

16-Ch/Dual 8-Ch High-Performance CMOS Analog Multiplexers

DESCRIPTION

The DG406 is a 16 channel single-ended analog multiplexer designed to connect one of sixteen inputs to a common output as determined by a 4-bit binary address. The DG407 selects one of eight differential inputs to a common differential output. Break-before-make switching action protects against momentary shorting of inputs.

An on channel conducts current equally well in both directions. In the off state each channel blocks voltages up to the power supply rails. An enable (EN) function allows the user to reset the multiplexer/demultiplexer to all switches off for stacking several devices. All control inputs, address (A_x) and enable (EN) are TTL compatible over the full specified operating temperature range.

Applications for the DG406, DG407 include high speed data acquisition, audio signal switching and routing, ATE systems, and avionics. High performance and low power dissipation make them ideal for battery operated and remote instrumentation applications.

Designed in the 44 V silicon-gate CMOS process, the absolute maximum voltage rating is extended to 44 V, allowing operation with \pm 20 V supplies. Additionally single (12 V) supply operation is allowed. An epitaxial layer prevents latchup.

For applications information please request documents 70601 and 70604.

FEATURES

- Low on-resistance $R_{DS(on)}$: 50 Ω
- Low charge injection Q: 15 pC
- Fast transition time t_{TRANS}: 200 ns
- Low power: 0.2 mW
- · Single supply capability
- 44 V supply max. rating
- Material categorization:

For definitions of compliance please see www.vishav.com/doc?99912

HALOGEN FREE

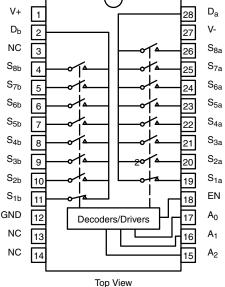
Note

* This datasheet provides information about parts that are RoHS-compliant and/or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information/tables in this datasheet for details.

BENEFITS

- Higher accuracy
- · Reduced glitching
- Improved data throughput
- Reduced power consumption
- Increased ruggedness
- Wide supply ranges: ± 5 V to ± 20 V

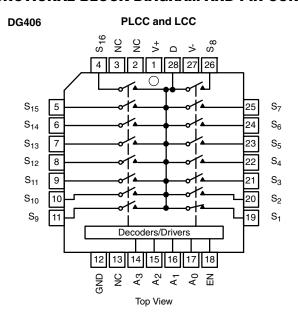
APPLICATIONS

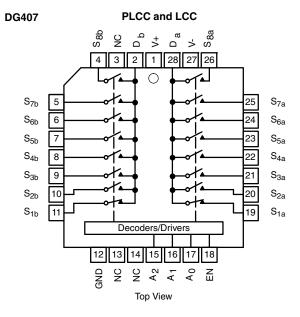

- · Data acquisition systems
- Audio signal routing
- Medical instrumentation
- ATE systems
- Battery powered systems
- High-rel systems
- Single supply systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

DG406 Dual-In-Line and SOIC Wide-Body D V+ 28 NC V-2 NC S_8 S_{16} S₇ S₁₅ S_6 S_{14} S_5 23 6 S₁₃ S_4 7 S_3 S_{12} 8 S₁₁ 20 S_2 9 S₁₀ S₁ Sg ΕN 18 GND A_0 12 17 Decoders/Drivers NC A۱ 16 A_3 Aρ

Top View


DG407 Dual-In-Line and SOIC Wide-Body



S13-2518-Rev. K, 09-Dec-13

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE (DG406)								
A ₃	A ₂	A ₁	A ₀	EN	ON SWITCH			
X	Х	Х	Х	0	None			
0	0	0	0	1	1			
0	0	0	1	1	2			
0	0	1	0	1	3			
0	0	1	1	1	4			
0	1	0	0	1	5			
0	1	0	1	1	6			
0	1	1	0	1	7			
0	1	1	1	1	8			
1	0	0	0	1	9			
1	0	0	1	1	10			
1	0	1	0	1	11			
1	0	1	1	1	12			
1	1	0	0	1	13			
1	1	0	1	1	14			
1	1	1	0	1	15			
1	1	1	1	1	16			

