CEL

NEC's 4.8 TO 5.85 GHZ HIGH POWER GAAS MMIC SPDT SWITCH

UPG2022TB

FEATURES

· OPERATING FREQUENCY:

f = 4.8 to 5.85 GHz

LOW INSERTION LOSS:

0.8 dB TYP. @ 4.9 to 5.2 GHz 0.9 dB TYP. @ 5.8 GHz

POWER HANDLING:

 $P_{in (0.1dB)} = +30 \text{ dBm TYP.} @ 4.9 \text{ to } 5.2 \text{ GHz}$ $P_{in (0.1dB)} = +31 \text{ dBm TYP.} @ 5.2 \text{ to } 5.85 \text{ GHz}$

· CONTROL VOLTAGE:

 $V_{cont} = +2.8 \text{ V/0 V}$

· HIGH ISOLATION:

(Between INPUT and OUTPUT) = 29 dB TYP. @ $5.85 \, \mathrm{GHz}$ (Between OUTPUT1 and OUTPUT2) = $18 \, \mathrm{dB} \, \mathrm{TYP}$. @ $5.85 \, \mathrm{GHz}$

• INPUT/OUTPUT RETURN LOSS:

10 dB MIN. @ 4.8 to 5.85 GHz

SWITCHING SPEED:

20 ns @ trise/trall (10/90% RF)

6-PIN SUPER MINIMOLD PACKAGE:

 $(2.0 \times 1.25 \times 0.9 \text{ mm})$

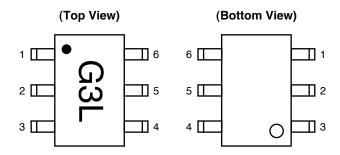
· LEAD FREE

DESCRIPTION

NEC's UPG2022TB is a high power GaAs MMIC SPDT (Single Pole Double Throw) switch. This device can operate from 4.8 to 5.85 GHz with low insertion loss. It is housed in a compact, lead free 6-pin super minimold package.

APPLICATIONS

- 5 GHz BAND WLAN
- 5 GHz CORDLESS PHONES
- 5 GHz ELECTRONIC TOLL COLLECTION
- 5 GHz FIXED WIRELESS ACCESS


ORDERING INFORMATION

PART NUMBER	PACKAGE	MARKING	SUPPLYING FORM
UPG2022TB-E4-A	6-pin super minimold	G3L	Embossed tape 8 mm wide Pin 4,5,6 face the perforation side of the tape Qty 3 kpcs/reel

Remark To order evaluation samples, contact your nearby sales office.

Part number for sample order: UPG2022TB-A

PIN CONNECTIONS

PIN NO.	PIN NAME
1	OUTPUT2
2	GND
3	OUTPUT1
4	V _{cont1}
5	INPUT
6	V _{cont2}

ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Switch Control Voltage	Vcont1, 2	-6.0 to +6.0 Note1	٧
Input Power	Pin	+36	dBm
Total Power Dissipation	Ptot	0.15 Note2	W
Operating Ambient Temperature	TA	-45 to +85	°C
Storage Temperature	T _{stg}	-65 to +150	°C

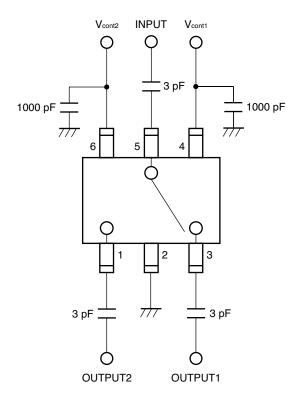
Notes 1. $|V_{cont1} - V_{cont2}| \le 6.0 \text{ V}$

2. Mounted on double-sided copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB, $T_A = +85^{\circ}C$

RECOMMENDED OPERATING RANGE (TA = +25°C, unless otherwise specified)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Switch Control Voltage (H)	Vcont (H)	2.7	2.8	3.3	V
Switch Control Voltage (L)	V _{cont (L)}	-0.2	0	0.2	V
Operating Frequency	f	4.8		5.85	GHz
Operating Ambient Temperature	TA	-40	+25	+85	°C

