

November 1999 Revised November 2000

74LVT245 • 74LVTH245 Low Voltage Octal Bidirectional Transceiver with 3-STATE Inputs/Outputs

General Description

The LVT245 and LVTH245 contain eight non-inverting bidirectional buffers with 3-STATE outputs and are intended for bus-oriented applications. The Transmit/Receive $(\mathsf{T/R})$ input determines the direction of data flow through the bidirectional transceiver. Transmit (active-HIGH) enables data from A ports to B ports; Receive (active-LOW) enables data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a HIGH Z condition.

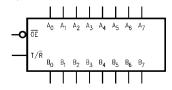
The LVTH245 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

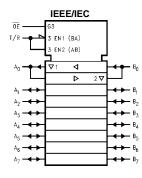
These transceivers are designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT245 and LVTH245 are fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

Features

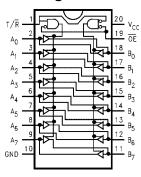
- \blacksquare Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs (74LVTH245), also available without bushold feature (74LVT245).
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink, -32 mA/+64 mA
- Latch-up performance exceeds 500 mA
- ESD performance:

Human-body model > 2000V Machine model > 200V


Charged-device model > 1000V


Ordering Code:

Order Number	Package Number	Package Description
74LVT245WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVT245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II 5.3mm Wide
74LVT245MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LVT245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74LVTH245WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVTH245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II 5.3mm Wide
74LVTH245MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LVTH245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide


Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Pin Descriptions

Pin Names	Description			
ŌĒ	Output Enable Input			
T/R	Transmit/Receive Input			
A ₀ -A ₇	Side A Inputs or 3-STATE Outputs			
B ₀ –B ₇	Side B Inputs or 3-STATE Outputs			

Truth Table

Inp	uts	Outputo		
OE	T/R	Outputs		
L	L	Bus B Data to Bus A		
L	Н	Bus A Data to Bus B		
Н	Х	HIGH-Z State		

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Absolute Maximum Ratings(Note 1)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 2)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
Io	DC Output Current	64	V _O > V _{CC} Output at HIGH State	mA
		128	V _O > V _{CC} Output at LOW State	T IIIA
I _{CC}	DC Supply Current per Supply Pin	±64		mA
I _{GND}	DC Ground Current per Ground Pin	±128		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	High-Level Output Current		-32	mA
I _{OL}	Low-Level Output Current		64	mA
T _A	Free Air Operating Temperature	-40	+85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 2: Io Absolute Maximum Rating must be observed.

DC Electrical Characteristics

Symbol	Parameter		V _{CC}	$T_A = -40^{\circ}$	to +85°C Units		Conditions
Symbol	Faramet	51	(V)	Min	Max	Offics	Conditions
V _{IK}	Input Clamp Diode Voltage	9	2.7		-1.2	V	$I_I = -18 \text{ mA}$
V _{IH}	Input HIGH Voltage		2.7-3.6	2.0		V	$V_0 \le 0.1V$ or
V _{IL}	Input LOW Voltage		2.7-3.6		0.8	V	$V_O \ge V_{CC} - 0.1V$
V _{OH}	Output HIGH Voltage		2.7-3.6	V _{CC} - 0.2		V	$I_{OH} = -100 \mu A$
			2.7	2.4		V	$I_{OH} = -8 \text{ mA}$
			3.0	2.0		V	$I_{OH} = -32 \text{ mA}$
V _{OL}	Output LOW Voltage		2.7		0.2	V	$I_{OL} = 100 \mu A$
			2.7		0.5	V	I _{OL} = 24 mA
			3.0		0.4	V	I _{OL} = 16 mA
			3.0		0.5	V	I _{OL} = 32 mA
			3.0		0.55	V	I _{OL} = 64 mA
I _{I(HOLD)}	Bushold Input Minimum Drive		3.0	75		μΑ	$V_I = 0.8V$
(Note 3)				-75		μΑ	$V_I = 2.0V$
I _{I(OD)}	Bushold Input Over-Drive		3.0	500		μΑ	(Note 4)
(Note 3)	Current to Change State			-500		μΑ	(Note 5)
I	Input Current		3.6		10	μΑ	$V_I = 5.5V$
		Control Pins	3.6		±1	μΑ	$V_I = 0V$ or V_{CC}
		Data Pins	3.6		-5	μΑ	$V_I = 0V$
					1	μΑ	$V_I = V_{CC}$
I _{OFF}	Power Off Leakage Currer	nt	0		±100	μΑ	$0V \le V_I \text{ or } V_O \le 5.5V$
I _{PU/PD}	Power Up/Down 3-STATE Current		0-1.5V		±100	μА	$V_O = 0.5V$ to V_{CC}
			0-1.50		±100	μΛ	$V_I = GND$ to V_{CC}
I _{OZL}	3-STATE Output Leakage Current		3.6		-5	μΑ	V _O = 0.5V
I _{OZL} (Note 3)	3-STATE Output Leakage	Current	3.6		- 5	μΑ	$V_0 = 0.0V$
I _{OZH}	3-STATE Output Leakage	Current	3.6		5	μΑ	V _O = 3.0V

DC Electrical Characteristics (Continued)

Symbol	Parameter	v _{cc}	T _A = -40°0	C to +85°C	Units	Conditions	
- Cynnbon	i didilictor	(V)	Min	Max	Onno	Conditions	
I _{OZH} (Note 3)	3-STATE Output Leakage Current	3.6		5	μΑ	V _O = 3.6V	
I _{OZH} +	3-STATE Output Leakage Current	3.6		10	μΑ	V _{CC} < V _O ≤ 5.5V	
I _{CCH}	Power Supply Current	3.6		0.19	mA	Outputs HIGH	
I _{CCL}	Power Supply Current	3.6		5	mA	Outputs LOW	
I _{CCZ}	Power Supply Current	3.6		0.19	mA	Outputs Disabled	
I _{CCZ} +	Power Supply Current	3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V$,	
		3.0		0.13	IIIA	Outputs Disabled	
ΔI_{CC}	Increase in Power Supply Current	3.6		0.2	mA	One Input at V _{CC} – 0.6V	
	(Note 6)	3.0		0.2	ША	Other Inputs at V _{CC} or GND	

Note 3: Applies to Bushold versions only (LVTH245).