TRUTH TABLE (DG407)							
A ₂	A ₁	A_0	EN	ON SWITCH PAIR			
Х	Х	Χ	0	None			
0	0	0	1	1			
0	0	1	1	2			
0	1	0	1	3			
0	1	1	1	4			
1	0	0	1	5			
1	0	1	1	6			
1	1	0	1	7			
1	1	1	1	8			

Notes

- Logic "0" = V_{AL} ≤ 0.8 V
- Logic "1" = V_{AH} ≥ 2.4 V
- X = Do not Care

ORDERING INFORMATION (DG406)						
TEMP. RANGE	PACKAGE	PART NUMBER				
	28-Pin Plastic DIP	DG406DJ, DG406DJ-E3				
-40 °C to 85 °C	28-Pin PLCC	DG406DN, DG406DN-T1-E3				
	28-Pin Widebody SOIC	DG406DW, DG406DW-E3, DG406DW-T1-E3				

ORDERING INFORMATION (DG407)					
TEMP. RANGE PACKAGE PART NU					
-40 °C to 85 °C	28-Pin Plastic DIP	DG407DJ, DG407DJ-E3			
	28-Pin PLCC	DG407DN, DG407DN-T1-E3			
	28-Pin Widebody SOIC	DG407DW, DG407DW-E3, DG407DW-T1-E3			

Note

• -T1 indicates Tape and Reel, -E3 indicates Lead-Free and RoHS Compliant, NO -E3 indicates standard Tin/Lead finish.

www.vishay.com

Vishay Siliconix

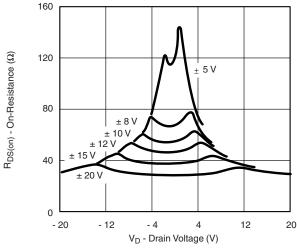
ABSOLUTE MAXIMUM RATINGS						
PARAMETER		LIMIT	UNIT			
Voltages Referenced to V-	V+ to V - ^f	44				
Voltages helereficed to v-	GND to V-	-25	V			
Digital Inputs ^a , V _S , V _D		(V-) - 2 to (V+) + 2 V or 20 mA, whichever occurs first	•			
Current (Any terminal)		30	mA			
Peak Current, S or D (Pulsed at 1 ms, 10 % duty cycle max.)		100	111/4			
Starage Temperature	(AK, AZ Suffix)	-65 to 150	°C			
Storage Temperature	(DJ, DN Suffix)	-65 to 125				
	28-Pin Plastic DIPb	625				
Power Dissipation (Package)b	28-Pin Plastic PLCCc	450	mW			
	28-Pin Widebody SOIC	450				

Notes

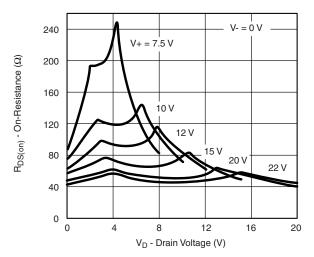
- a. Signals on SX, DX or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads soldered or welded to PC board.
- c. Derate 6 mW/°C above 75 °C.
- d. Derate 12 mW/°C above 75 °C.
- e. Derate 13.5 mW/°C above 75 °C.
- f. Also applies when V- = GND

