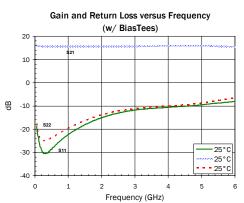


50 MHz to 6000 MHz CASCADABLE ACTIVE BIAS InGAP HBT MMIC AMPLIFIER


Package: SOT-89

Product Description

RFMD's SBB4089Z is a high performance InGaP HBT MMIC amplifier utilizing a Darlington configuration with an active bias network. The active bias network provides stable current over temperature and process Beta variations. Designed to run directly from a 5V supply, the SBB4089Z does not require a dropping resistor as compared to typical Darlington amplifiers. The SBB4089Z product is designed for high linearity 5V gain block applications that require small size and minimal external components. It is internally matched to $50\,\Omega_{\rm S}$.

Features

- OIP₃=35.2dBm at 1950MHz
- P_{1dB}=19.3dBm at 1950MHz
- Single Fixed 5V Supply
- Robust 1000V ESD, Class 1C
- Patented Thermal Design & Bias Circuit
- Low Thermal Resistance

Applications

- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS
- Wideband Instrumentation
- Wireless Data, Satellite Terminals

Boromotor	Specification			l lesia	0 - 11 41 - 11	
Parameter	Min. Typ. M		Max.	Unit	Condition	
Small Signal Gain	14.0	15.5	17.0	dB	850MHz	
	13.8	15.0	17.0	dB	1950MHz	
	13.5	15.5	17.5	dB	2000MHz	
Output Power at 1dB Compression		19.0		dBm	850 MHz	
	18.0	19.2		dBm	1950MHz	
Output Third Order Intercept Point		39.0		dBm	850MHz	
	33.0	35.3		dBm	1950MHz	
Return Loss		4500		MHz	Minimum 10dB	
Input Return Loss	10.0	16.3		dB	1950MHz	
Output Return Loss	10.0	18.0		dB	1950MHz	
Reverse Isolation		18.5		dB	1950MHz	
Noise Figure		4.3	5.5	dB	1950MHz	
Operating Temp Range (T _L)	-40		+105	°C		
Device Operating Voltage		5.0	5.25	V		
Device Operating Current	70.0	80.0	92.0	mA		
Thermal Resistance		69.9		°C/W	junction - lead	

 $\text{Test Conditions: V}_D = \text{5V} \quad \text{I}_D = \text{80mA Typ.} \quad \text{OIP}_3 \text{ Tone Spacing} = \text{1MHz}, \\ \text{P}_{\text{OUT}} \text{ per tone} = \text{0dBm T}_L = 25\,^{\circ}\text{C}, \\ \text{Z}_S = \text{Z}_L = 50\,\Omega, \\ \text{Tested with Bias Tees to the Power Po$

SBB4089Z

Absolute Maximum Ratings

Parameter	Rating	Unit
Device Current (I _D)	100	mA
Max Device Voltage (VD)	5.5	V
Max RF Input Power	24	dBm
Max Operating Dissipated Power	0.55	W
Junction Temp (T _J)	+150	°C
Storage Temp	+150	°C
ESD Rating - Human Body Model (HBM)	Class 1C	
Moisture Sensitivity Level	MSL2	

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias Conditions should also satisfy the following expression:

 $I_D V_D < (T_J - T_L) / R_{TH}$, j-l and $T_L = T_{LEAD}$

Caution! ESD sensitive device.

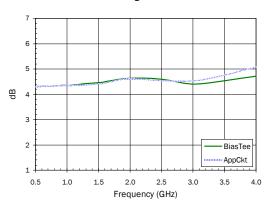
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

The information in this publication is believed to be accurate and reliable. However, no

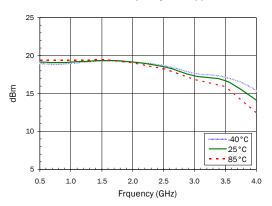
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

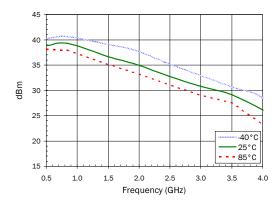
RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Typical Performance at Key Operating Frequencies (With 0.5GHz to 3.5GHz Application Circuit)

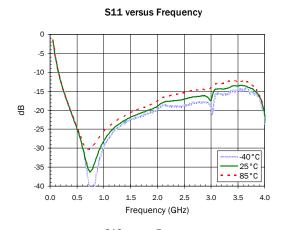

Parameter	Unit	50	100	200	500	850	1950	2500	3500	4000
		MHz								
Small Signal Gain	dB	16.3	15.7	15.7	15.6	15.6	15.5	15.5	15.5	15.0
Output Third Order Intercept Point	dBm	38.7	40.6	39.7	38.8	39.3	35.2	32.8	29.1	26.1
Output Power at 1dB Compression	dBm	18.5	18.7	19	19.2	19.1	19.2	18.6	16.7	14.1
Input Return Loss	dB	11.2	16.3	22.4	25.1	29.9	19.4	17.6	14.9	21.3
Output Return Loss	dB	19.4	25.4	29.8	32.1	26.4	17.2	14.7	13.2	17.4
Reverse Isolation	dB	17.7	17.8	17.8	18.4	18.4	18.9	19.1	19.8	20.8
Noise Figure	dB	4.3	4.3	4.3	4.3	4.3	4.6	4.5	4.8	5.1