Note 4: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 5: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 6: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

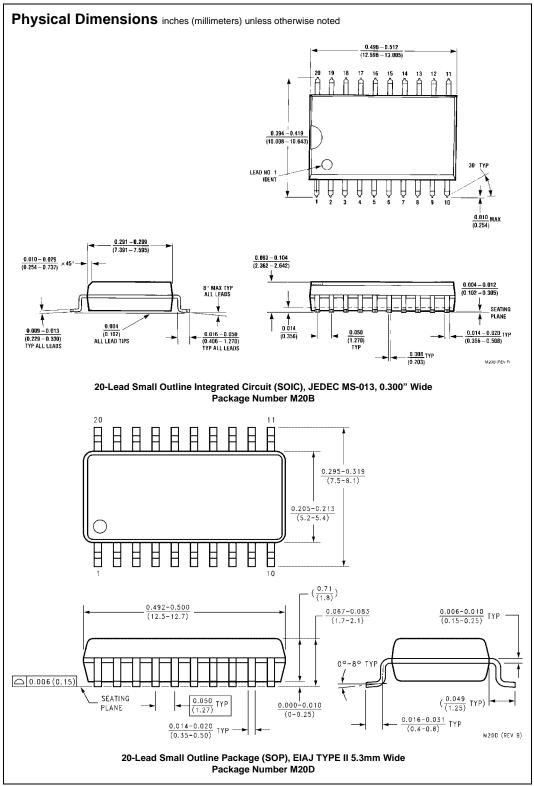
Dynamic Switching Characteristics (Note 7)

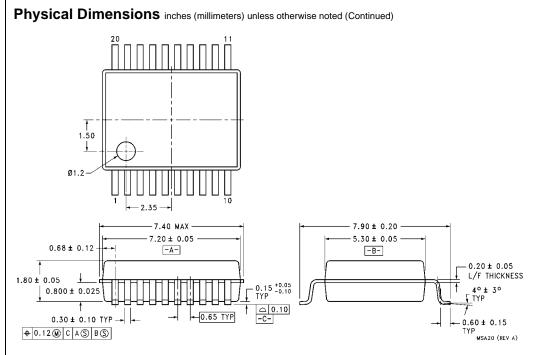
Symbol	Parameter	v _{cc}		T _A = 25°C		Units	Conditions
		(V)	Min	Тур	Max	Omits	$\mbox{C}_{\mbox{\scriptsize L}}=\mbox{50}$ pF, $\mbox{R}_{\mbox{\scriptsize L}}=\mbox{500}\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 8)
V _{OLV}	Quiet Output Minimum Dynamic VOL	3.3		-0.8		V	(Note 8)

Note 7: Characterized in SOIC package. Guaranteed parameter, but not tested.

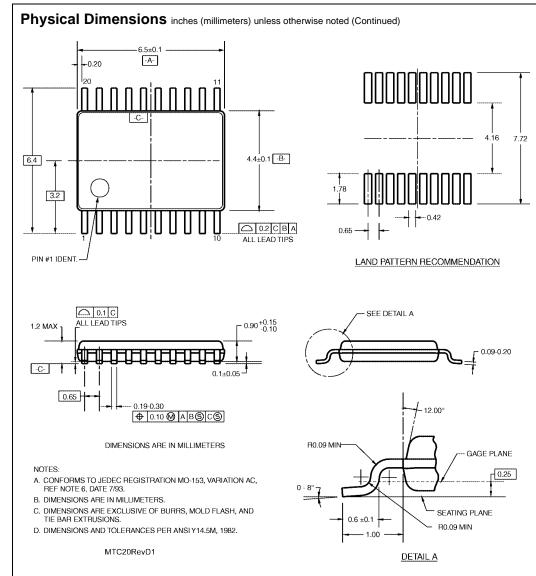
Note 8: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics


Comp. al	Parameter	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $C_L = 50 \text{ pF, } R_L = 500\Omega$				
Symbol		V _{CC} = 3.3	3V ± 0.3V	V _{CC} =	Units	
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay	1.2	3.6	1.2	4.0	ns
t _{PHL}		1.2	3.5	1.2	4.0	115
t _{PZH}	Output Enable Time	1.3	5.5	1.3	7.1	
t_{PZL}		1.7	5.7	1.7	6.7	ns
t _{PHZ}	Output Disable	2.0	5.9	2.0	6.5	ns
t_{PLZ}		2.0	5.0	2.0	5.1	115
t _{OSHL}	Output to Output Skew (Note 9)		1.0		1.0	ns


Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Capacitance (Note 10)


Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = 0V$, $V_I = 0V$ or V_{CC}	4	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.0V$, $V_{O} = 0V$ or V_{CC}	8	pF

Note 10: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide Package Number MSA20

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com