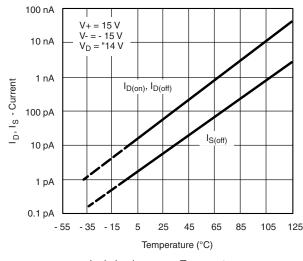
SPECIFICATIONS ^a		TEST CONDITIO	-				JFFIX	
PARAMETER	SYMBOL	V+ = 15 V, V- = -	SPECIFIED V+ = 15 V, V- = -15 V V _{AL} = 0.8 V, V _{AH} = 2.4 V ^f		TYP.º	-40 °C	MAX.d	UNIT
Analog Switch	\ 				L			L
Analog Signal Range ^e	V _{ANALOG}			Full	-	-15	15	V
Drain-Source		$V_D = \pm 10 \text{ V}, I_S = -$	10 mA	Room	50	-	100	0
On-Resistance	R _{DS(on)}	sequence each sw	itch on	Full	50	-	125	Ω
R _{DS(on)} Matching Between Channels ^g	$\Delta R_{DS(on)}$	V _D = ± 10 V		Room	5	-	-	%
Source Off Leakage Current	I _{S(off)}			Room	0.01	-0.5	0.5	
Course on Leanage Carrent	15(011)	.,		Full	0.01	-5	5	<u> </u>
		$V_{EN} = 0 V$ $V_{D} = \pm 10 V$	DG406	Room	0.04	-1	1	
Drain Off Leakage Current	I _{D(off)}	$V_{S} = \pm 10 \text{ V}$	Daroo	Full	0.04	-40	40	<u></u>
Drain on Lounage Garroni	·D(OII)		DG407	Room	0.04	-1	1	nA
			D G 101	Full	0.04	-20	20	
			DG406	Room	0.04	-1	1	
Drain On Leakage Current	I _{D(on)}	$V_S = V_D = \pm 10$ sequence each	Daroo	Full	0.04	-40	40	
Drain on Loanage Garrent	-D(on)	switch on	DG407	Room	0.04	-1	1	<u> </u>
			D G 101	Full	0.04	-20	20	
Digital Control								
Logic High Input Voltage	V _{INH}			Full	-	2.4	-	V
Logic Low Input Voltage	V _{INL}			Full	-	-	0.8	
Logic High Input Current	I _{AH}	$V_A = 2.4 \text{ V}, 15$		Full	-	-1	1	μA
Logic Low Input Current	I _{AL}	$V_{EN} = 0 \text{ V}, 2.4 \text{ V}, \text{ V}$	_A = 0 V	Full	-	-1	1	μΛ
Logic Input Capacitance	C _{in}	f = 1 MHz		Room	7	-	-	pF
Dynamic Characteristics								
Transition Time	t	see figure 2		Room	200	-	350	
Transition fille	t _{TRANS}	see ligure 2		Full	-	-	450	
Break-Before-Make Interval	+	see figure 4		Room	50	25	-	
bleak-belole-iviake lillerval	t _{OPEN}	See ligure 4	•	Full	-	10	-	ne
Enable Turn-On Time				Room	150	-	200	- ns
Enable Turn-On Time	t _{ON(EN)}	see figure 3	•	Full	-	-	400	
Enable Turn-Off Time	+	see ligure s	•	Room	70	-	150	
Enable rum-On time	t _{OFF(EN)}		•	Full	-	-	300	
Charge Injection	Q	$V_S = 0 V, C_L = 1 nF,$	$R_S = 0 \Omega$	Room	15	-	-	рС
Off Isolationh	OIRR	$V_{EN} = 0 \text{ V, R}_{L} = 0 \text{ f}$ f = 100 kHz	l kΩ	Room	-69	-	-	dB
Source Off Capacitance	C _{S(off)}	$V_{EN} = 0 \text{ V}, V_{S} = 0 \text{ V}, f$	= 1 MHz	Room	8	-		
Drain Off Canacitanas	C-:			Room	130	-	-	
Drain Off Capacitance	$C_{D(off)}$	$V_{EN} = 0 V$	DG407	Room	65	-	-	рF
Drain On Capacitance	C- · ·	$V_D = 0 V$ f = 1 MHz	DG406	Room	140	-	-	
·	C _{D(on)}		DG407	Room	70	-	-	
Power Supplies								
Positive Supply Current	I+	V V 0	5.V	Room Full	13 -	-	30 75	1
Magativa Cumple Occupa		$V_{EN} = V_A = 0$ or	υC	Room	-0.01	-1	-	
Negative Supply Current	I-			Full	-	-10	-	1 .
Design of the control				Room	50	-	500	μA
Positive Supply Current	I+	.,	0.14	Full		-	700	1
	_	$V_{EN} = 2.4 \text{ V}, V_A =$	$V_{EN} = 2.4 \text{ V}, V_A = 0 \text{ V}$		-0.01	-20	-	1
Negative Supply Current	I-				-0.01	-20	_	1

