

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT280

9-bit odd/even parity generator/checker

Product specification
File under Integrated Circuits, IC06

December 1990

9-bit odd/even parity generator/checker**74HC/HCT280****FEATURES**

- Word-length easily expanded by cascading
- Similar pin configuration to the "180" for easy system up-grading
- Generates either odd or even parity for nine data bits
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT280 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT280 are 9-bit parity generators or checkers commonly used to detect errors in high-speed data

transmission or data retrieval systems. Both even and odd parity outputs are available for generating or checking even or odd parity up to 9 bits.

The even parity output (Σ_E) is HIGH when an even number of data inputs (I_0 to I_8) are HIGH. The odd parity output (Σ_O) is HIGH when an odd number of data inputs are HIGH.

Expansion to larger word sizes is accomplished by tying the even outputs (Σ_E) of up to nine parallel devices to the data inputs of the final stage. For a single-chip 16-bit even/odd parity generator/checker, see PC74HC/HCT7080.

APPLICATIONS

- 25-line parity generator/checker
- 81-line parity generator/checker

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; $t_r = t_f = 6$ ns

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC	HCT	
t_{PHL}/t_{PLH}	propagation delay I_n to Σ_E I_n to Σ_O	$C_L = 15$ pF; $V_{CC} = 5$ V	17 20	18 22	ns ns
C_I	input capacitance		3.5	3.5	pF
C_{PD}	power dissipationcapacitance per package	notes 1 and 2	65	65	pF

Notes

- C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o) \text{ where:}$$

f_i = input frequency in MHz

f_o = output frequency in MHz

$\sum (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

- For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

9-bit odd/even parity generator/checker

74HC/HCT280

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
8, 9, 10, 11, 12, 13, 1, 2, 4	I_0 to I_8	data inputs
5, 6	Σ_E , Σ_O	parity outputs
7	GND	ground (0 V)
14	V_{CC}	positive supply voltage

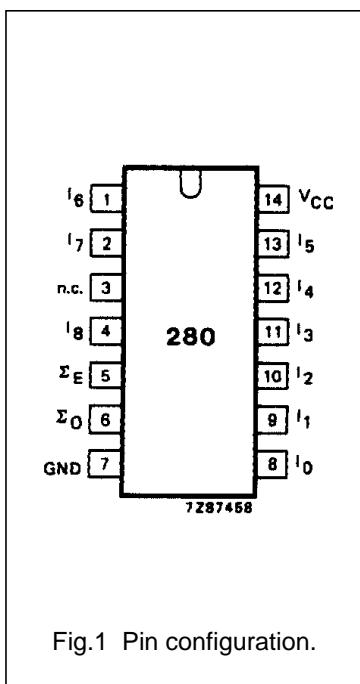


Fig.1 Pin configuration.

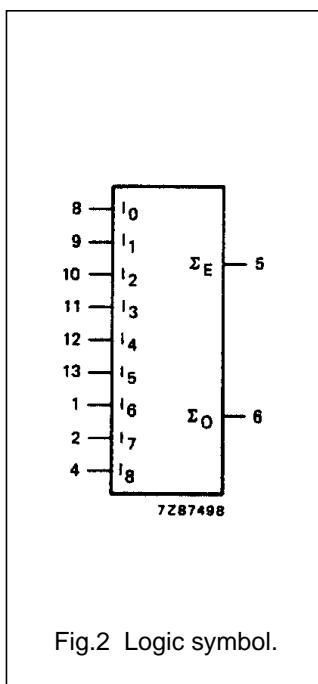


Fig.2 Logic symbol.

