AM radio / FM IF stereo system IC BA1450S

The BA1450S is a tuner system IC for electronic tuning for AM radios, FM IF, and MPX. It has been developed for Hi-Fi component applications.

The MPX VCO circuit requires no adjustment, which will enable a reduction in the number of production line processes. In particular, the laser lock technique used in the VCO means that no external adjustment is required.

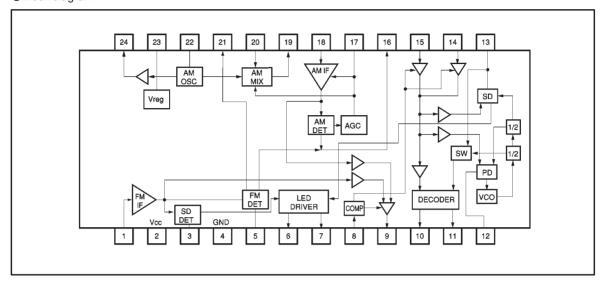
Applications

Synthesized tuner for Hi-Fi components.

Features

- Built-in AM monaural radio, FM IF amplifier/detector, and FM stereo demodulator.
- 2) DTS (both SD and IF count) compatible.
- 3) Built-in reference voltage power supply provides good shortwave band frequency stability.
- 4) Good FM stability.
- The FM MPX VCO uses laser locking making adjustment and external components unnecessary.
- Built-in forced monaural operation function for MPX (VCO stops, and LED goes off).
- 7) Low cutoff of audio is possible to improve AM fidelity.
- 8) MPX VCO stops in AM mode.
- 9) Audio muting is possible when an IF request is made.

● Absolute maximum ratings (Ta = 25°C)


Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	9.0	٧
Power dissipation	Pd	600*1	mW
Operating temperature	Topr	−25 ~ + 75	°C
Storage temperature	Tstg	− 55∼ + 125	°C

^{*1} Reduced by 6.0mW for each increase in Ta of 1°C over 25°C.

• Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	3.8	5.0	8.0	V

■Block diagram

●Input / output circuits

Pin No.	Function	Internal circuit	Quiescent voltage (V)		
FIII NO.	1 unction	Internal circuit	FM	AM	
1	FM IF amplifier input Connect to an FM ceramic filter.	Vcc 2 Vreg (23 1 330 Ω GND (4	2.1	2.1	
2	Vcc		5.0	5.0	
3	FM tuning ON level adjustment Connect a resistor from this pin to GND to set the required ON level for the tuning indicator.	Vcc ② 3 15kΩ GND ④ 15kΩ	0.25	0	
4	GND		0	0	
5	FM discriminator Connect to the discriminator coil.	Vcc ②	5.0	5.0	
6	Tuning indicator Connect to a tuning indicator display device (eg. LED)	©	_	_	
7	Stereo indicator Connect to a stereo indicator display device (eg. LED)	GND ④	_	_	

Pin No.	Frankina	Internal circuit	Quiescent pin voltage (V)		
- III INU.	Function	Internal circuit	FM	AM	
8	 IF request IF signal is output when input is 4.0V or more. MUTE MUTE on when input is 2.0V or more. 	$\begin{array}{c c} \hline & 10k\Omega \\ \hline & 10k\Omega \\ \hline & 10k\Omega \\ \hline & V \\ & V \\$	0	0	
9	IF output Output for the IF signal.	Vcc(2) 9 GND(4)	4.2	4.2	
10	R-channel output	Vcc(2)	1.5	1.5	
11	L-channel output	GND 4	1.5	1.5	
12	PLL filter Connect to a lag/lead filter. AM/FM band switch AM band when connected to GND.	Vreg@3 Vreg@3 AM/FM AM/FM GND 4	2.1	0	
13	Pilot filter Connect to a capacitor.	Vreg23 Wono GND4	2.1	2.1	

			Quiescent pin voltage (V)		
Pin No.	Function	Internal circuit	FM	AM	
14	MPX input Input the FM detector output .	Vcc ② Vreg ② G G G G G G G G G G G G G G G G G G	2.1	2.1	
15	MPX input Input the AM detector output after low cut.	(B) (G) (G) (G) (G) (G) (G) (G) (G) (G) (G	2.1	2.1	
16	AM/FM detector output Connect to the following stage MPX and FM low pass filter.	Vcc ② 16 5kΩ 16 GND 4	2.1	2.1	
17	AM AGC Connect to a capacitor.	Vcc 2 17 20kΩ A	0	0	
18	AM IF input Connect to an AM ceramic filter.	Vcc ② C *** (19) (3) (4) (5) (7) (7) (8) (9) (9) (9) (10)	5.0	5.0	
19	AM mixer output Connect to primary side of AM IFT.	Vcc 2 Vreg 23 Vg	5.0	5.0	
20	AM antenna Connect to AM antenna.	GND(4)	2.1	2.1	

Pin No.	Function	Internal circuit	Quiescent pin voltage (V)	
PIN NO.	Function	internal circuit	FM	AM
21	FM detector bandwidth adjustment Connect a resistor from this pin to the reference voltage supply to set the required detector bandwidth.	Vcc (2) (21) (4.3kΩ (21) (4.3	2.1	2.1
23	Reference voltage supply Connected to a capacitor.		2.1	2.1
22	AM local oscillator Connect to the AM OSC circuit.	Vreg 23	2.1	2.1
24	AM local oscillator output AM OSC output.	GND 4	1.7	1.4

●Electrical characteristics (unless otherwise noted, Ta = 25°C and Vcc = 5V)
FM IF MPX signal source: f_{IN} = 10.7MHz, modulation 1kHz, 75kHzdev (100%)
19kHz 7.5kHzdev (10%)