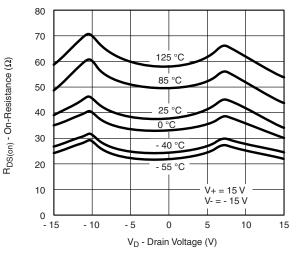
SPECIFICATIONS _a (for Single Supply)									
	0,44001	UNLESS OTHER	TEST CONDITIONS UNLESS OTHERWISE			D SUFFIX -40 °C TO 85 °C			
PARAMETER	SYMBOL	SPECIFIED V+ = 12 V, V- = 0 V V _{AL} = 0.8 V, V _{AH} = 2.4 V ^f		TEMP.b	TYP.º	MIN. ^d	MAX.d	UNIT	
Analog Switch									
Analog Signal Range ^e	V _{ANALOG}			Full	-	0	12	V	
Drain-Source On-Resistance	R _{DS(on)}	V _D = 3 V, 10 V, I _S =	-1 mA	Room	90	-	120	Ω	
R _{DS(on)} Matching Between Channels ^g	$\Delta R_{DS(on)}$	sequence each switch on		Room	5	-	-	%	
Source Off Leakage Current	I _{S(off)}	V _{EN} = 0 V		Room	0.01	-	-		
Drain Off Lookaga Current	1	$V_D = 10 \text{ V or } 0.5 \text{ V}$	DG406	Room	0.04	-	-	1	
Drain Off Leakage Current	I _{D(off)}	$V_S = 0.5 \text{ V or } 10 \text{ V}$	DG407	Room	0.04	-	-	nA	
		$V_{S} = V_{D} = \pm 10 \text{ V}$	DG406	Room	0.04	-	-		
Drain On Leakage Current	I _{D(on)}	sequence each switch on	DG407	Room	0.04	-	-		
Dynamic Characteristics									
Switching Time of Multiplexer	t _{OPEN}	$V_{S1} = 8 \text{ V}, V_{S8} = 0 \text{ V}, V_{S8}$	_{IN} = 2.4 V	Room	300	-	450		
Enable Turn-On Time	t _{ON(EN)}	V _{INH} = 2.4 V, V _{INL}	= 0 V	Room	250	-	600	ns	
Enable Turn-Off Time	t _{OFF(EN)}	$V_{S1} = 5 V$		Room	150	-	300		
Charge Injection	Q	$C_L = 1 \text{ nF}, V_S = 6 \text{ V},$	$R_S = 0$	Room	20	-	-	рС	
Power Supplies	Power Supplies								
Positive Supply Current	l+			Room	13	-	30		
1 Ositive Supply Current	1+	$V_{EN} = 0 \text{ V or 5 V, } V_{\Delta} = 0$	0 V or 5 V	Full	-	-	75		
Negative Supply Current	1-	$V_{EN} = U V UI J V, V_A = V$	0 0 0 0 0	Room	-0.01	-20	-	μA	
Negative Supply Culterit	'-			Full	-0.01	-20	-		

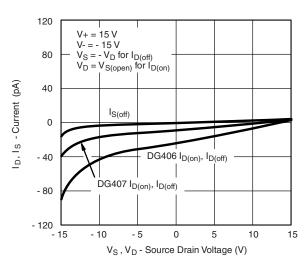

Notes

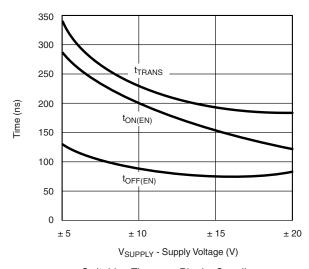
- a. Refer to PROCESS OPTION FLOWCHART.
- b. Room = 25 °C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DS(on)} = R_{DS(on)} \text{ max.} R_{DS(on)} \text{ min.}$
- h. Worst case isolation occurs on Channel 4 due to proximity to the drain pin.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

