

Transceiver
21 - 27 GHz
Rev. V1

Features

· Conversion Gain:

 $T_X = 3 dB$ $R_X = 11 dB$

Receive:

Noise Figure = 3 dB IIP3 = +5 dBm

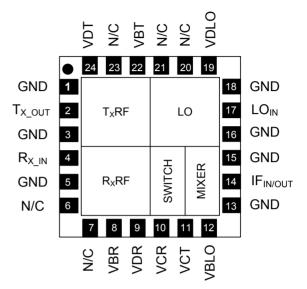
- Transmit: IM3 = -40 dBc @ 0 dBm
- LO: 8 10 GHz & 0 dBm Drive
- Wide IF Bandwidth = 0.1 6.0 GHz
- Single 5 Volt DC Bias, 180 mA
- Lead-Free 4 mm 24-lead PQFN Package
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant and 260°C Reflow Compatible

Description

The MAMF-011024 is a 21 - 27 GHz transceiver IC. It integrates an LNA, PA, T_X/R_X switch, bi-directional mixer, filtering, and LO frequency x2 multiplier with amplification. This device is assembled in a lead-free 4 mm 24 lead PQFN surface mount plastic package.

This transceiver operates either in receive or in transmit TDD (Time Division Duplex) mode. Receive and transmit circuitry can be turned off during transmit and receive, respectively. The T_X/R_X switch can be operated independently of the power up timing. It is powered from a single positive 5 V bias.

The MAMF-011024 is ideally suited for unlicensed 24 GHz ISM band applications.


Ordering Information^{1,2}

Part Number	Package	
MAMF-011024 -TR0500	500 piece reel	
MAMF-011024 -SMB	Sample Test Board	

^{1.} Reference Application Note M513 for reel size information.

*Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

Functional Schematic

Pin Configuration³

Pin No.	Description	Pin No.	Description	
1	Ground	13	Ground	
2	Transmit Output	14	IF Input / Output	
3	Ground	15	Ground	
4	Receive Input	16	Ground	
5	Ground	17	LO Input	
6	No Connection	18	Ground	
7	No Connection	19	LO Drain Voltage	
8	R _X Bias Adjust	20	No Connection	
9	R _X Drain Voltage	21	No Connection	
10	R _X Switch Control	22	T _X Bias Adjust	
11	T _X Switch Control	23	No Connection	
12	LO Bias Adjust	24	T _X Drain Voltage	
		25 ⁴	Ground	

^{3.} MACOM recommends connecting all "No Connection" pins to ground.

^{2.} All sample boards include 3 loose parts.

The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

Transceiver 21 - 27 GHz

Rev. V1

Electrical Specifications: T_A = 25°C, RF = 24 GHz, IF = 5.6 GHz, LO = 9.2 GHz, 0 dBm, Z_0 = 50 Ω , VDT = VDR = VDLO = 5 V, Control / Bias Adjust Voltages⁵ = 0 / 5 V

Parameter	Test Conditions	Units	Min.	Тур.	Max.
LO: Drive Power	_	dBm	_	0	_
LO: Return Loss	_	dB	_	12	_
R _X : Down Conversion Gain	_	dB	9	11	_
R _x : Noise Figure	-	dB	_	3	_
R _X : Return Loss	-	dB	_	11	_
R _x : Input IP3	_	dBm	_	+5	_
R _x : LO Isolation	LO to IF port LO Frequency 2xLO Frequency 3xLO Frequency	dB	_	22 33 55	_
T _X : Up Conversion Gain	-	dB	1	3	_
T _X : Output Noise	-	dBm/Hz	_	-85	_
T _X : Return Loss	_	dB	_	15	_
T _X : Output IM3	+5 dBm P _{OUT}	dBc	_	-40	_
T _X : LO Isolation	LO to T _X port LO Frequency 2xLO Frequency 3xLO Frequency	dB	_	48 20 25	_
IF: Return Loss	_	dB	_	7	_
Isolation	T_X Mode, R_X to IF R_X Mode, T_X to IF	dB	_	69 58	_
Current (sum of all DC currents)	T _X Mode R _X Mode Standby Mode	mA	110 120 —	150 160 <1	170 180 —

^{5.} See Truth Table.