ELECTRICAL CHARACTERISTICS (TA = $+25^{\circ}$ C, V_{cont} = 2.8 V/0 V, Z_O = 50 Ω , DC blocking capacitors = 3 pF, Each port, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Insertion Loss	Lins	f = 4.9 GHz	-	0.8	1.1	dB
		f = 5.2 GHz	-	0.8	1.1	dB
		f = 5.8 GHz	-	0.9	1.1	dB
Isolation 1	ISL1	f = 4.9 GHz	12	15	_	dB
(between OUTPUT1 and		f = 5.2 GHz	13	16	-	dB
OUTPUT2)		f = 5.8 GHz	15	18	-	dB
Input Return Loss	RLin	f = 4.9 GHz	10	17	-	dB
		f = 5.2 GHz	10	18	_	dB
		f = 5.8 GHz	10	15	-	dB
Output Return Loss	RLout	f = 4.9 GHz	10	19	-	dB
		f = 5.2 GHz	10	21	-	dB
		f = 5.8 GHz	10	19	_	dB
0.1 dB Gain Compression Input	Pin (0.1 dB)	f = 4.9 to 5.2 GHz	28	30	-	dBm
Power		f = 5.2 to 5.85 GHz	30	31	-	
Switching Control Speed	tsw	trise/tfall (10/90% RF)	-	20	-	ns
Switching Control Current	Icont		-	0.5	1	μΑ

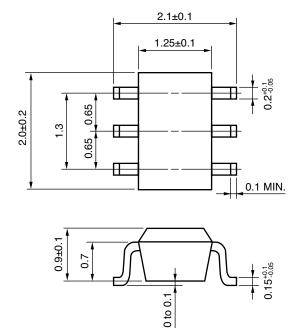
STANDARD CHARACTERISTICS FOR REFERENCE

 $(TA = +25^{\circ}C, V_{cont} = 2.8 \text{ V/O V}, Z_{O} = 50 \Omega, DC \text{ blocking capacitors} = 3 pF, Each port, unless otherwise specified)$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Isolation 2	ISL2	f = 4.9 GHz	-	17	-	dB
(between INPUT and OUTPUT)		f = 5.2 GHz	-	20	-	dB
		f = 5.8 GHz	-	29	-	dB

EVALUATION CIRCUIT

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.


TRUTH TABLE OF SWITCHING BY CONDITION OF CONTROL VOLTAGE

		V _{CONT1}				
		VCONT (H)			CONT (L)	
VCONT2	VCONT (H)	INPUT —	Note O— OUTPUT1 O— OUTPUT2	INPUT ———	O— OUTPUT1 O— OUTPUT2	
	VCONT (L)	INPUT —	OUTPUT1 OUTPUT2	INPUT —	Note O— OUTPUT1 O— OUTPUT2	

Note In case of VCONT1 = VCONT2 = High or VCONT1 = VCONT2 = Low, (that is same control voltage for both pins), input signal of INPUT (Pin 5) is output from OUTPUT1 (Pin 3) and OUTPUT2 (Pin 1).

PACKAGE DIMENSIONS

6-PIN SUPER MINIMOLD (UNIT:mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature)	: 260°C or below	IR260
	Time at peak temperature	: 10 seconds or less	
	Time at temperature of 220°C or higher	: 60 seconds or less	
	Preheating time at 120 to 180°C	: 120±30 seconds	
	Maximum number of reflow processes	: 3 times	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
VPS	Peak temperature (package surface temperature)	: 215°C or below	VP215
	Time at temperature of 200°C or higher	: 25 to 40 seconds	
	Preheating time at 120 to 150°C	: 30 to 60 seconds	
	Maximum number of reflow processes	: 3 times	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
Wave Soldering	Peak temperature (molten solder temperature)	: 260°C or below	WS260
	Time at peak temperature	: 10 seconds or less	
	Preheating temperature (package surface temperature)	: 120°C or below	
	Maximum number of flow processes	: 1 time	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
Partial Heating	Peak temperature (pin temperature)	: 350°C or below	HS350
	Soldering time (per side of device)	: 3 seconds or less	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	

Caution Do not use different soldering methods together (except for partial heating).

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

05/26/2004

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix –A indicates that the device is Pb-free. The –AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration in CEL	on contained devices	
Lead (Pb)	< 1000 PPM	-A -AZ Not Detected (*)		
Mercury	< 1000 PPM	Not Detected		
Cadmium	< 100 PPM	Not Detected		
Hexavalent Chromium	< 1000 PPM	Not Detected		
PBB	< 1000 PPM	Not Detected		
PBDE	< 1000 PPM	Not Detected		

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release

In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.

See CEL Terms and Conditions for additional clarification of warranties and liability.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

CEL:

UPG181GR UPG183GR