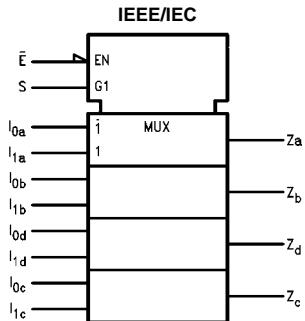
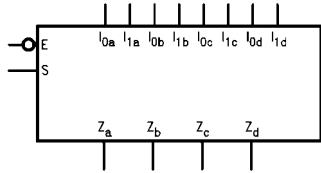


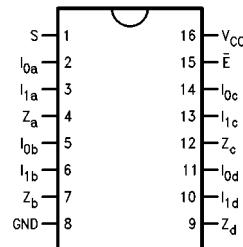
74F157A

Quad 2-Input Multiplexer

General Description



The F157A is a high-speed quad 2-input multiplexer. Four bits of data from two sources can be selected using the common Select and Enable inputs. The four outputs present the selected data in the true (non-inverted) form. The F157A can also be used to generate any four of the 16 different functions to two variables.

Ordering Code:


Order Number	Package Number	Package Description
74F157ASC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F157ASJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F157APC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input I_{IH}/I_{IL} Output I_{OH}/I_{OL}
I_{0a} – I_{0d}	Source 0 Data Inputs	1.0/1.0	20 μ A/0.6 mA
I_{1a} – I_{1d}	Source 1 Data Inputs	1.0/1.0	20 μ A/0.6 mA
\bar{E}	Enable Input (Active LOW)	1.0/1.0	20 μ A/0.6 mA
S	Select Input	1.0/1.0	20 μ A/0.6 mA
Z_a – Z_d	Outputs	50/33.3	–1 mA/20 mA

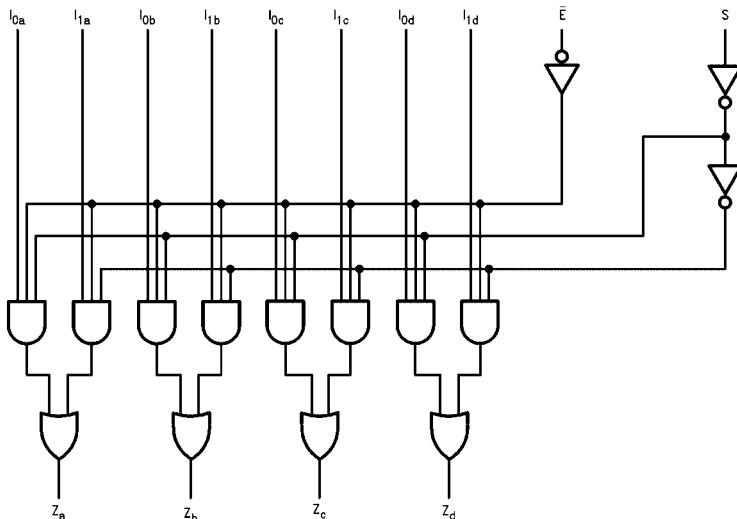
Truth Table

Inputs				Output
\bar{E}	S	I_0	I_1	Z
H	X	X	X	L
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial


Functional Description

The F157A is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input (\bar{E}) is active LOW. When \bar{E} is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs. The F157A is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$Z_n = \bar{E} \cdot (I_{1n}S + I_{0n}\bar{S})$$

A common use of the F157A is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The F157A can generate any four of the 16 different functions of two variables with one variable common. This is useful for implementing highly irregular logic.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