Transceiver
21 - 27 GHz
Rev. V1

Absolute Maximum Ratings^{6,7}

Parameter	Absolute Maximum		
Input Power (R _X)	+15 dBm		
Input Power (LO, IF)	+10 dBm		
Voltage	6 V		
Junction Temperature	150°C		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +150°C		

Exceeding any one or combination of these limits may cause permanent damage to this device.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

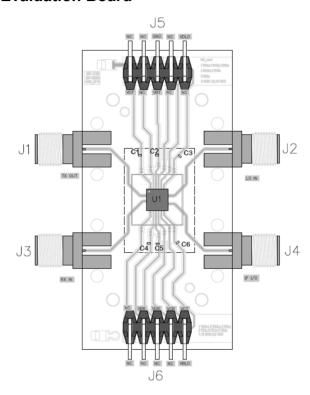
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Truth Table

Mode / Pin	VBLO (V)	VBT (V)	VBR (V)	VCT (V)	VCR (V)
R _X	+5	0	+5	0	+5
T _X	+5	+5	0	+5	0
Standby	0	0	0	0	0

MACOM does not recommend sustained operation near these survivability limits.

Transceiver
21 - 27 GHz
Rev. V1


The MAMF-011024 is designed to be easy to use yet high performance. The ultra small size and simple bias allow easy placement on any system board. It requires no matching or external tuning elements; all RF ports are matched to $50~\Omega$.

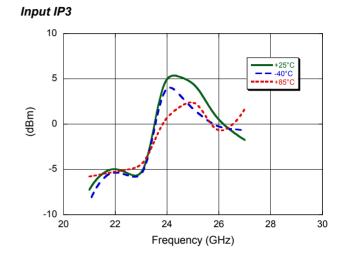
The MAMF-011024 requires only a single +5 V power supply to operate. All VDx and VBx lines can be tied to the +5 V (with appropriate bypass capacitors) for simple operation. See the Truth Table for $T_x/R_x/S$ tandby modes of operation.

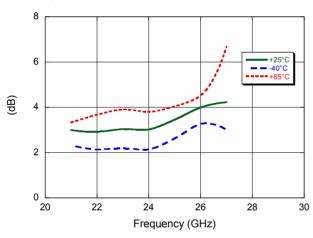

Parts List

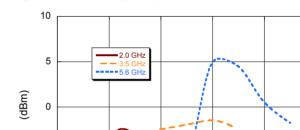
Component	Value	Package
C1 - C6	0.22 μF	0201

Evaluation Board

Application Schematic




Transceiver
21 - 27 GHz
Rev. V1

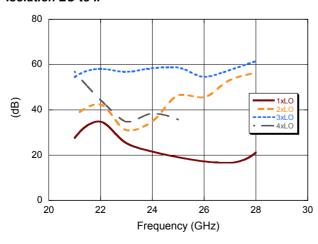

R_X (Receive) Typical Performance for Down-Conversion

Gain 20 15 15 0 20 20 22 24 26 28 30 Frequency (GHz)

Noise Figure

22

24

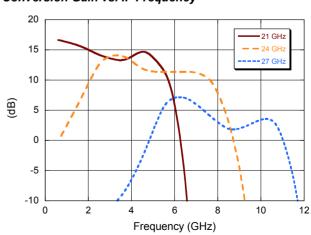

Frequency (GHz)

