
SCBS180A - JUNE 1992 - REVISED JULY 1994

- Members of the Texas Instruments Widebus+™ Family
- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- UBE™ (Universal Bus Exchanger)
 Combines D-Type Latches and D-Type
 Flip-Flops for Operation in Transparent,
 Latched, or Clocked Mode
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17

- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 5 V, T_A = 25°C
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OI})
- Bus Hold Inputs Eliminate the Need for External Pullup/Pulldown Resistors
- Packaged in 80-Pin Plastic Thin Quad Flat (PN) Package With 12 × 12-mm Body Using 0.5-mm Lead Pitch

SN74ABT32318 . . . PN PACKAGE (TOP VIEW)

Widebus+, EPIC-IIB, and UBE are trademarks of Texas Instruments Incorporated.

SN54ABT32318, SN74ABT32318 18-BIT TRI-PORT UNIVERSAL BUS EXCHANGERS

SCBS180A - JUNE 1992 - REVISED JULY 1994

description

The 'ABT32318 consists of three 18-bit registered input/output (I/O) ports. These registers combine D-type latches and flip-flops to allow data flow in transparent, latch, and clock modes. Data from one input port can be exchanged to one or more of the other ports. Because of the universal storage element, multiple combinations of real-time and stored data can be exchanged among the three ports.

Data flow in each direction is controlled by the output-enable (\overline{OEA} , \overline{OEB} , and \overline{OEC}), select-control (SELA, SELB, and SELC), latch-enable (LEA, LEB, and LEC), and clock (CLKA, CLKB, and CLKC) inputs. The A data register operates in the transparent mode when LEA is high. When LEA is low, data is latched if CLKA is held at a high or low logic level. If LEA is low, data is stored on the low-to-high transition of CLKA. Output data selection is accomplished by the select-control pins. All three ports have active-low output enables, so when the output-enable input is low, the outputs are active; when the output-enable input is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN54ABT32318 is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABT32318 is characterized for operation from -40° C to 85° C.

Function Tables

STORAGE†

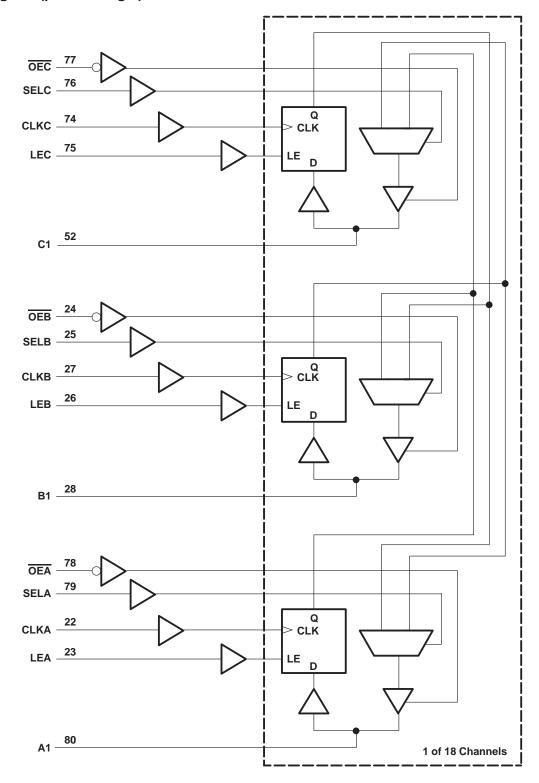
I	INPUTS					
CLKA	LEA	OUTPUT				
1	L	L	L			
1	L	Н	Н			
Н	L	Χ	Q ₀ ‡ Q ₀ ‡			
L	L	Χ	Q ₀ ‡			
Х	Н	L	L			
Х	Н	Н	Н			

[†] A-port register shown. B and C ports are similar but use CLKB, CLKC, LEB, and LEC.