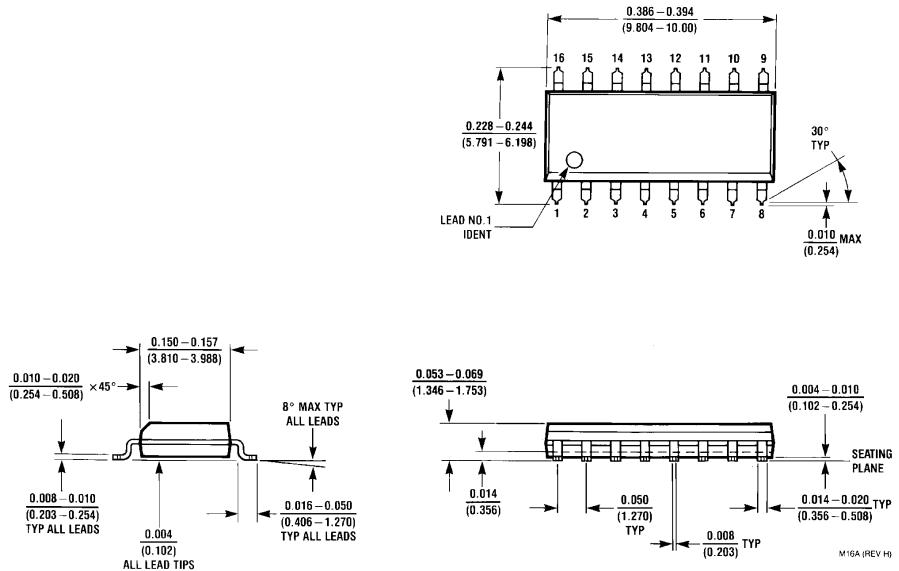
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V_{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V_{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

Recommended Operating Conditions

Free Air Ambient Temperature 0°C to +70°C

Supply Voltage +4.5V to +5.5V

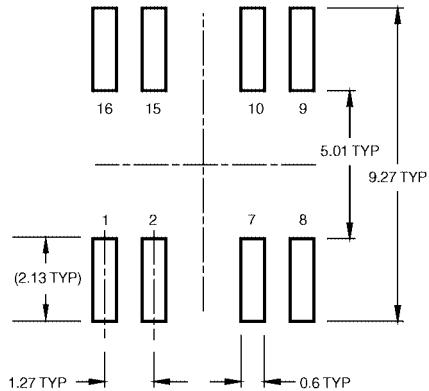
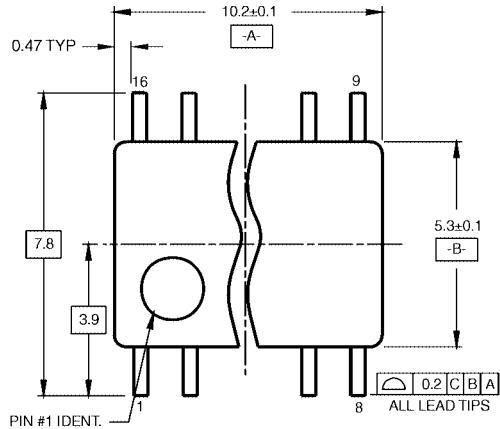
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.**Note 2:** Either voltage limit or current limit is sufficient to protect inputs.**DC Electrical Characteristics**

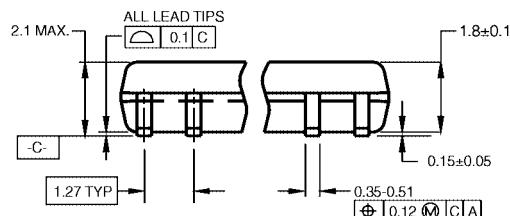

Symbol	Parameter	Min	Typ	Max	Units	V_{CC}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage		0.8		V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage		-1.2		V	Min	$I_{IN} = -18$ mA
V_{OH}	Output HIGH Voltage	10% V_{CC}	2.5		V	Min	$I_{OH} = -1$ mA
		5% V_{CC}	2.7				$I_{OH} = -1$ mA
V_{OL}	Output LOW Voltage	10% V_{CC}		0.5	V	Min	$I_{OL} = 20$ mA
I_{IH}	Input HIGH Current			5.0	μ A	Max	$V_{IN} = 2.7$ V
I_{BVI}	Input HIGH Current Breakdown Test			7.0	μ A	Max	$V_{IN} = 7.0$ V
I_{CEX}	Output HIGH Leakage Current			50	μ A	Max	$V_{OUT} = V_{CC}$
V_{ID}	Input Leakage Test	4.75			V	0.0	$I_{ID} = 1.9$ μ A All Other Pins Grounded
I_{OD}	Output Leakage Circuit Current			3.75	μ A	0.0	$V_{IOD} = 150$ mV All Other Pins Grounded
I_{IL}	Input LOW Current			-0.6	mA	Max	$V_{IN} = 0.5$ V
I_{OS}	Output Short-Circuit Current	-60		-150	mA	Max	$V_{OUT} = 0$ V
I_{CCH}	Power Supply Current		15	23	mA	Max	$V_O = \text{HIGH}$
I_{CCL}	Power Supply Current		15	23	mA	Max	$V_O = \text{LOW}$