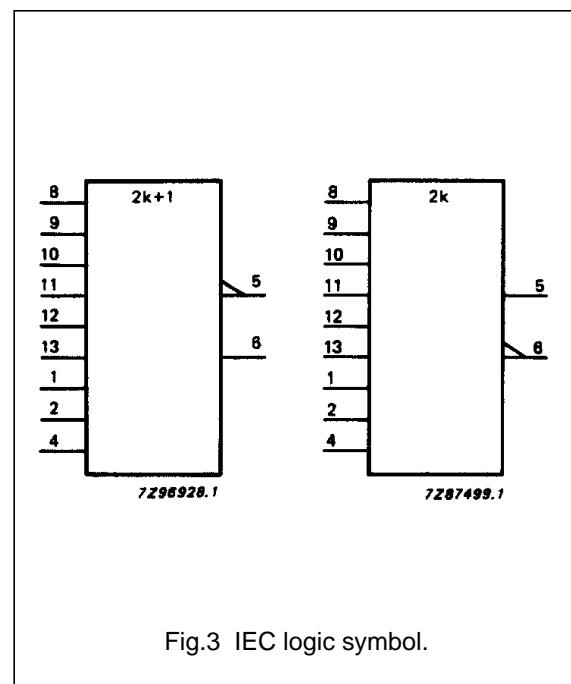


Fig.3 IEC logic symbol.

9-bit odd/even parity generator/checker

74HC/HCT280

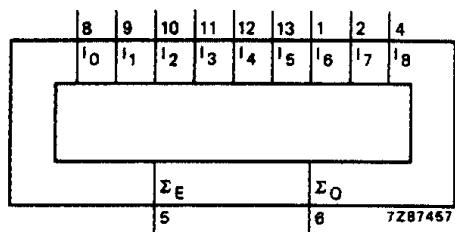


Fig.4 Functional diagram.