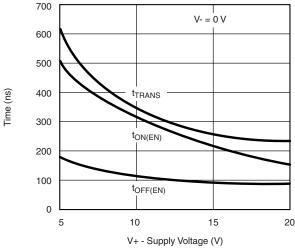

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

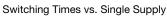


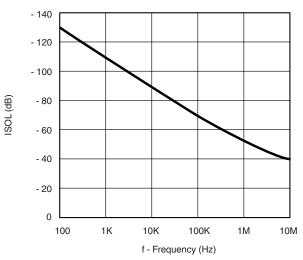

R_{DS(on)} vs. V_D and Supply

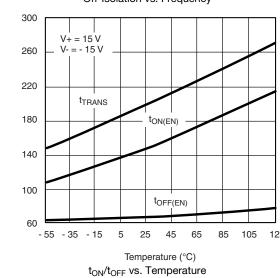

 I_D , I_S Leakages vs. Temperature

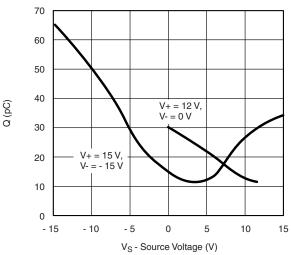
R_{DS(on)} vs. V_D and Temperature

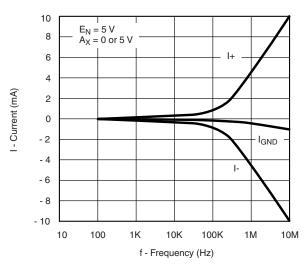

I_D , I_S Leakage Currents vs. Analog Voltage

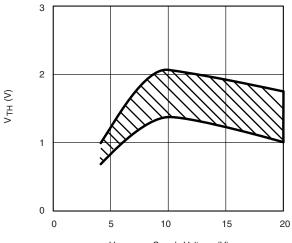



Switching Times vs. Bipolar Supplies


TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)




Off-Isolation vs. Frequency


Time (ns)

Charge Injection vs. Analog Voltage

Supply Currents vs. Switching Frequency

V_{SUPPLY} - Supply Voltage (V)
Switching Threshold vs. Supply Voltage

SCHEMATIC DIAGRAM (Typical Channel)