AC Electrical Characteristics

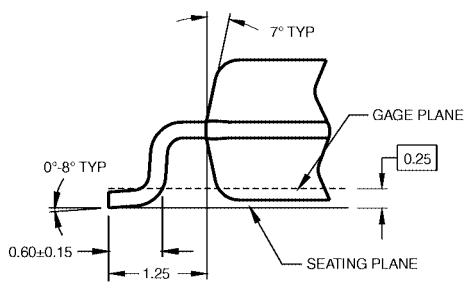
Symbol	Parameter	$T_A = +25^\circ\text{C}$			$T_A = -55^\circ\text{C}$ to $+125^\circ\text{C}$		$T_A = 0^\circ\text{C}$ to $+70^\circ\text{C}$		Units
		Min	Typ	Max	Min	Max	Min	Max	
t_{PLH}	Propagation Delay S to Z_n	4.0	7.0	10.0	4.0	12.0	4.0	11.0	ns
		3.0	5.0	7.0	3.0	9.0	3.0	8.0	
t_{PLH}	Propagation Delay \bar{E} to Z_n	5.0	7.0	9.5	5.0	13.0	5.0	11.0	ns
		2.5	4.5	6.5	2.5	7.5	2.5	7.0	
t_{PLH}	Propagation Delay I_n to Z_n	2.5	4.5	6.0	2.5	7.5	2.5	6.5	ns
		2.5	4.0	5.5	1.5	7.5	2.0	7.0	

74F157A



Physical Dimensions inches (millimeters) unless otherwise noted

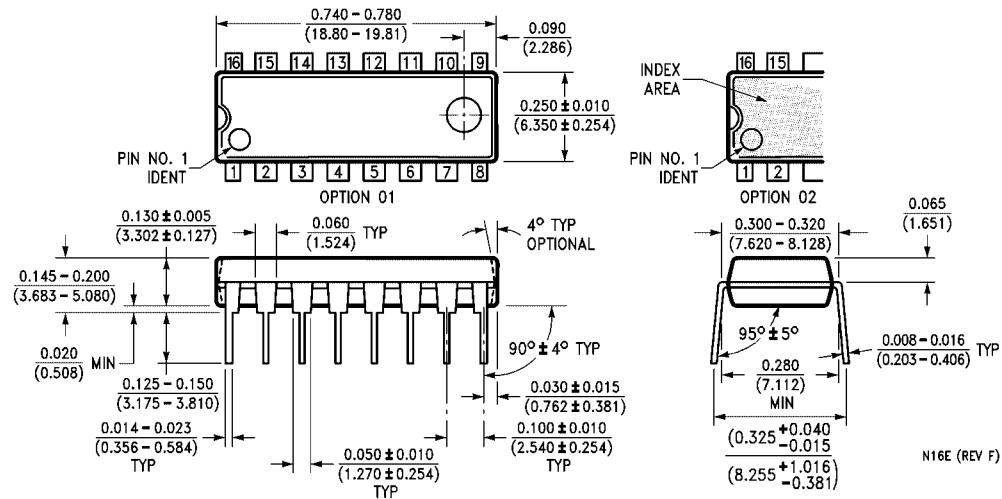

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
Package Number M16A

Physical Dimensions



inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION



DIMENSIONS ARE IN MILLIMETERS

DETAIL A

16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M16D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Fairchild Semiconductor](#):

[74F157APC](#) [74F157ASJ](#) [74F157ASC](#) [74F157ASCX](#) [74F157ASJX](#) [74F157APC_Q](#)