26

28

Input IP3 vs. IF Frequency, LO = 0 dBm

Isolation LO to IF

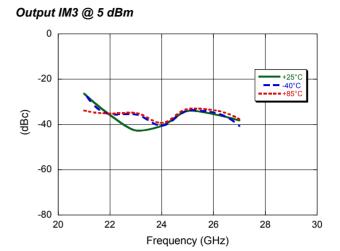

Conversion Gain vs. IF Frequency

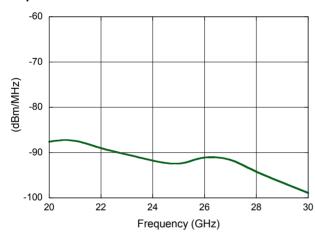
20

-5

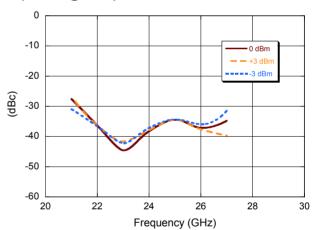
-10

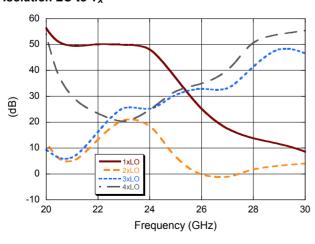
18

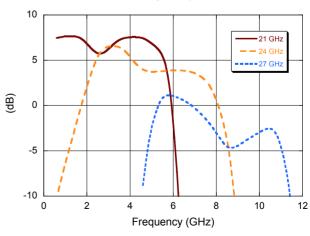



Transceiver
21 - 27 GHz
Rev. V1

T_X (Transmit) Typical Performance for Up-Conversion

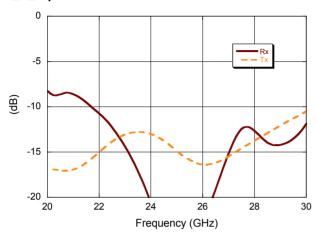

Gain 10 5 -10 20 22 24 26 28 30 Frequency (GHz)

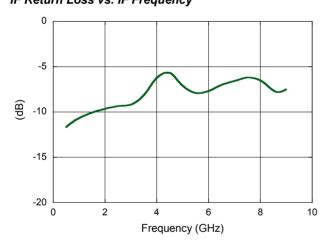

Output Noise


Output IM3 @ LO Input Power

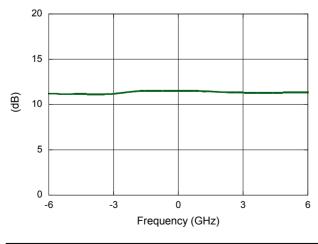
Isolation LO to T_X

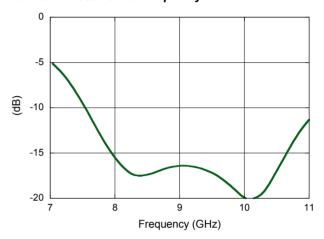
Conversion Gain vs. IF Frequency

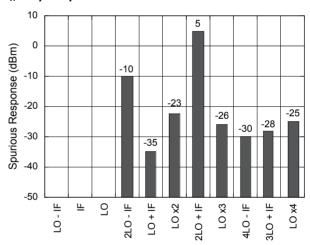


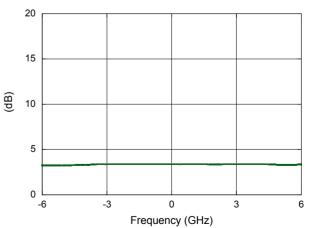

Transceiver
21 - 27 GHz
Rev. V1

Typical Performance


R_X/T_X Input Return Loss

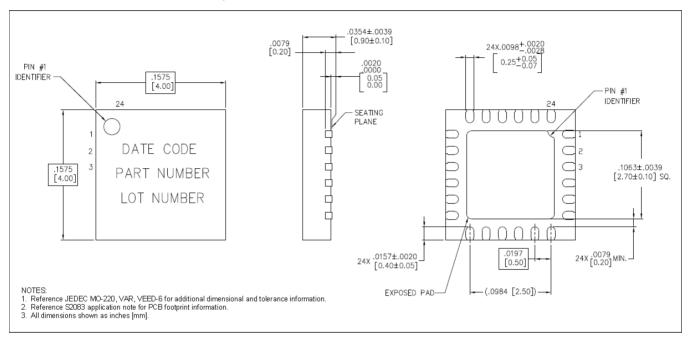

IF Return Loss vs. IF Frequency


R_X Conversion Gain vs. LO Drive


LO Return Loss vs. LO Frequency

T_X Output Spectrum

T_X Conversion Gain vs. LO Drive



Transceiver 21 - 27 GHz

Rev. V1

Lead-Free 4 mm 24-Lead PQFN[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is NiPdAuAg.