

Data Sheet

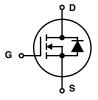
December 2001

9A, 100V, 0.250 Ohm, N-Channel Power MOSFET

This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. This type can be operated directly from integrated circuits.

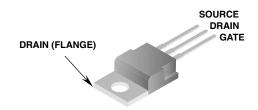
Formerly developmental type TA17401.

Ordering Information


PART NUMBER	PACKAGE	BRAND
BUZ72A	TO-220AB	BUZ72A

NOTE: When ordering, use the entire part number.

Features


- 9A, 100V
- $r_{DS(ON)} = 0.250\Omega$
- SOA is Power Dissipation Limited
- · Nanosecond Switching Speeds
- Linear Transfer Characteristics
- High Input Impedance
- · Majority Carrier Device
- · Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

JEDEC TO-220AB

BUZ72A

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	BUZ72A	UNITS
Drain to Source Breakdown Voltage (Note 1)	100	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1) V_{DGR}	100	V
Continuous Drain Current	9	Α
Pulsed Drain Current (Note 3)	36	Α
Gate to Source Voltage	±20	V
Maximum Power Dissipation	40	W
Linear Derating Factor	0.32	W/oC
Operating and Storage Temperature	-55 to 150	°C
DIN Humidity Category - DIN 40040	E	
IEC Climatic Category - DIN IEC 68-1	55/150/56	
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10sT _L	300	°С
Package Body for 10s, See Techbrief 334	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V		-	-	V
Gate to Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 1mA$ (Figure 9)		3	4	V
Zero Gate Voltage Drain Current	I _{DSS}	$T_J = 25^{\circ}C$, $V_{DS} = 100V$, $V_{GS} = 0V$	-	20	250	μА
		T _J = 125°C, V _{DS} = 100V, V _{GS} = 0V	-	100	1000	μА
Gate to Source Leakage Current	I _{GSS}	V _{GS} = 20V, V _{DS} = 0V	-	10	100	nA
Drain to Source On Resistance (Note 2)	r _{DS(ON)}	I _D = 5A, V _{GS} = 10V (Figure 8)	-	0.23	0.250	Ω
Forward Transconductance (Note 2)	9fs	V _{DS} = 25V, I _D = 5A (Figure 11)	2.7	3.8	-	S
Turn-On Delay Time	t _{d(ON)}	V_{CC} = 30V, I_D \approx 2.9A, V_{GS} = 10V, R_{GS} = 50 Ω , R_L = 10 Ω		20	30	ns
Rise Time	t _r			45	70	ns
Turn-Off Delay Time	t _{d(OFF)}			70	90	ns
Fall Time	t _f			55	70	ns
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz (Figure 10)		450	600	pF
Output Capacitance	Coss			150	240	pF
Reverse Transfer Capacitance	C _{RSS}			80	130	pF
Thermal Resistance Junction to Case	$R_{\theta JC}$			≤3.1		°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$			≤75		oC/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Continuous Source to Drain Current	I _{SD}	T _C = 25°C	-	-	9	Α
Pulsed Source to Drain Current	I _{SDM}		-	-	36	Α
Source to Drain Diode Voltage	V _{SD}	$T_J = 25^{\circ}C$, $I_{SD} = 18A$, $V_{GS} = 0V$, (Figure 12)	-	1.5	2	V
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C$, $I_{SD} = 9A$, $dI_{SD}/dt = 100A/\mu s$,	-	170	-	ns
Reverse Recovery Charge	Q _{RR}	V _R = 30V	-	0.30	-	μС

NOTES:

- 2. Pulse Test: Pulse width $\leq 300 \mu s$, duty cycle $\leq 2\%$.
- 3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).

Typical Performance Curves Unless Otherwise Specified

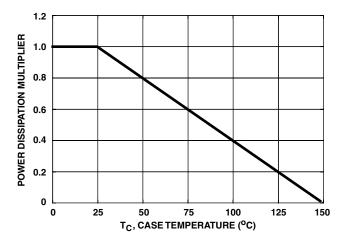


FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

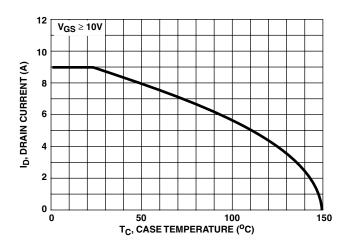


FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

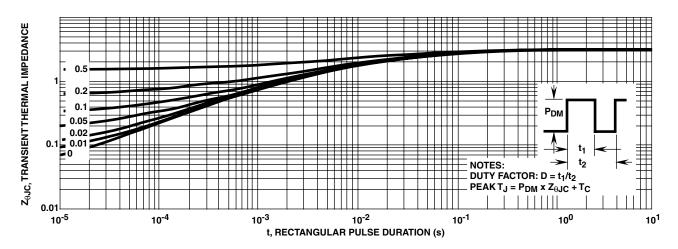


FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE

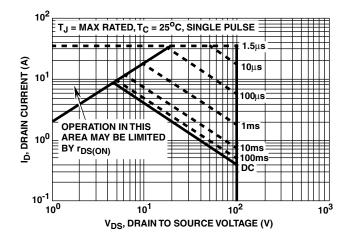


FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

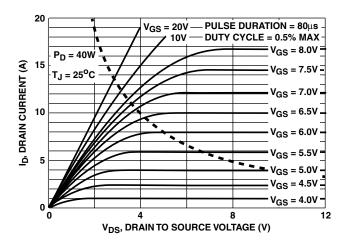


FIGURE 5. OUTPUT CHARACTERISTICS

Typical Performance Curves Unless Otherwise Specified (Continued)

