

International **ICR** Rectifier

SCHOTTKY RECTIFIER

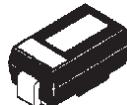
10MQ100NPbF

2.1 Amp

$I_{F(AV)} = 2.1\text{Amp}$
 $V_R = 100\text{V}$

Major Ratings and Characteristics

Characteristics	Value	Units
I_F DC	2.1	A
V_{RRM}	100	V
I_{FSM} @ $t_p = 5\ \mu\text{s}$ sine	120	A
V_F @ 1.5Apk , $T_J = 125^\circ\text{C}$	0.68	V
T_J range	-55 to 150	$^\circ\text{C}$


Description/ Features

The 10MQ100NPbF surface mount Schottky rectifier has been designed for applications requiring low forward drop and very small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free ("PbF" suffix)

Case Styles

10MQ100NPbF

Cathode
Anode

SMA

Voltage Ratings

Part number	10MQ100NPbF	
V_R Max. DC Reverse Voltage (V)		100
V_{RWM} Max. Working Peak Reverse Voltage (V)		

Absolute Maximum Ratings

Parameters	10MQ	Units	Conditions
$I_{F(AV)}$ Max. Average Forward Current * See Fig. 4	1.5	A	50% duty cycle @ $T_L = 126^\circ\text{C}$, rectangular wave form. On PCboard 9mm ² island (.013mm thick copper pad area)
I_{FSM} Max. Peak One Cycle Non-Repetitive Surge Current * See Fig. 6, $T_J = 25^\circ\text{C}$	120	A	5μs Sine or 3μs Rect. pulse
	30		10ms Sine or 6ms Rect. pulse
E_{AS} Non-Repetitive Avalanche Energy	1.0	mJ	$T_J = 25^\circ\text{C}$, $I_{AS} = 0.5\text{A}$, $L = 8\text{mH}$
I_{AR} Repetitive Avalanche Current	0.5	A	

Electrical Specifications

Parameters	10MQ	Units	Conditions
V_{FM} Max. Forward Voltage Drop (1) * See Fig. 1	0.78	V	$T_J = 25^\circ\text{C}$
	0.85	V	
	0.63	V	$T_J = 125^\circ\text{C}$
	0.68	V	
I_{RM} Max. Reverse Leakage Current (1) * See Fig. 2	0.1	mA	$V_R = \text{rated } V_R$
	1	mA	
V_{FTO} Threshold Voltage	0.52	V	$T_J = T_J \text{ max.}$
r_t Forward Slope Resistance	78.4	mΩ	
C_T Typical Junction Capacitance	38	pF	$V_R = 10V_{DC}$, $T_J = 25^\circ\text{C}$, test signal = 1Mhz
L_S Typical Series Inductance	2.0	nH	Measured lead to lead 5mm from package body
dv/dt Max. Voltage Rate of Change (Rated V_R)	10000	V/μs	

(1) Pulse Width < 300μs, Duty Cycle < 2%

Thermal-Mechanical Specifications

Parameters	10MQ	Units	Conditions
T_J Max. Junction Temperature Range (*)	-55 to 150	°C	
T_{stg} Max. Storage Temperature Range	-55 to 150	°C	
R_{thJA} Max. Thermal Resistance Junction to Ambient	80	°C/W	DC operation
wt Approximate Weight	0.07(0.002)	g (oz.)	
Case Style	SMA		Similar D-64
Device Marking	IR1J		

(*) $\frac{dP_{tot}}{dT_J} < \frac{1}{R_{th}(j-a)}$ thermal runaway condition for a diode on its own heatsink