AM: $f_{IN} = 1000kHz$, modulation 1kHz 30%

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions		
Quiescent current FM	IQ (FM)	13	21	29	mA	No input		
Quiescent current AM	IQ (AM)	11	19	27	mA	No input		
⟨FM IF MPX⟩	⟨FM IF MPX⟩							
Detector output voltage	Vo	340	480	670	mV _{rms}	V _{IN} =100dB μ V,mono		
-3dB limiting sensitivity	L.S	34	37	40	dB μ V	mono		
Signal-to-noise ratio	S/N	72	80	_	dB	V _{IN} =100dB μ V, mono		
Channel balance	C.B	-2	0	+2	dB	V _{IN} =100dB μ V, mono		
AM suppression ratio	AMR	45	55	_	dB	AM: V _{IN} =60dB μ V, mod=30%, 400Hz		
Channel separation	SEP	35	45	_	dB	V _{IN} =100dB μ V, main		
Total harmonic distortion	THD	_	0.5	1.6	%	V _{IN} =100dB μ V, main		
Station detector sensitivity	SDs	37	42	47	dB μ V	Input for pin 6 current ≥ 1mA		
Station detector bandwidth	SDsw	70	100	150	kHz	V _{IN} =100dB μ V, mono		
IF OUT output voltage	ViF	300	400	530	mV _{P-P}	IF request ON		
<a>AM⟩								
Detector output voltage	Vo	70	90	120	mVrms	V _{IN} =68dB μ V		
Usable sensitivity	Q.S	22	25	28	dB μ V	Input for S/N = 20dB		
Signal-to-noise ratio	S/N	42	52	_	dB	V _{IN} =68dB μ V		
Total harmonic distortion	THD	_	0.6	1.8	%	V _{IN} =68dB μ V		
Station detector sensitivity	SDs	21	26	31	dB μ V	Input for pin 6 current ≥ 1mA		
IF OUT output voltage	ViF	300	400	530	mV _{P-P}	IF request ON		
Local buffer output voltage	VoBuff	140	200	280	mV _{rms}			

Measurement circuit

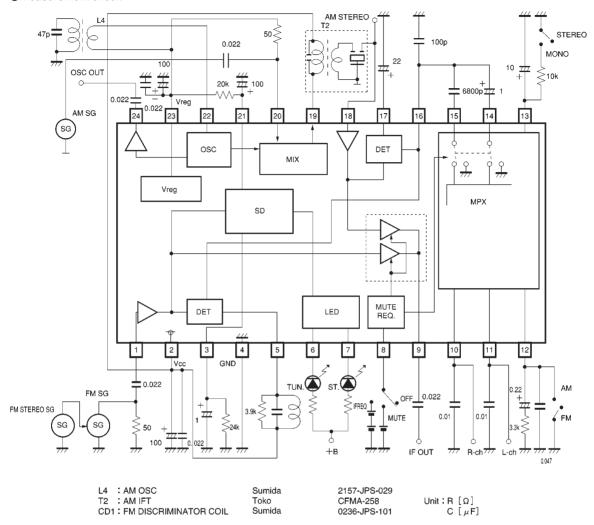


Fig. 1

Application example

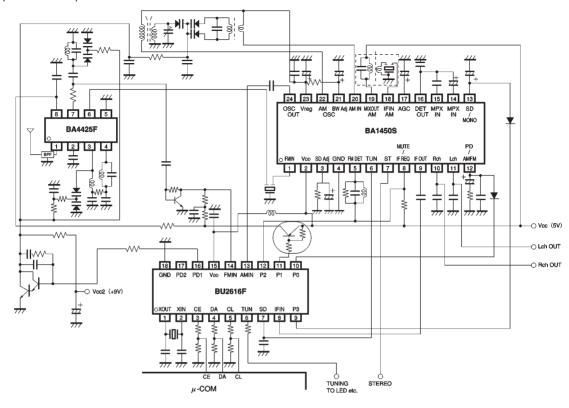


Fig. 2

Electrical characteristics curves

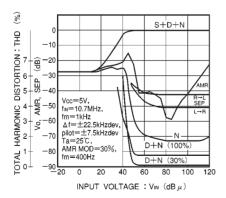


Fig. 3 FM input/output characteristics

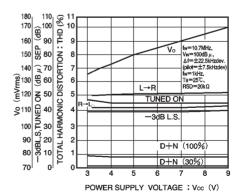


Fig. 4 FM characteristics vs. power suppy voltage

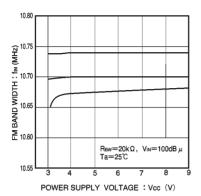


Fig. 5 FM bandwidth vs. power supply voltage

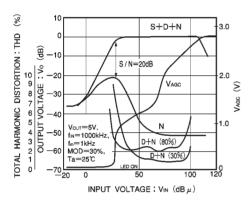


Fig. 7 AM input / output characteristics



Fig. 9 AM detector output and THD vs. frequency

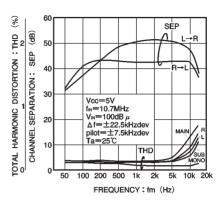


Fig. 6 Channel separation and THD vs. frequency

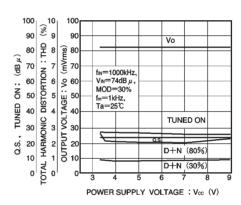
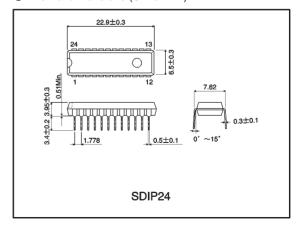



Fig. 8 AM characteristics vs. power suppy voltage

External dimensions (Units: mm)