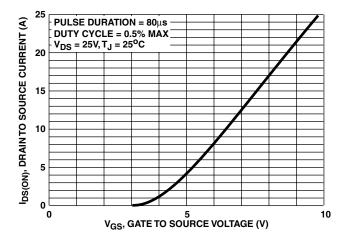


FIGURE 6. TRANSFER CHARACTERISTICS

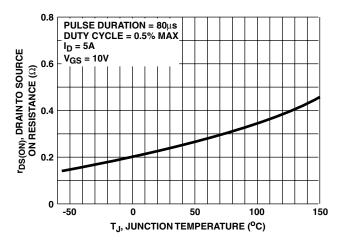


FIGURE 8. DRAINTO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

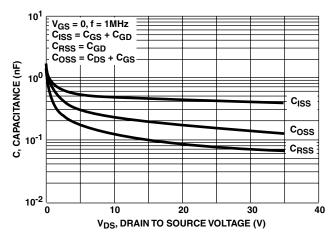


FIGURE 10. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

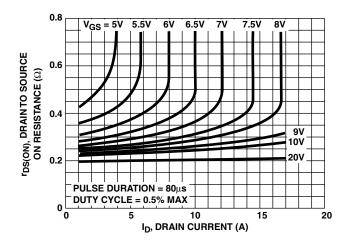


FIGURE 7. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

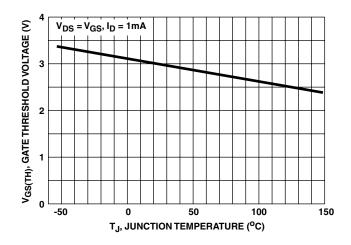


FIGURE 9. GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

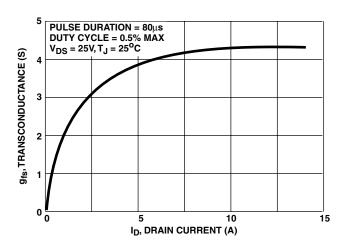


FIGURE 11. TRANSCONDUCTANCE vs DRAIN CURRENT

Typical Performance Curves Unless Otherwise Specified (Continued)

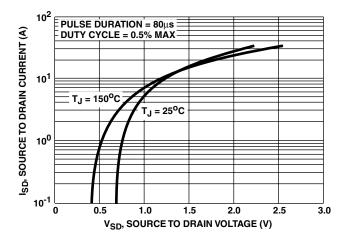


FIGURE 12. SOURCE TO DRAIN DIODE VOLTAGE

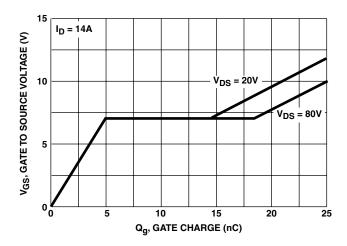


FIGURE 13. GATE TO SOURCE VOLTAGE vs GATE CHARGE

Test Circuits and Waveforms

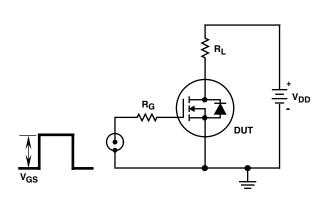


FIGURE 14. SWITCHING TIME TEST CIRCUIT

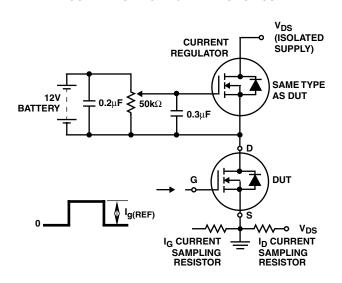


FIGURE 16. GATE CHARGE TEST CIRCUIT

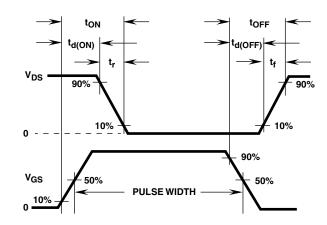


FIGURE 15. RESISTIVE SWITCHING WAVEFORMS

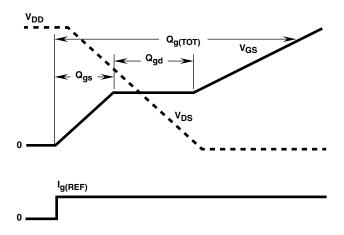


FIGURE 17. GATE CHARGE WAVEFORMS

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM} TruTranslation™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H4