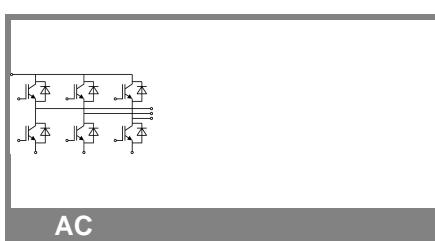


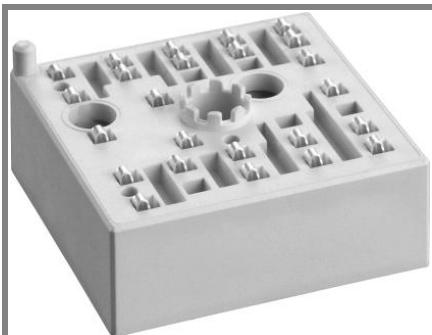
MiniSKiiP®1

3-phase bridge inverter

SKiiP 13AC12T4V1

Target Data


Features


- Trench 4 IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications

Absolute Maximum Ratings		$T_c = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	Values		Units
IGBT				
V_{CES}	$T_j = 25^\circ\text{C}$	1200		V
I_C	$T_j = 175^\circ\text{C}$ $T_c = 25^\circ\text{C}$ $T_c = 70^\circ\text{C}$	44	A	
		35	A	
I_{CRM}	$I_{CRM} = 3 \times I_{Cnom}$	75	A	
V_{GES}		± 20	V	
t_{psc}	$V_{CC} = 600\text{ V}$; $V_{GE} \leq 20\text{ V}$; $T_j = 150^\circ\text{C}$ $V_{CES} < 1200\text{ V}$	10	μs	
Inverse Diode				
I_F	$T_j = 175^\circ\text{C}$ $T_c = 25^\circ\text{C}$ $T_c = 70^\circ\text{C}$	30	A	
		24	A	
I_{FRM}	$I_{CRM} = 3 \times I_{Cnom}$	75	A	
I_{FSM}	$t_p = 10\text{ ms}$; sin. $T_j = 150^\circ\text{C}$	100	A	
Module				
$I_{t(RMS)}$		40	A	
T_{vj}		-40...+175	$^\circ\text{C}$	
T_{stg}		-40...+125	$^\circ\text{C}$	
V_{isol}	AC, 1 min.	2500	V	

Characteristics		$T_c = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	min.	typ.	max.
IGBT				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = \text{mA}$	5	5,8	6,5
I_{CES}	$V_{GE} = V$, $V_{CE} = V_{CES}$			
V_{CE0}	$T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$	1,1	1,3	V
		1	1,2	V
r_{CE}	$V_{GE} = 15\text{ V}$	30	30	$\text{m}\Omega$
	$T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$	50	50	$\text{m}\Omega$
$V_{CE(sat)}$	$I_{Cnom} = 25\text{ A}$, $V_{GE} = 15\text{ V}$	1,85	2,05	V
	$T_j = 25^\circ\text{C}_{\text{chiplev.}}$ $T_j = 150^\circ\text{C}_{\text{chiplev.}}$	2,25	2,45	V
C_{ies}				nF
C_{oes}				nF
C_{res}	$V_{CE} = \text{V}$, $V_{GE} = \text{V}$			nF
R_{Gint}	$T_j = 25^\circ\text{C}$	0		Ω
$t_{d(on)}$				ns
t_r	$R_{Gon} =$			ns
E_{on}		$V_{CC} = 600\text{V}$		mJ
$t_{d(off)}$		$I_{Cnom} = 25\text{A}$		ns
t_f		$T_j = 150^\circ\text{C}$		ns
E_{off}		$V_{GE} = \pm 15\text{V}$		mJ
$R_{th(j-s)}$	per IGBT	0,96		K/W