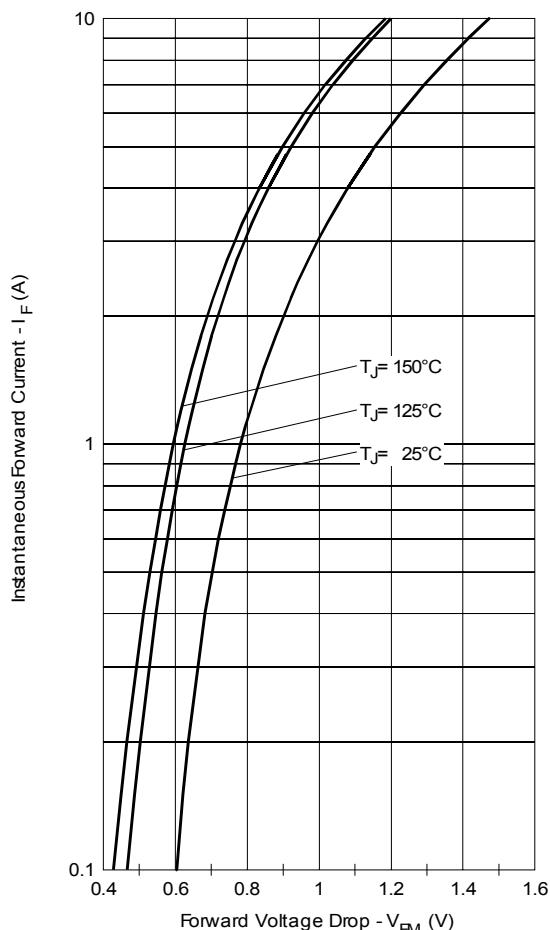


Fig. 1 - Maximum Forward Voltage Drop Characteristics

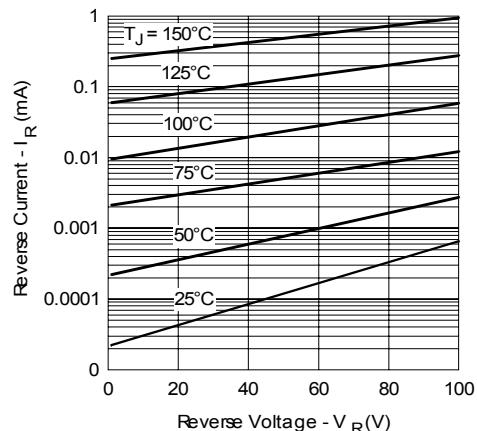


Fig. 2 - Typical Peak Reverse Current
Vs. Reverse Voltage

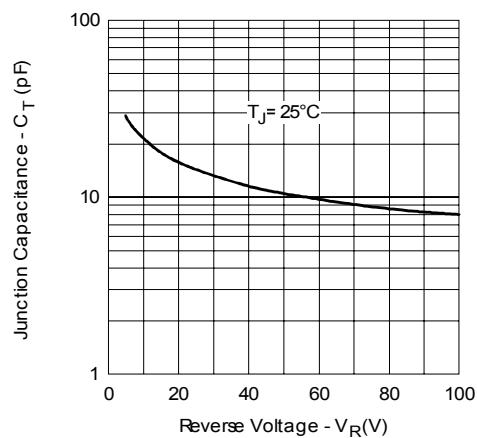


Fig. 3 - Typical Junction Capacitance
Vs. Reverse Voltage

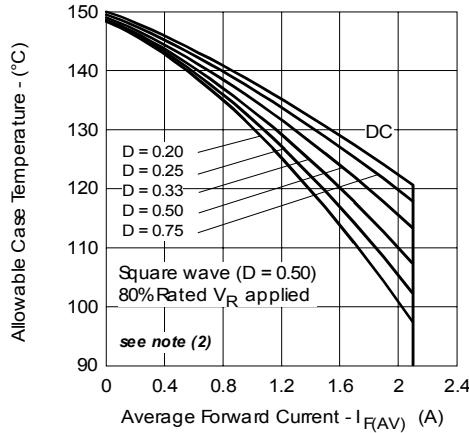


Fig. 4 - Maximum Average Forward Current
Vs. Allowable Lead Temperature

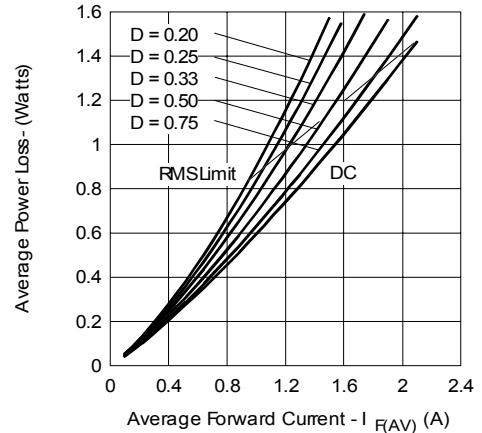


Fig. 5 - Maximum Average Forward Dissipation
Vs. Average Forward Current

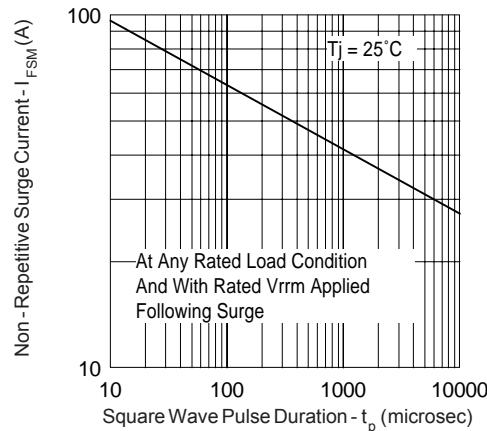
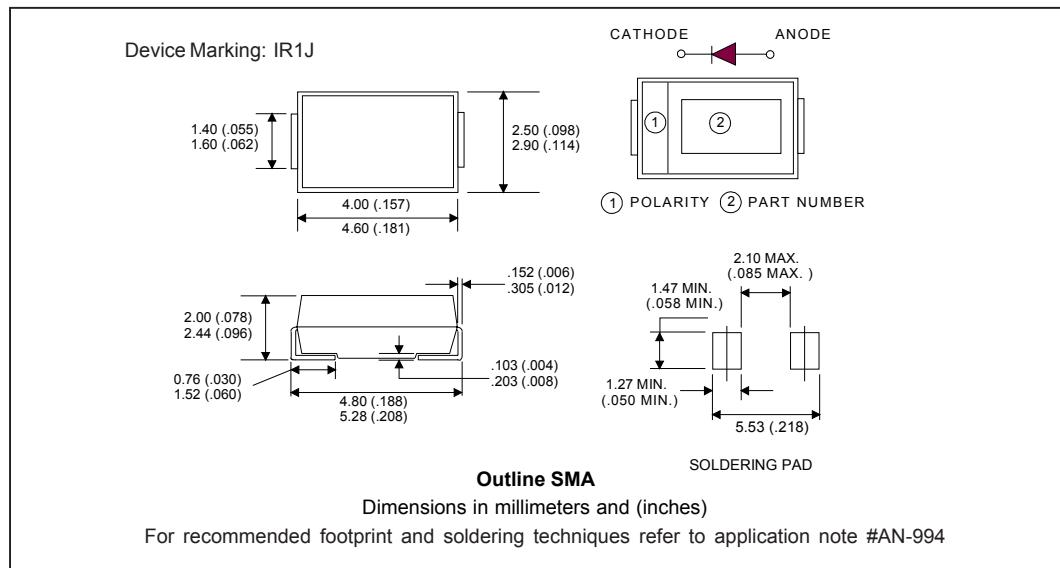
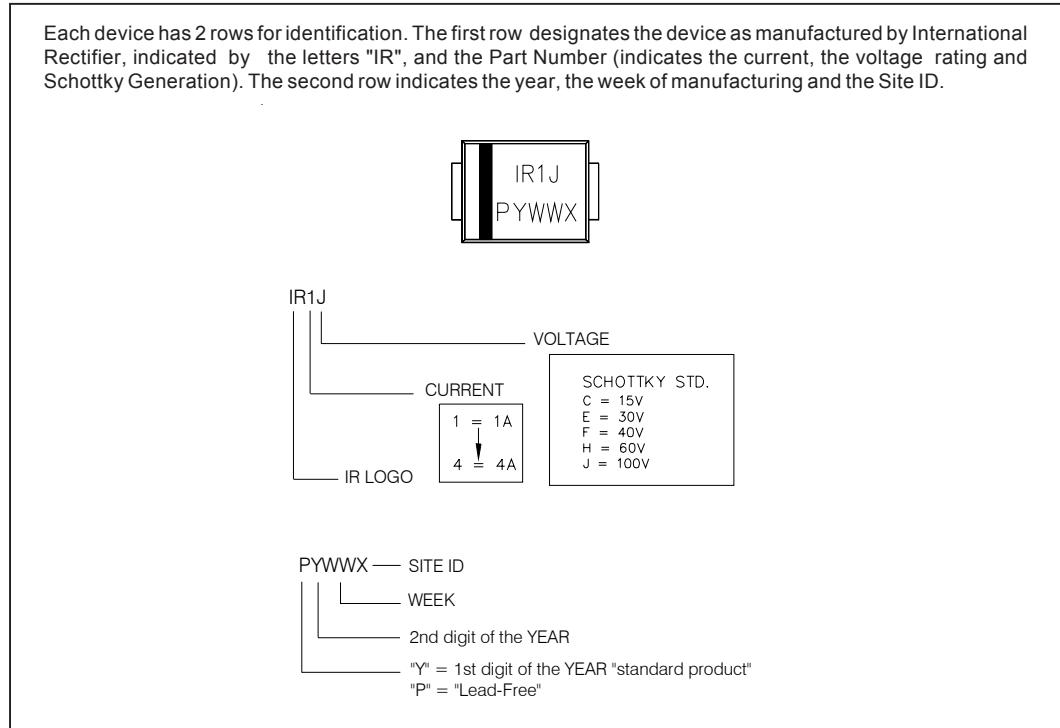