FUNCTION TABLE

INPUTS	OUTPUTS	
number of HIGH data inputs (I_0 to I_8)	Σ_E	Σ_O
even	H	L
odd	L	H

Note

1. H = HIGH voltage level
L = LOW voltage level

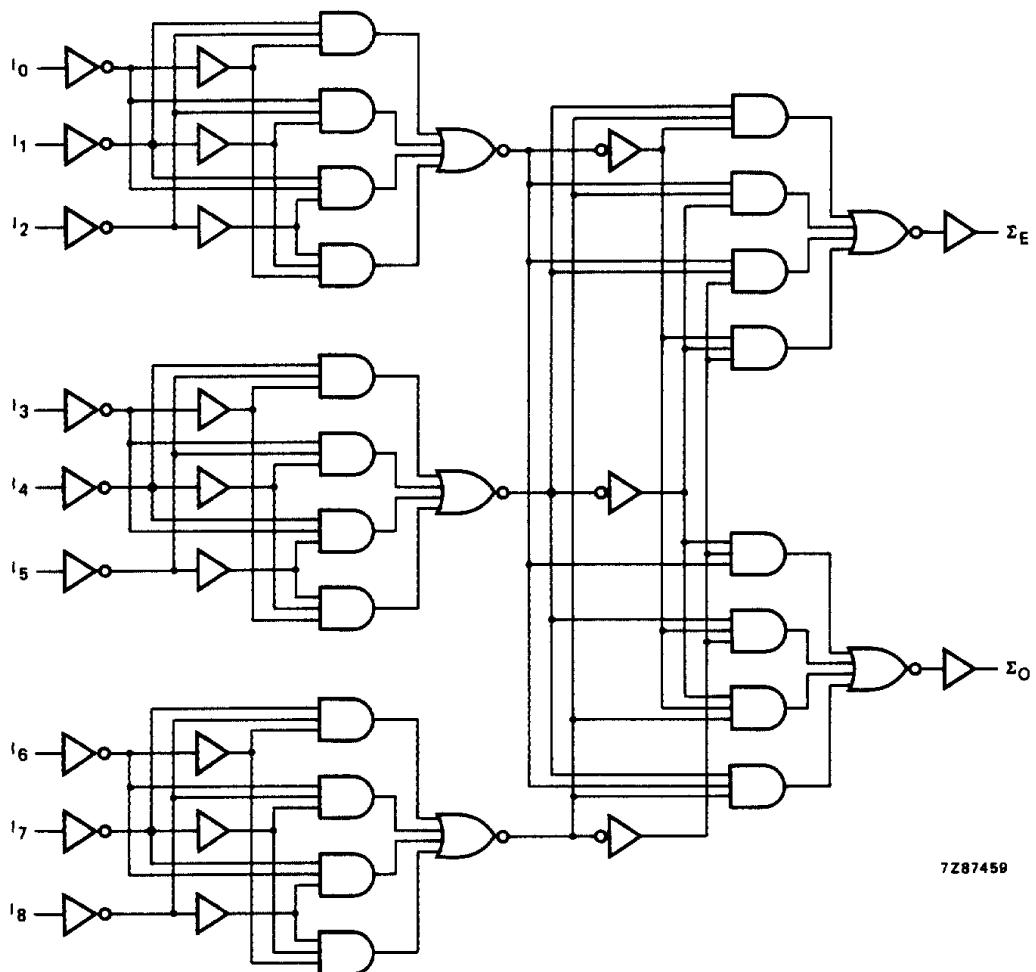


Fig.5 Logic diagram.

9-bit odd/even parity generator/checker

74HC/HCT280

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "[74HC/HCT/HCU/HCMOS Logic Family Specifications](#)".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

$GND = 0 \text{ V}$; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

SYMBOL	PARAMETER	$T_{amb} (\text{ }^{\circ}\text{C})$						UNIT	TEST CONDITIONS			
		74HC							V _{CC} (V)	WAVEFORMS		
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
t_{PHL}/t_{PLH}	propagation delay I_n to Σ_E		55 20 16	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	Fig.6	
t_{PHL}/t_{PLH}	propagation delay I_n to Σ_O		63 23 18	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	Fig.6	
t_{THL}/t_{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6	

9-bit odd/even parity generator/checker

74HC/HCT280

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "[74HC/HCT/HCU/HCMOS Logic Family Specifications](#)".

Output capability: standard

 I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications.To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
I_n	1.0

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF

SYMBOL	PARAMETER	T _{amb} (°C)						UNIT	TEST CONDITIONS			
		74HCT							V _{CC} (V)	WAVEFORMS		
		+25			-40 to +85		-40 to +125					
		min.	typ.	max.	min.	max.	min.	max.				
t_{PHL}/t_{PLH}	propagation delay I_n to Σ_E		21	42		53		63	ns	4.5	Fig.6	
t_{PHL}/t_{PLH}	propagation delay I_n to Σ_O		26	45		56		68	ns	4.5	Fig.6	
t_{THL}/t_{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6	

9-bit odd/even parity generator/checker

74HC/HCT280

AC WAVEFORMS

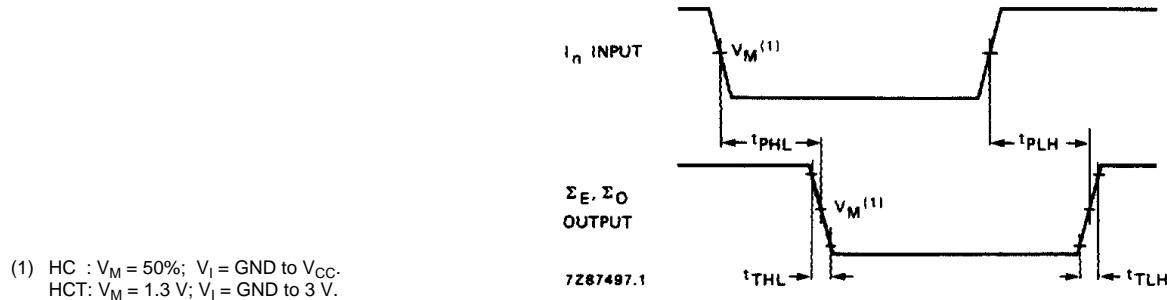


Fig.6 Waveforms showing the data input (I_n) to parity outputs (Σ_E , Σ_O) propagation delays and the output transition time.

APPLICATION INFORMATION

Fig.7 Cascaded 17-bit odd/even parity generator/checker.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".