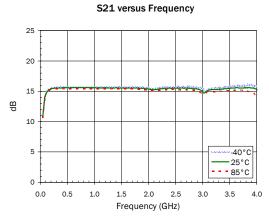
 $\begin{tabular}{l} \textbf{Test Conditions: VCC=5V, I}_D = 80\,\text{mA Typ., OIP}_3\, \textbf{Tone Spacing=1MHz, P}_{OUT}\, \textbf{per tone=0dBm, T}_L = 25\,^{\circ}\text{C, Z}_S = \text{Z}_L = 50\,\Omega \\ \end{tabular}$

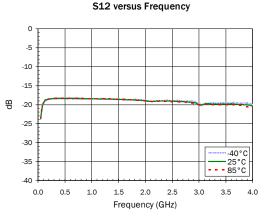


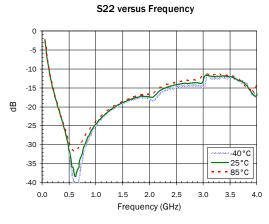

Noise Figure @ 25°C

P1dB versus Frequency with App. Ckt.

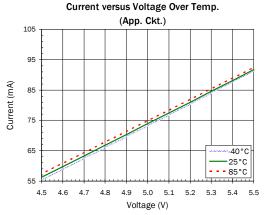

OIP3 versus Frequency with App. Ckt.

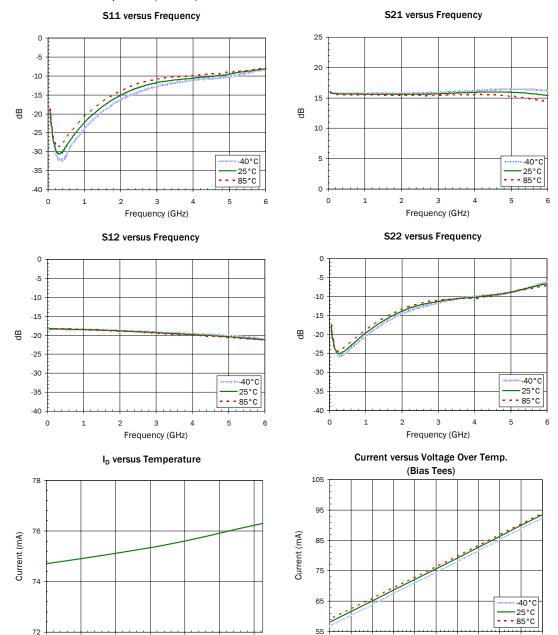



SBB4089Z



0.5 GHz to 3.5 GHz Application Circuit S-Parameters over Temperature





S-Parameters over Temperature (Bias Tee)

4.5

5.0 5.1

Voltage (V)

-40

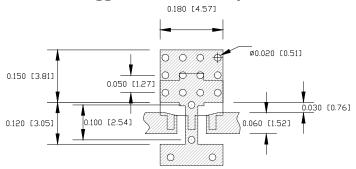
-20

0

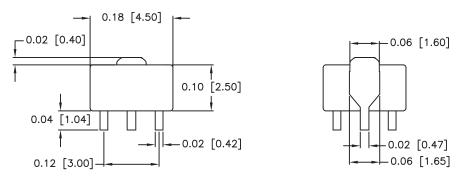
20

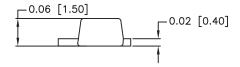
Temperature

40

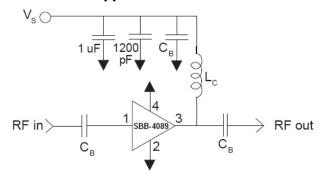

60

80

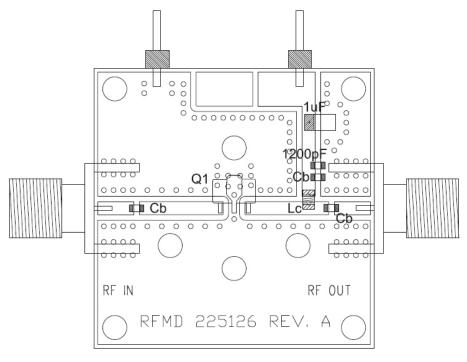

Pin	Function	Description
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
2, 4	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible
3	RF OUT/BIAS	RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation


Suggested PCB Pad Layout

Package Drawing

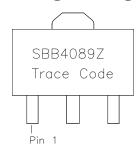

Dimensions in inches (millimeters)
Refer to drawing posted at www.rfmd.com for tolerances.

Application Schematic



Reference Designator	Frequency (MHz) 500 to 3500
C _B	68 pF
L _C	82 nH 0805CS

 $\textbf{Note:} \ \ \, \text{For frequencies under 500\,MHz make the following changes:}$


CB=.1uF LC= 330nH

Evaluation Board Layout and Bill of Materials

Package Marking

Ordering Information

Ordering Code	Description
SBB4089Z	7" Reel with 1000 pieces
SBB4089ZSQ	Sample Bag with 25 pieces
SBB4089ZSR	7" Reel with 100 pieces
SBB4089ZPCK1	1 Evaluation Board (500MHz to 3500MHz) with 5-piece Sample Bag