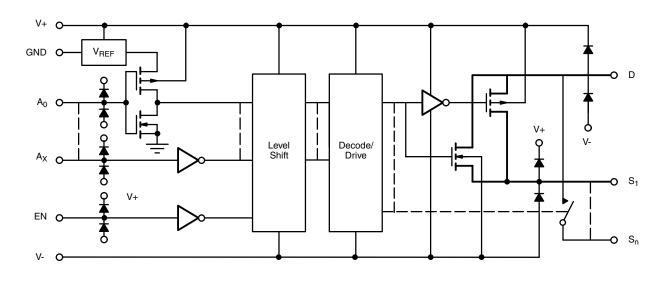


Fig. 1

TEST CIRCUITS

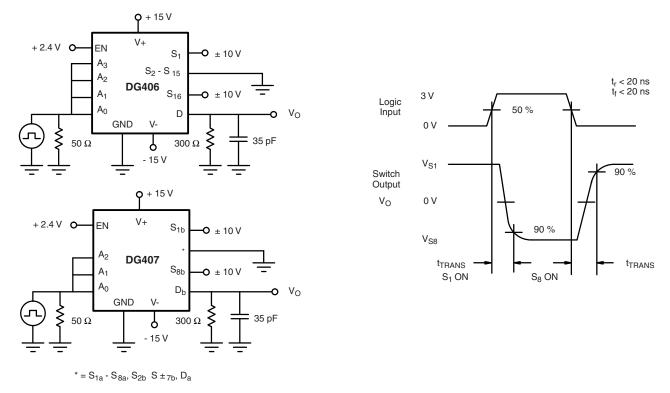


Fig. 2 - Transition Time

TEST CIRCUITS

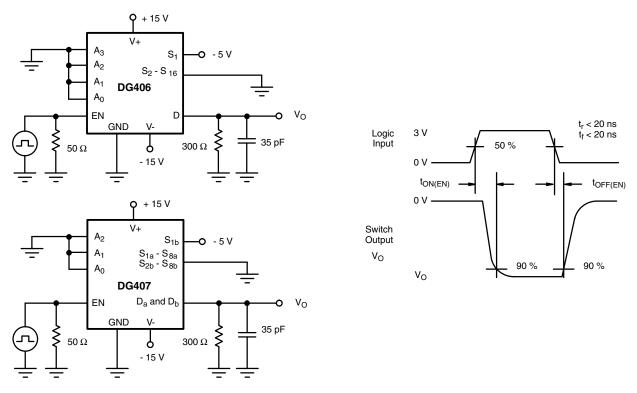


Fig. 3 - Enable Switching Time

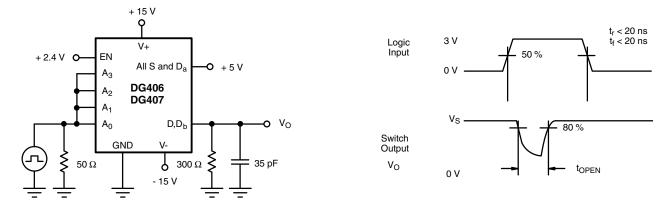


Fig. 4 - Break-Before-Make Interval

APPLICATIONS HINTS

Sampling speed is limited by two consecutive events: the transition time of the multiplexer, and the settling time of the sampled signal at the output.

 t_{TRANS} is given on the data sheet. Settling time at the load depends on several parameters: $R_{DS(on)}$ of the multiplexer, source impedance, multiplexer and load capacitances, charge injection of the multiplexer and accuracy desired.

The settling time for the multiplexer alone can be derived from the model shown in figure 5. Assuming a low impedance signal source like that presented by an op amp or a buffer amplifier, the settling time of the RC network for a given accuracy is equal to $n\tau$:

% ACCURACY	# BITS	N
0.25	8	6
0.012	12	9
0.0017	15	11

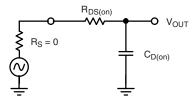


Fig. 5 - Simplified Model of One Multiplexer Channel

The maximum sampling frequency of the multiplexer is:

$$f_s = \frac{1}{N(t_{SETTLING} + t_{TRANS})} (1)$$

where N = number of channels to scan $t_{SETTLING}$ = $n\tau$ = $n \times R_{DS(on)} \times C_{D(on)}$

For the DG406 then, at room temp and for 12-bit accuracy, using the maximum limits:

$$f_s = \frac{1}{16(9 \times 100 \ \Omega \times 10^{-12} \text{F}) + 300 \times 10^{-12} \text{s}}$$
 (2)

or

$$f_s = 694 \text{ kHz} \tag{3}$$

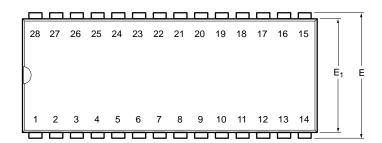
From the sampling theorem, to properly recover the original signal, the sampling frequency should be more than twice the maximum component frequency of the original signal. This assumes perfect bandlimiting. In a real application sampling at three to four times the filter cutoff frequency is a good practice.

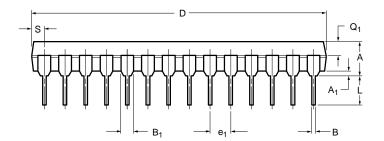
Therefore from equation 2 above:

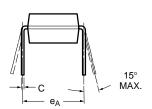
$$f_c = \frac{1}{4} \times f_s = 173 \text{ kHz} \tag{4}$$

From this we can see that the DG406 can be used to sample 16 different signals whose maximum component frequency can be as high as 173 kHz. If for example, two channels are used to double sample the same incoming signal then its cutoff frequency can be doubled.