A-PORT OUTPUT

INP	UTS	OUTPUT A			
OEA	SELA	OUTPUT A			
Н	Х	Z			
L	Н	Output of C register			
L	L	Output of B register			

B-PORT OUTPUT


INP	UTS	OUTDUT D			
OEB	SELB	оитрит в			
Н	Х	Z			
L	Н	Output of A register			
L	L	Output of C register			

C-PORT OUTPUT

INPUTS		OUTDUT C			
OEC	SELC	OUTPUT C			
Н	Х	Z			
L	Н	Output of B register			
L	L	Output of A register			

[‡]Output level before the indicated steady-state input conditions were established.

logic diagram (positive logic)

SCBS180A - JUNE 1992 - REVISED JULY 1994

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, VO	-0.5 V to 5.5 V
Current into any output in the low state, I _O : SN54ABT32318	96 mA
SN74ABT32318	128 mA
Input clamp current, $I_{ K }(V_1 < 0)$	–18 mA
Output clamp current, I_{OK} ($V_O < 0$)	−50 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2)	1.1 W
Storage temperature range	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 3)

					SN74AE	3T32318	UNIT
			MIN	MAX	MIN	MAX	UNII
Vcc	Supply voltage		4.5	5.5	4.5	5.5	V
V _{IH}	High-level input voltage		2	ż	2		V
V_{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage		0	VCC	0	Vcc	V
loн	High-level output current		1	-24		-32	mA
loL	Low-level output current		22	48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	000	10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200	·	μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused or floating control pins must be held high or low.

^{2.} The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 75 mils. For more information, refer to the *Package Thermal Considerations* application note in the 1994 *ABT Advanced BiCMOS Technology Data Book*, literature number SCBD002B.

SN54ABT32318, SN74ABT32318 18-BIT TRI-PORT UNIVERSAL BUS EXCHANGERS

SCBS180A - JUNE 1992 - REVISED JULY 1994

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN5	4ABT32	318	SN7	4ABT32	318	UNIT	
PAI	RAMETER	l lESI	CONDITIONS	MIN	TYP†	MAX	MIN	TYP [†]	MAX	UNII	
٧ıK		V _{CC} = 4.5 V,	I _I = -18 mA			-1.2			-1.2	V	
		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -3 \text{ mA}$	2.5			2.5			V	
\/~		$V_{CC} = 5 V$,	$I_{OH} = -3 \text{ mA}$	3			3				
VOH		V _{CC} = 4.5 V	$I_{OH} = -24 \text{ mA}$	2							
		VCC = 4.5 V	$I_{OH} = -32 \text{ mA}$				2				
\/o\		V _{CC} = 4.5 V	$I_{OL} = 48 \text{ mA}$			0.55			0.55	V	
VOL		VCC = 4.5 V	$I_{OL} = 64 \text{ mA}$			0.55			0.55	V	
	Control inputs	$V_{CC} = 0 \text{ to } 5.5 \text{ V},$	$V_I = V_{CC}$ or GND			±1			±1		
Ц	A, B, or C ports	$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V},$	$V_I = V_{CC}$ or GND			±20	±20		μА		
lia in	A, B, or C	V-0-45V	V _I = 0.8 V	100	. 4	7,12	100			^	
l(hold)	ports	V _{CC} = 4.5 V	V _I = 2 V	-100	N.	i e	-100			μΑ	
l _{OZPU} ‡		$\frac{V_{CC}}{OE} = 0$ to 2.1 V,	$V_0 = 0.5 \text{ V to } 2.7 \text{ V},$		To the second	±50			±50	μΑ	
l _{OZPD} ‡		$\frac{\text{V}_{CC}}{\text{OE}} = 2.1 \text{ V to 0},$	$V_0 = 0.5 \text{ V to } 2.7 \text{ V},$	ó	5	±50			±50	μΑ	
IOZH§		$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V},$	$V_O = 2.7 \text{ V}, \overline{OE} \ge 2 \text{ V}$	Q		10			10	μΑ	
I _{OZL} §		$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V},$	$V_O = 0.5 \text{ V}, \overline{OE} \ge 2 \text{ V}$			-10			-10	μΑ	
l _{off}		$V_{CC} = 0$,	V_I or $V_O \le 4.5 \text{ V}$			±100			±100	μΑ	
ICEX		V _{CC} = 5.5 V,	V _O = 5.5 V Outputs high			50			50	μΑ	
IO¶		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-180	-50	-100	-180	mA	
		V _{CC} = 5.5 V,	Outputs high			2			2		
ICC		$I_O = 0$,	Outputs low			45			45	mA	
		$V_I = V_{CC}$ or GND	Outputs disabled	1				1			
ΔlCC [#]		$V_{CC} = 5.5 \text{ V},$ Other inputs at V_{CC} of	One input at 3.4 V, r GND			0.5			0.5	mA	
C_i Control inputs $V_1 = 2.5 \text{ V or } 0.5 \text{ V}$				3			3		pF		
C _{io}	A, B, or C ports	V _O = 2.5 V or 0.5 V			11.5			11.5		pF	