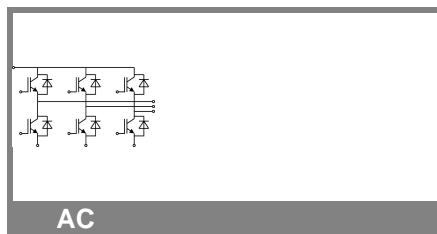
MiniSKiiP®1

3-phase bridge inverter

SKiiP 13AC12T4V1

Target Data

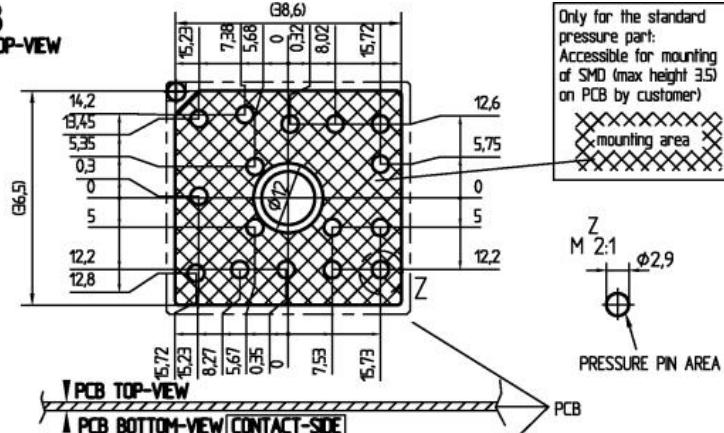
Features

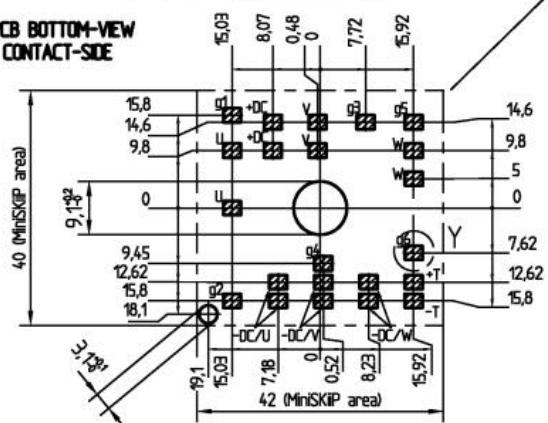

- Trench 4 IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications

Characteristics		min.	typ.	max.	Units
Symbol	Conditions				
Inverse Diode					
$V_F = V_{EC}$	$I_{Fnom} = 25 \text{ A}; V_{GE} = 0 \text{ V}$ $T_j = 25 \text{ }^\circ\text{C}_{\text{chiplev.}}$ $T_j = 150 \text{ }^\circ\text{C}_{\text{chiplev.}}$		2,4 2,45	2,75 2,8	V V
V_{F0}	$T_j = 25 \text{ }^\circ\text{C}$ $T_j = 150 \text{ }^\circ\text{C}$		1,3 0,9	1,5 1,1	V V
r_F	$T_j = 25 \text{ }^\circ\text{C}$ $T_j = 150 \text{ }^\circ\text{C}$		44 62	50 68	$\text{m}\Omega$ $\text{m}\Omega$
I_{RRM} Q_{rr} E_{rr}	$I_{Fnom} = A$ $V_{GE} = \pm 15 \text{ V}$	$T_j = 150 \text{ }^\circ\text{C}$		1,88	A μC mJ
$R_{th(j-s)}$	per diode			1,7	K/W
M_s	to heat sink		2	2,5	Nm
w				35	g
Temperature sensor					
R_{ts}	3%, $T_r=25^\circ\text{C}$		1000		Ω
R_{ts}	3%, $T_r=100^\circ\text{C}$		1670		Ω

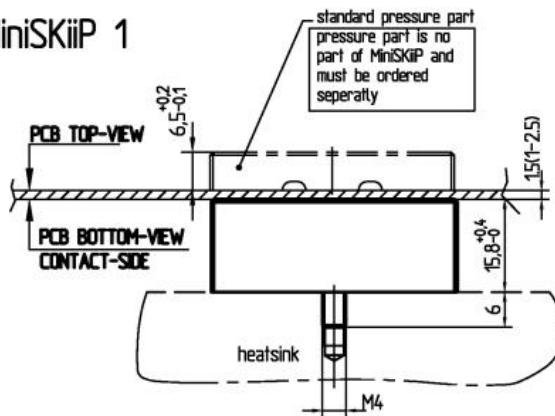
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

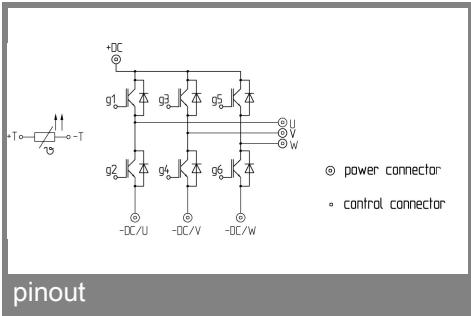

SKiiP 13AC12T4V1

UL recognized file

PCB
PCB TOP-VIEW



PCB BOTTOM-VIEW
CONTACT-SIDE



MiniSKiiP 1

no. E 63 532

case