The block diagram shown in figure 6 illustrates a typical data acquisition front end suitable for low-level analog signals. Differential multiplexing of small signals is preferred since this method helps to reject any common mode noise. This is especially important when the sensors are located at a distance and it may eliminate the need for individual amplifiers. A low $R_{DS(on)}$, low leakage multiplexer like the DG407 helps to reduce measurement errors. The low power dissipation of the DG407 minimizes on-chip thermal gradients which can cause errors due to temperature mismatch along the parasitic thermocouple paths. Please refer to Application Note AN203 for additional information.



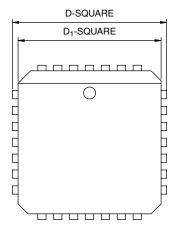

Fig. 6 - Measuring Low-Level Analog Signals is more accurate when using a Differential Multiplexing Technique

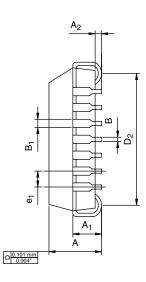

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg270061.

PDIP: 28-LEAD

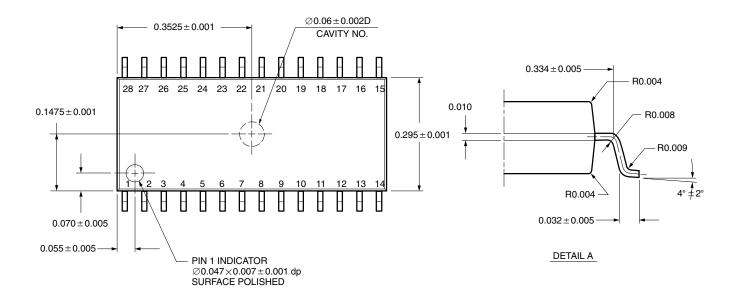
	MILLIMETERS		INC	HES
Dim	Min	Max	Min	Max
A	2.29	5.08	0.090	0.200
A ₁	0.39	1.77	0.015	0.070
В	0.38	0.56	0.015	0.022
B ₁	0.89	1.65	0.035	0.065
С	0.204	0.30	0.008	0.012
D	35.10	39.70	1.380	1.565
E	15.24	15.88	0.600	0.625
E ₁	13.21	14.73	0.520	0.580
e ₁	2.29	2.79	0.090	0.110
e _A	14.99	15.49	0.590	0.610
L	2.60	5.08	0.100	0.200
Q ₁	0.95	2.345	0.0375	0.0925
S	0.995	2.665	0.0375	0.105

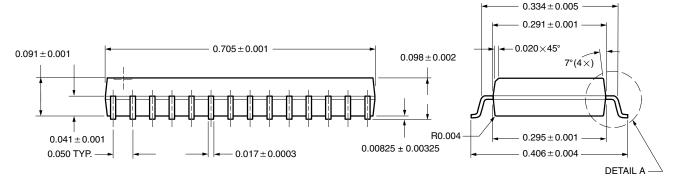
ECN: S-03946—Rev. F, 09-Jul-01 DWG: 5488


Document Number: 71243


06-Jul-01

PLCC: 28-LEAD




DIM.	MILLIN	METERS	INCHES		
	MIN.	MAX.	MIN.	MAX.	
Α	4.20	4.57	0.165	0.180	
A ₁	2.29	3.04	0.090	0.120	
A ₂	0.51	-	0.020	-	
В	0.331	0.553	0.013	0.021	
B ₁	0.661	0.812	0.026	0.032	
D	12.32	12.57	0.485	0.495	
D ₁	11.430	11.582	0.450	0.456	
D_2	9.91	10.92	0.390	0.430	
e ₁	1.27	BSC	0.050	BSC	
ECN: T00 0766 Pay D 39 Cap 00					

ECN: T09-0766-Rev. D, 28-Sep-09 DWG: 5491

SOIC (WIDE-BODY): 28-LEADS

All Dimensions In Inches

ECN: E11-2209-Rev. D, 01-Aug-11

DWG: 5850

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.