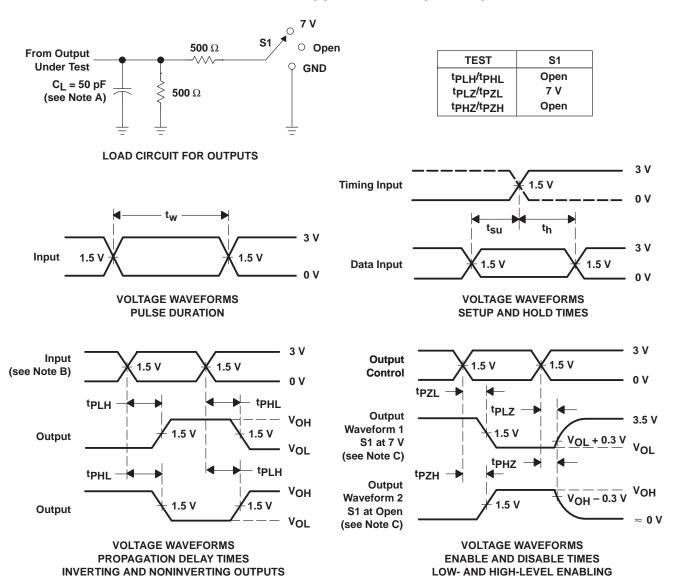
[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. ‡ This parameter is specified by characterization.

[§] The parameters IOZH and IOZL include the input leakage current.

[¶] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[#] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCBS180A - JUNE 1992 - REVISED JULY 1994


timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

			SN54AF	3T32318	SN74AE	3T32318	UNIT
			MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency			150		150	MHz
	Pulse duration	LE high	3.3	Z	3.3		ns
t _W		CLK high or low	3.3	PA	3.3		
	Setup time	A, B, or C before CLK↑	2.4	7	2.4		ns
t _{su}		A, B, or C before LE↓	2.1	,	2.1		
4.	Hald Co.	A, B, or C after CLK↑	1.4		1.4		ns
^t h	Hold time	A, B, or C after LE↓	22.1		2.1		

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50$ pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	I	SN54ABT32318	SN74ABT32318	UNIT
PARAWETER	(INPUT)		MIN MAX	MIN MAX	UNII
f _{max}			150	150	MHz
^t PLH	A, B, or C	C, B, or A	1.4 6.5	1.4 6.1	ns
t _{PHL}	Λ, Β, οι σ	O, B, O A	1.1 6.8	1.1 6.6	115
t _{PLH}	SEL	C, B, or A	1.4 6.7	1.4 6.5	ns
^t PHL	JLL	C, B, Ol A	1.8 6.8	1.8 6.5	115
t _{PLH}	LE	C, B, or A	2.6 8	2.6 7.5	20
^t PHL]	C, B, Ol A	2.6 7.4	2.6 6.9	ns
t _{PLH}	CLK	C, B, or A	2.5 8	2.5 7.4	20
^t PHL		C, B, Ol A	2.5 7.2	2.5 6.7	ns
^t PZH	- OE	C, B, or A	1.4 6.9	1.4 6.8	no
t _{PZL}	OE .	С, Б, 01 A	2.4 7.2	2.4 7.1	ns
^t PHZ	ŌĒ	C, B, or A	1 6.4	1 6.2	200
t _{PLZ}]	C, b, or A	2 6.4	2 6	ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated