = V_{DRMmax}$$
; $T_j = 115$ °C

Current that will trigger all devices

$$V_D = 12 \text{ V}; T_j = -40 \text{ }^{\circ}\text{C}$$

 $V_D = 12 \text{ V}; T_j = 25 \text{ }^{\circ}\text{C}$

Switching characteristics

Gate-controlled turn-on time $(t_{gt} = t_d + t_r)$ when switched from $V_D = V_{DRMmax}$ to |T| = 40 A;

$$I_{GT} = 100 \text{ mA}; dI_{G}/dt = 5 \text{ A}/\mu\text{s}; T_{j} = 25 \text{ }^{\circ}\text{C}$$

Circuit-commutated turn-off time when switched from I_T = 40 A to $V_R > 50$ V with $-dI_T/dt = 10$ A/ μ s;

 $dV_D/dt = 50 V/\mu s; T_i = 115 °C$

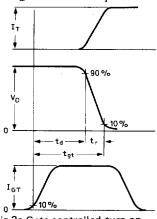


Fig.3a Gate-controlled turn-on time definition.

200 V/μs dV_D/dt <

$$t_{gt}$$
 typ. 2 μs

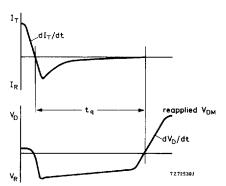


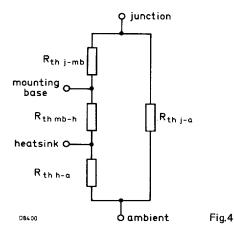
Fig.3b Circuit-commutated turn-off time definition.

69E D = 665

Thyristors

MOUNTING INSTRUCTIONS

- The device may be soldered directly into the circuit, but the maximum permissible temperature of the soldering iron or bath is 275 °C; it must not be in contact with the joint for more than 5 seconds. Soldered joints must be at least 4.7 mm from the seal.
- The leads should not be bent less than 2.4 mm from the seal, and should be supported during bending. The leads can be bent, twisted or straightened by 90° maximum. The minimum bending radius is 1 mm.
- It is recommended that the circuit connection be made to the anode tag, rather than direct to the heatsink.
- 4. Mounting by means of a spring clip is the best mounting method because it offers:
 - a good thermal contact under the crystal area and slightly lower R_{th mb-h} values than screw mounting.
 - b. safe isolation for mains operation.


However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid damage to the plastic body.

- For good thermal contact, heatsink compound should be used between mounting base and heatsink. Values of R_{th mb-h} given for mounting with heatsink compound refer to the use of a metallic-oxide loaded compound. Ordinary silicone grease is not recommended.
- Rivet mounting (only possible for non-insulated mounting)
 Devices may be rivetted to flat heatsinks; such a process must neither deform the mounting tab, nor enlarge the mounting hole.
- The heatsink must have a flatness in the mounting area of 0.02 mm maximum per 10 mm. Mounting holes must be deburred.

OPERATING NOTES

Dissipation and heatsink considerations:

a. The various components of junction temperature rise above ambient are illustrated in Fig.4.

b. The method of using Fig.5 is as follows:

Starting with the required current on the $I_{T(AV)}$ axis, trace upwards to meet the appropriate form factor curve. Trace right horizontally and upwards from the appropriate value on the T_{amb} scale. The intersection determines the $R_{th\ mb-a}$. The heatsink thermal resistance value ($R_{th\ h-a}$) can now be calculated from:

 $R_{th\ h-a} = R_{th\ mb-a} - R_{th\ mb-h}$

c. Any measurement of heatsink temperature should be made immediately adjacent to the device.

March 1993

BT152 SERIES

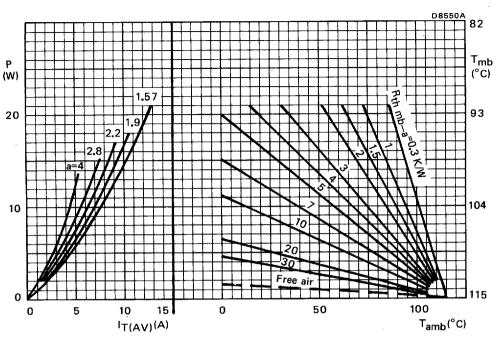


Fig.5 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures.

$$\alpha$$
 = conduction angle per half cycle

$$a = form factor = \frac{|T|(RMS)}{|T|(AV)}$$

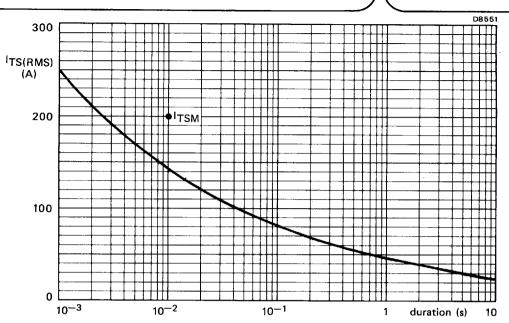


Fig.6 Maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents (f = 50 Hz); $T_i = 115$ °C prior to surge; with reapplied V_{RWMmax} .

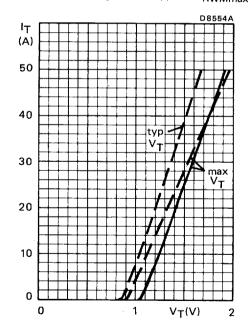
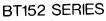



Fig. 7 —
$$T_j = 25$$
 °C; $-- T_j = 115$ °C

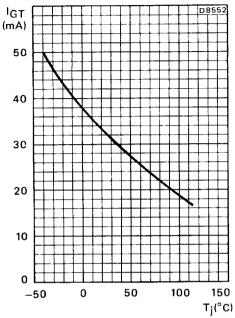


Fig. 8 Minimum gate current that will trigger all devices as a function of junction temperature.

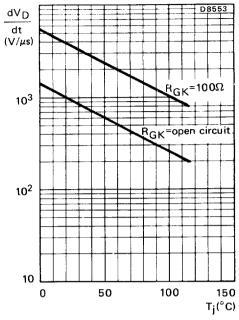
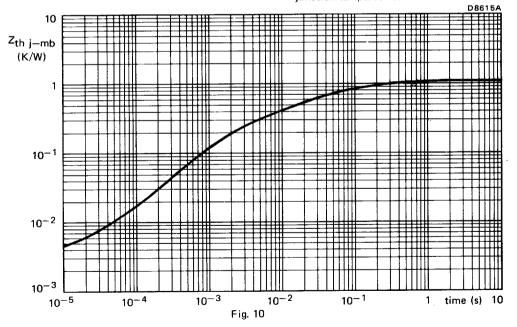



Fig. 9 Maximum rate of rise of off-state voltage that will not trigger any device as a function of junction temperature.

228 March 1993