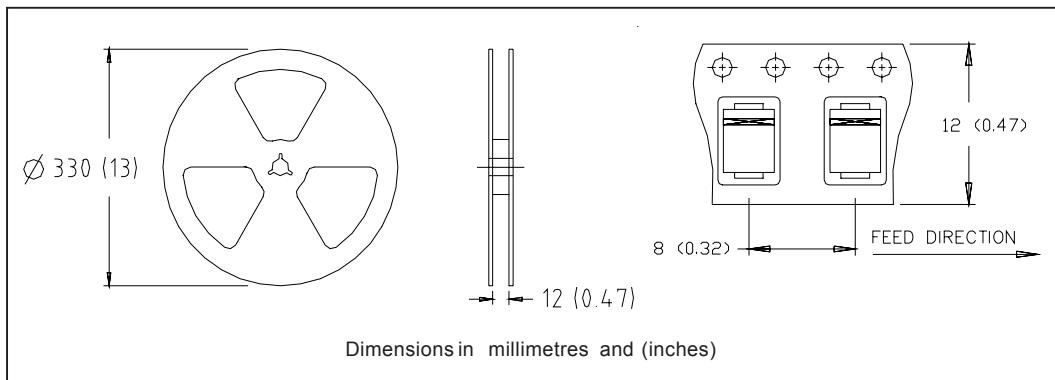



Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration


(2) Formula used: $T_c = T_j - (P_d + P_{d_{REV}}) \times R_{thJC}$;
 $P_d = \text{Forward Power Loss} = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6);
 $P_{d_{REV}} = \text{Inverse Power Loss} = V_{R1} \times I_R (1 - D)$; $I_R @ V_{R1} = 80\% \text{ rated } V_R$

Outline Table



Marking & Identification

Each device has 2 rows for identification. The first row designates the device as manufactured by International Rectifier, indicated by the letters "IR", and the Part Number (indicates the current, the voltage rating and Schottky Generation). The second row indicates the year, the week of manufacturing and the Site ID.

Tape & Reel Information

Ordering Information Table

Device Code						
10	M	Q	100	N	TR	PbF
1	2	3	4	5	6	7
1 - Current Rating						
2 - M = SMA						
3 - Q = Schottky Q Series						
4 - Voltage Rating (100 = 100V)						
5 - N = New SMA						
6 - • none = Box (1000 pieces) • TR = Tape & Reel (7500 pieces)						
7 - • none = Standard Production • PbF = Lead-Free						

Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial Level and Lead-Free.
Qualification Standards can be found on IR's Web site.

International
IR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
06/04

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.